1
|
Guan Y, Chen Y, Lin R, Mo T, Li S, Cao Y, Yin T, Diao L, Li Y. Endometriosis: A new perspective on epigenetics and oxidative stress. J Reprod Immunol 2025; 169:104462. [PMID: 40010026 DOI: 10.1016/j.jri.2025.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/07/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
As a complex chronic gynecological disorder characterized by multifaceted etiology involving genetics, environment, immunity and inflammation, endometriosis (EM) has long been a significant concern for women of reproductive age worldwide. This review aimed to comprehensively examine the interplay between epigenetics and oxidative stress (OS) in the pathogenesis of EM. Through the integration of cutting-edge research, the response of OS signals to epigenetic modifications was explored. The microbiome exerts an influence on this causal regulatory relationship, and these mechanisms collectively contribute to the pathophysiology of EM. Specifically, this article highlighted the roles of epigenetics and OS in EM and underscored the importance of the microbiome as a regulatory link. A discussion was also held on the future directions of biomarkers and precision medicine, including the application prospects of epigenetic and OS markers in the diagnosis and treatment decision-making of EM, and innovations in therapeutic strategies like targeting epigenetic modifications and antioxidant therapies. Moreover, this review emphasized the potential of multi-omics integrated analysis to deepen the understanding of the disease, guide future therapeutic strategies and promote personalized medicine.
Collapse
Affiliation(s)
- Yu Guan
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yawen Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, China
| | - Rong Lin
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, China
| | - Tinghui Mo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shiyu Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ying Cao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, China.
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, China.
| |
Collapse
|
2
|
Retis-Resendiz AM, Gómez-Suárez SK, García-Gómez E, Vázquez-Martínez ER. Molecular Basis of Impaired Decidualization in the Eutopic Endometrium of Endometriosis Patients. Cells 2025; 14:326. [PMID: 40072055 PMCID: PMC11899082 DOI: 10.3390/cells14050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/15/2025] Open
Abstract
Endometriosis is a chronic gynecological disorder characterized by the presence of endometrial tissue outside the uterine cavity. A common feature of this pathology is the impaired decidualization of endometrial stromal cells, a critical process that prepares the uterus for embryo implantation. This decidualization defect has been mechanistically linked to progesterone resistance in endometriotic lesions. However, the presence and underlying mechanisms of decidualization defects in the eutopic endometrium of women with endometriosis remain controversial. The aim of the present study is to integrate and discuss molecular evidence from both in vivo and in vitro studies examining decidualization alterations in the eutopic endometrium of patients with endometriosis. Multiple studies have demonstrated impaired decidualization in the eutopic endometrium of women with endometriosis. These alterations have been reported on multiple genes, signaling pathways, and epigenetic processes. However, additional functional studies are warranted to elucidate whether these decidualization defects directly contribute to endometriosis-associated infertility. A better understanding of the decidualization process and its dysregulation in endometriosis will not only advance the development of targeted fertility treatments but also facilitate the design of more effective therapeutic strategies for managing this chronic condition.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico; (A.M.R.-R.); (S.K.G.-S.)
| | - Sandra Karen Gómez-Suárez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico; (A.M.R.-R.); (S.K.G.-S.)
| | - Elizabeth García-Gómez
- Secretaría de Ciencia, Humanidades, Tecnologías e Innovación (SECIHTI)-Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico;
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología (INPer)-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 11000, Mexico; (A.M.R.-R.); (S.K.G.-S.)
| |
Collapse
|
3
|
Liao Z, Monsivais D, Matzuk MM. The long road of drug development for endometriosis - Pains, gains, and hopes. J Control Release 2024; 376:429-440. [PMID: 39427778 PMCID: PMC11884332 DOI: 10.1016/j.jconrel.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Endometriosis, defined by the growth of endometrial tissues outside of the uterine cavity, is a global health burden for ∼200 million women. Patients with endometriosis usually present with chronic pain and are often diagnosed with infertility. The pathogenesis of endometriosis is still an open question; however, tissue stemness and immunological and genetic factors have been extensively discussed in the establishment of endometriotic lesions. Current treatments for endometriosis can be categorized into pharmacological management of hormone levels and surgical removal of the lesions. Both approaches have limited efficacy, with recurrences often encountered; thus, there is no complete cure for the disease or its symptoms. We review the current knowledge of the etiology of endometriosis and summarize the advancement of pharmacological management of endometriosis. We also discuss our efforts in applying DNA-encoded chemistry technology (DEC-Tec) to identify bioactive molecules for the treatment of endometriosis, offering new avenues for developing non-hormonal treatment options for those patients who seek spontaneous pregnancies.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Gong Y, Liu M, Zhang Q, Li J, Cai H, Ran J, Ma L, Ma Y, Quan S. Lysine acetyltransferase 14 mediates TGF-β-induced fibrosis in ovarian endometrioma via co-operation with serum response factor. J Transl Med 2024; 22:561. [PMID: 38867256 PMCID: PMC11167823 DOI: 10.1186/s12967-024-05243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Fibrogenesis within ovarian endometrioma (endometrioma), mainly induced by transforming growth factor-β (TGF-β), is characterized by myofibroblast over-activation and excessive extracellular matrix (ECM) deposition, contributing to endometrioma-associated symptoms such as infertility by impairing ovarian reserve and oocyte quality. However, the precise molecular mechanisms that underpin the endometrioma- associated fibrosis progression induced by TGF-β remain poorly understood. METHODS The expression level of lysine acetyltransferase 14 (KAT14) was validated in endometrium biopsies from patients with endometrioma and healthy controls, and the transcription level of KAT14 was further confirmed by analyzing a published single-cell transcriptome (scRNA-seq) dataset of endometriosis. We used overexpression, knockout, and knockdown approaches in immortalized human endometrial stromal cells (HESCs) or human primary ectopic endometrial stromal cells (EcESCs) to determine the role of KAT14 in TGF-β-induced fibrosis. Furthermore, an adeno-associated virus (AAV) carrying KAT14-shRNA was used in an endometriosis mice model to assess the role of KAT14 in vivo. RESULTS KAT14 was upregulated in ectopic lesions from endometrioma patients and predominantly expressed in activated fibroblasts. In vitro studies showed that KAT14 overexpression significantly promoted a TGF-β-induced profibrotic response in endometrial stromal cells, while KAT14 silencing showed adverse effects that could be rescued by KAT14 re-enhancement. In vivo, Kat14 knockdown ameliorated fibrosis in the ectopic lesions of the endometriosis mouse model. Mechanistically, we showed that KAT14 directly interacted with serum response factor (SRF) to promote the expression of α-smooth muscle actin (α-SMA) by increasing histone H4 acetylation at promoter regions; this is necessary for TGF-β-induced ECM production and myofibroblast differentiation. In addition, the knockdown or pharmacological inhibition of SRF significantly attenuated KAT14-mediating profibrotic effects under TGF-β treatment. Notably, the KAT14/SRF complex was abundant in endometrioma samples and positively correlated with α-SMA expression, further supporting the key role of KAT14/SRF complex in the progression of endometrioma-associated fibrogenesis. CONCLUSION Our results shed light on KAT14 as a key effector of TGF-β-induced ECM production and myofibroblast differentiation in EcESCs by promoting histone H4 acetylation via co-operating with SRF, representing a potential therapeutic target for endometrioma-associated fibrosis.
Collapse
Affiliation(s)
- Yi Gong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Mian Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Qianqian Zhang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523001, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinjing Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Hong Cai
- Department of Obstetrics and Gynecology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, China
| | - Jing Ran
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361102, China
| | - Linna Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, Department of Reproductive Medicine, Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, 54-1 LongHua road, Haikou, Hainan, 570100, China.
| | - Song Quan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
5
|
Ochoa Bernal MA, Fazleabas AT. The Known, the Unknown and the Future of the Pathophysiology of Endometriosis. Int J Mol Sci 2024; 25:5815. [PMID: 38892003 PMCID: PMC11172035 DOI: 10.3390/ijms25115815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Endometriosis is one of the most common causes of chronic pelvic pain and infertility, affecting 10% of women of reproductive age. A delay of up to 9 years is estimated between the onset of symptoms and the diagnosis of endometriosis. Endometriosis is currently defined as the presence of endometrial epithelial and stromal cells at ectopic sites; however, advances in research on endometriosis have some authors believing that endometriosis should be re-defined as "a fibrotic condition in which endometrial stroma and epithelium can be identified". There are several theories on the etiology of the disease, but the origin of endometriosis remains unclear. This review addresses the role of microRNAs (miRNAs), which are naturally occurring post-transcriptional regulatory molecules, in endometriotic lesion development, the inflammatory environment within the peritoneal cavity, including the role that cytokines play during the development of the disease, and how animal models have helped in our understanding of the pathology of this enigmatic disease.
Collapse
Affiliation(s)
- Maria Ariadna Ochoa Bernal
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA;
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA;
| |
Collapse
|
6
|
Samare-Najaf M, Razavinasab SA, Samareh A, Jamali N. Omics-based novel strategies in the diagnosis of endometriosis. Crit Rev Clin Lab Sci 2024; 61:205-225. [PMID: 37878077 DOI: 10.1080/10408363.2023.2270736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Endometriosis, an enigmatic and chronic disorder, is considered a debilitating condition despite being benign. Globally, this gynecologic disorder affects up to 10% of females of reproductive age, impacting almost 190 million individuals. A variety of genetic and environmental factors are involved in endometriosis development, hence the pathophysiology and etiology of endometriosis remain unclear. The uncertainty of the etiology of the disease and its complexity along with nonspecific symptoms have led to misdiagnosis or lack of diagnosis of affected people. Biopsy and laparoscopy are referred to as the gold standard for endometriosis diagnosis. However, the invasiveness of the procedure, the unnecessary operation in disease-free women, and the dependence of the reliability of diagnosis on experience in this area are considered the most significant limitations. Therefore, continuous studies have attempted to offer a noninvasive and reliable approach. The recent advances in modern technologies have led to the generation of large-scale biological data sets, known as -omics data, resulting in the proceeding of the -omics century in biomedical sciences. Thereby, the present study critically reviews novel and noninvasive biomarkers that are based on -omics approaches from 2020 onward. The findings reveal that biomarkers identified based on genomics, epigenomics, transcriptomics, proteomics, and metabolomics are potentially able to diagnose endometriosis, predict prognosis, and stage patients, and potentially, in the near future, a multi-panel of these biomarkers will generate clinical benefits.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
7
|
Luo L, Zhao L, Cui L, Peng C, Ou S, Zeng Y, Liu B. The roles of chromatin regulatory factors in endometriosis. J Assist Reprod Genet 2024; 41:863-873. [PMID: 38270747 PMCID: PMC11052748 DOI: 10.1007/s10815-024-03026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE Endometriosis is an estrogen-dependent inflammatory disease and one of the most common gynecological diseases in women of reproductive age. The aim of the review was to explore the relationship between the chromatin regulatory factors and endometriosis. METHODS By searching for literature on chromatin regulators and endometriosis in PuMed. Finally, 98 documents were selected. RESULTS Chromatin regulators (CRs) are essential epigenetic regulatory factors that can regulate chromatin structure changes and are usually divided into three categories: DNA methylation compounds, histone modification compounds, and chromatin remodeling complexes. Noncoding RNAs are also chromatin regulators and can form heterochromatin by binding to protein complexes. Chromatin regulators cause abnormal gene expression by regulating chromatin structure, thereby affecting the occurrence and development of endometriosis. CONCLUSION This review summarizes the participation of chromatin regulators in the mechanisms of endometriosis, and these changes in related chromatin regulators provide a comprehensive reference for diagnosis and treatment of endometriosis.
Collapse
Affiliation(s)
- Liumei Luo
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Zhao
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lanyu Cui
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education; Guangxi Colleges and Universities, Key Laboratory of Biological Molecular Medicine Research, School of Basic Medical Sciences,, Guangxi Medical University, Nanning, China
| | - Chuyu Peng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shanshan Ou
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Zeng
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Liu
- Guangxi Reproductive Medical Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
8
|
Liu H, Liang J, Dai X, Peng Y, Xiong W, Zhang L, Li X, Li W, Liu K, Bi S, Wang X, Zhang W, Liu Y. Transcriptome-wide N6-methyladenosine (m6A) methylation profiling of long non-coding RNAs in ovarian endometriosis. Genomics 2024; 116:110803. [PMID: 38290592 DOI: 10.1016/j.ygeno.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent internal epigenetic posttranscriptional mechanism for regulating mammalian RNA. Despite recent advances in determining the biological functions of m6A methylation, its association with the pathology of ovarian endometriosis remains uncertain. Herein, we performed m6A transcriptome-wide profiling to identify key lncRNAs with m6A modification involved in ovarian endometriosis development by bioinformatics analysis. We found the total m6A level was lower in ovarian endometriosis than in normal endometrium samples, with 9663 m6A peaks associated with 8989 lncRNAs detected in ovarian endometriosis and 9902 m6A peaks associated with 9210 lncRNAs detected in normal endometrium samples. These m6A peaks were primarily enriched within AAACU motifs. Functional enrichment analysis indicated that pathways involving the regulation of adhesion and development were significantly enriched in these differentially methylated lncRNAs. The regulatory relationships among lncRNAs, microRNAs (miRNAs), and mRNAs were identified by competing endogenous RNA (ceRNA) analysis and determination of the network regulating lncRNA-mRNA expression. Several specific lncRNA, including LINC00665, LINC00937, FZD10-AS1, DIO3OS and GATA2-AS1 which were differently expressed and modified by m6A, were validated using qRT-PCR and its interaction with infiltrating immune cells was explored. Furthermore, we found LncRNA DIO3OS promotes the invasion and migration of Human endometrial stromal cells (THESCs) and ALKBH5 regulates the expression of the lncRNA DIO3OS through m6A modification in vitro. Our study firstly revealed the transcriptome-wide map of m6A modification in lncRNAs of ovarian endometriosis. These findings may enable the determination of the underlying mechanism governing the pathogenesis of ovarian endometriosis and provide theoretical basis for further deeper research on the role of m6A in the development of ovarian endometriosis.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Dai
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuan Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenyuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Keyi Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siyi Bi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Włodarczyk M, Ciebiera M, Nowicka G, Łoziński T, Ali M, Al-Hendy A. Epigallocatechin Gallate for the Treatment of Benign and Malignant Gynecological Diseases-Focus on Epigenetic Mechanisms. Nutrients 2024; 16:559. [PMID: 38398883 PMCID: PMC10893337 DOI: 10.3390/nu16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, 35-302 Rzeszów, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszow, Poland;
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| |
Collapse
|
10
|
Colón-Caraballo M, Flores-Caldera I. Translational aspects of the endometriosis epigenome. EPIGENETICS IN HUMAN DISEASE 2024:883-929. [DOI: 10.1016/b978-0-443-21863-7.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Bedrick BS, Courtright L, Zhang J, Snow M, Amendola ILS, Nylander E, Cayton-Vaught K, Segars J, Singh B. A Systematic Review of Epigenetics of Endometriosis. F&S REVIEWS 2024; 5:100070. [PMID: 38524912 PMCID: PMC10956470 DOI: 10.1016/j.xfnr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Objective To assess the current literature evaluating the epigenetics of endometriosis in humans. Evidence Review A systematic review was conducted in accordance with the PRISMA guidelines within PubMed, EBSCOhost, Cochrane Library, Embase, Scopus, and Web of Science Core Collection. A comprehensive search strategy was developed by a data informationist. Observational and interventional studies assessing epigenetics in humans published in English up to January 15th, 2023, were included. Two reviewers independently screened studies evaluating the role of epigenetics in endometriosis. The risk of bias was assessed using Cochrane RoB 2.0 tool and the Newcastle-Ottawa scale. Extracted data were analyzed descriptively. Results We identified 18.639 studies, of which 57 were included, comprising 1.623 patients with endometriosis and 1.243 controls. Among the 57 studies included, 50 (88%) were case-control studies, and 7 (12%) were cross-sectional. Fifty-nine percent of the studies were Asian, 25% were from America, 14% were European, and 2% were from Africa. Acetylation and methylation were the two main key histone modifications that were centered in this review. Accordingly, we classified the studies as those focusing on genome-wide methylation and those on histone acetylation. Several studies identified an association between endometriosis and hypermethylated genes, including the PGR-B, SF-1, and RASSF1A. The genes HOXA10, COX-2, IL-12B, and GATA6 were found to be hypomethylated in endometriotic tissue by several studies. In regards to histone modification, multiple studies reported that the acetylation levels of histones H3 and H4 affect multiple genes associated with endometriosis. In addition, HDAC2 was found to be elevated in endometriosis patients in two studies. Conclusion Several studies reported a significant difference between specific genes' methylation levels in endometrial biopsies and normal tissue, which suggests that DNA methylation may play an important role in the modulation of the genotype in endometriotic tissue. Acetylation and methylation are the two key histone modifications leading to differential gene expression in endometriotic tissues. The alterations in gene expression reported by the 57 studies can have direct implications on cell cycle growth, cell cycle arrest, and apoptosis and, therefore, might play a key role in the pathogenesis of endometriosis. This review offers insight that histone modifications need further research to evaluate their role as potential biomarkers and treatment targets for endometriosis. Although several key similarities were reported, there were some disagreements among the results, which might be attributable to the heterogeneity between studies. Further research with a more robust standardization is needed to validate the epigenetic changes in endometriosis.
Collapse
Affiliation(s)
- Bronwyn S. Bedrick
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Courtright
- Division of Reproductive Sciences & Women’s Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiahui Zhang
- Department of Obstetrics & Gynecology, University of Vermont Medical Center, Burlington, VT, USA
| | - Morgan Snow
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isabela Landsteiner Sampaio Amendola
- Division of Reproductive Sciences & Women’s Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elisabeth Nylander
- Informationist Services, Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamaria Cayton-Vaught
- Division of Reproductive Sciences & Women’s Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Segars
- Division of Reproductive Sciences & Women’s Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bhuchitra Singh
- Division of Reproductive Sciences & Women’s Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Marquardt RM, Tran DN, Lessey BA, Rahman MS, Jeong JW. Epigenetic Dysregulation in Endometriosis: Implications for Pathophysiology and Therapeutics. Endocr Rev 2023; 44:1074-1095. [PMID: 37409951 PMCID: PMC10638603 DOI: 10.1210/endrev/bnad020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/15/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Endometriosis is a prevalent gynecological condition associated with pelvic pain and infertility. Despite more than a century of research, the etiology of endometriosis still eludes scientific consensus. This lack of clarity has resulted in suboptimal prevention, diagnosis, and treatment options. Evidence of genetic contributors to endometriosis is interesting but limited; however, significant progress has been made in recent years in identifying an epigenetic role in the pathogenesis of endometriosis through clinical studies, in vitro cell culture experiments, and in vivo animal models. The predominant findings include endometriosis-related differential expression of DNA methyltransferases and demethylases, histone deacetylases, methyltransferases, and demethylases, and regulators of chromatin architecture. There is also an emerging role for miRNAs in controlling epigenetic regulators in the endometrium and endometriosis. Changes in these epigenetic regulators result in differential chromatin organization and DNA methylation, with consequences for gene expression independent of a genetic sequence. Epigenetically altered expression of genes related to steroid hormone production and signaling, immune regulation, and endometrial cell identity and function have all been identified and appear to play into the pathophysiological mechanisms of endometriosis and resulting infertility. This review summarizes and critically discusses early seminal findings, the ever-growing recent evidence of epigenetic contributions to the pathophysiology of endometriosis, and implications for proposed epigenetically targeted therapeutics.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Dinh Nam Tran
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Md Saidur Rahman
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Tan HJ, Deng ZH, Zhang C, Deng HW, Xiao HM. CXADR promote epithelial-mesenchymal transition in endometriosis by modulating AKT/GSK-3β signaling. Cell Cycle 2023; 22:2436-2448. [PMID: 38146657 PMCID: PMC10802198 DOI: 10.1080/15384101.2023.2296242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023] Open
Abstract
Endometriosis is a benign high prevalent disease exhibiting malignant features. However, the underlying pathogenesis and key molecules of endometriosis remain unclear. By integrating and analysis of existing expression profile datasets, we identified coxsackie and adenovirus receptor (CXADR), as a novel key gene in endometriosis. Based on the results of immunohistochemistry (IHC), we confirmed significant down-regulation of CXADR in ectopic endometrial tissues obtained from women with endometriosis compared with healthy controls. Further in vitro investigation indicated that CXADR regulated the stability and function of the phosphatases and AKT inhibitors PHLPP2 (pleckstrin homology domain and leucine-rich repeat protein phosphatase 2) and PTEN (phosphatase and tensin homolog). Loss of CXADR led to phosphorylation of AKT and glycogen synthase kinase-3β (GSK-3β), which resulted in stabilization of an epithelial-mesenchymal transition (EMT) factor, SNAIL1 (snail family transcriptional repressor 1). Therefore, EMT processs was induced, and the proliferation, migration and invasion of Ishikawa cells were enhanced. Over-expression of CXADR showed opposite effects. These findings suggest a previously undefined role of AKT/GSK-3β signaling axis in regulating EMT and reveal the involvement of a CXADR-induced EMT, in pathogenic progression of endometriosis.
Collapse
Affiliation(s)
- Hang-Jing Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Center for Reproductive Health, and System Biology, Data Sciences, School of Basic Medical Science, Central South University, Changsha, China
| | - Zi-Heng Deng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Center for Reproductive Health, and System Biology, Data Sciences, School of Basic Medical Science, Central South University, Changsha, China
| | - Chun Zhang
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Wen Deng
- Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hong-Mei Xiao
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Center for Reproductive Health, and System Biology, Data Sciences, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
14
|
Psilopatis I, Vrettou K, Fleckenstein FN, Theocharis S. The Impact of Histone Modifications in Endometriosis Highlights New Therapeutic Opportunities. Cells 2023; 12:1227. [PMID: 37174627 PMCID: PMC10177435 DOI: 10.3390/cells12091227] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Endometriosis is a chronic disorder of the female reproductive system which afflicts a great number of women worldwide. Histone deacetylases (HDACs) prevent the relaxation of chromatin, thereby positively or negatively modulating gene transcription. The current review aims at studying the impact of histone modifications and their therapeutic targeting in endometriosis. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The current manuscript represents the most comprehensive, up-to-date review of the literature focusing on the particular role of HDACs and their inhibitors in the context of endometriosis. HDAC1, HDAC2, HDAC3, Sirtuin 1, and Sirtuin 3, are the five most studied HDAC enzymes which seem to, at least partly, influence the pathophysiology of endometriosis. Both well-established and novel HDACIs could possibly represent modern, efficacious anti-endometriotic drug agents. Altogether, histone modifications and their therapeutic targeting have been proven to have a strong impact on endometriosis.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Diagnostic and Interventional Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Florian Nima Fleckenstein
- Department of Diagnostic and Interventional Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, 10117 Berlin, Germany
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
15
|
Zheng H, Liu X, Guo S. Aberrant expression of histone deacetylase 8 in endometriosis and its potential as a therapeutic target. Reprod Med Biol 2023; 22:e12531. [PMID: 37564680 PMCID: PMC10410010 DOI: 10.1002/rmb2.12531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose To screen Zn2+-dependent histone deacetylase (HDAC) 1-11 in endometriotic cells and then evaluated the HDACs identified from the screening in ovarian endometrioma (OE) and deep endometriotic (DE) lesions, and to evaluate the therapeutic potential of HDAC8 inhibition in mice. Methods Quantification of gene and protein expression levels of HDAC1-11 in endometriotic cells stimulated by TGF-β1, and immunohistochemistry analysis of Class I HDACs and HDAC6 in OE/DE lesion samples. The therapeutic potential of HDAC8 inhibition was evaluated by a mouse model of deep endometriosis. Results The screening identified Class I HDACs and HDAC6 as targets of interest. Immunohistochemistry analysis found a significant elevation in HDAC8 immunostaining in both OE and DE lesions, which was corroborated by gene and protein expression quantification. For other Class I HDACs and HDAC6, their lesional expression was more subtle and nuanced. HDAC1 and HDAC6 staining was significantly elevated in DE lesions while HDAC2 and HDAC3 staining was reduced in DE lesions. Treatment of mice with induced deep endometriosis with an HDAC8 inhibitor resulted in significantly longer hotplate latency, a reduction of lesion weight by nearly two-thirds, and significantly reduced lesional fibrosis. Conclusions These findings highlight the progression-dependent nature of specific HDAC aberrations in endometriosis, and demonstrate, for the first titme, the therapeutic potential of suppressing HDAC8.
Collapse
Affiliation(s)
- Hanxi Zheng
- Department of Gynecology, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Present address:
Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouChina
| | - Xishi Liu
- Department of Gynecology, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
| | - Sun‐Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
- Research Institute, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Zheng H, Liu X, Guo S. Corroborating evidence for aberrant expression of histone deacetylase 8 in endometriosis. Reprod Med Biol 2023; 22:e12527. [PMID: 37476367 PMCID: PMC10354415 DOI: 10.1002/rmb2.12527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Purpose The aim of this study was to evaluate the dynamic change in staining of Class I HDACs and Hdac6 in lesions harvested serially from different time points in mice with induced endometriosis. In addition, the effect of Hdac8 activation as well as Hdac8 and Hdac6 inhibition on lesional progression and fibrogenesis was evaluated. Methods Immunohistochemistry analysis of Class I HDACs and Hdac6 in serially harvested lesion samples in mouse. Hdac8 activation, as well as Hdac6/8 inhibition, was evaluated in mice with induced endometriosis. Results We found a progressive increase in lesional staining of Hdac1, Hdac8, and Hdac6 and gradual decrease in Hdac2 staining and consistently reduced staining of Hdac3 during the course of lesional progression. The stromal Hdac8 staining correlated most prominently with all markers of lesional fibrosis. Hdac8 activation significantly accelerated the progression and fibrogenesis of endometriotic lesions. In contrast, specific inhibition of Hdac8 or Hdac6, especially of Hdac8, significantly hindered lesional progression and fibrogenesis. Conclusions Hdac8 is progressively and aberrantly overexpressed as endometriotic lesions progress. This, along with the documented HDAC1 upregulation in endometriosis and the overwhelming evidence for the therapeutic potentials of HDACIs, calls for further and in-depth investigation of epigenetic aberrations of endometriosis in general and of HDACs in particular.
Collapse
Affiliation(s)
- Hanxi Zheng
- Department of GynecologyShanghai Obstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
- Present address:
Gusu School, Center for Human Reproduction and GeneticsAffiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical UniversitySuzhouChina
| | - Xishi Liu
- Department of GynecologyShanghai Obstetrics and Gynecology Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
| | - Sun‐Wei Guo
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesFudan UniversityShanghaiChina
- Research Institute, Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
| |
Collapse
|
17
|
Bonavina G, Taylor HS. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front Endocrinol (Lausanne) 2022; 13:1020827. [PMID: 36387918 PMCID: PMC9643365 DOI: 10.3389/fendo.2022.1020827] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the clinically recognized association between endometriosis and infertility, the mechanisms implicated in endometriosis-associated infertility are not fully understood. Endometriosis is a multifactorial and systemic disease that has pleiotropic direct and indirect effects on reproduction. A complex interaction between endometriosis subtype, pain, inflammation, altered pelvic anatomy, adhesions, disrupted ovarian reserve/function, and compromised endometrial receptivity as well as systemic effects of the disease define endometriosis-associated infertility. The population of infertile women with endometriosis is heterogeneous, and diverse patients' phenotypes can be observed in the clinical setting, thus making difficult to establish a precise diagnosis and a single mechanism of endometriosis related infertility. Moreover, clinical management of infertility associated with endometriosis can be challenging due to this heterogeneity. Innovative non-invasive diagnostic tools are on the horizon that may allow us to target the specific dysfunctional alteration in the reproduction process. Currently the treatment should be individualized according to the clinical situation and to the suspected level of impairment. Here we review the etiology of endometriosis related infertility as well as current treatment options, including the roles of surgery and assisted reproductive technologies.
Collapse
Affiliation(s)
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Veena KV, Siddamalla S, Deenadayal M, Sisinthy S, Bhanoori M. Histone deacetylase 1, Sirtuin 1, and Sirtuin 3 single-nucleotide polymorphisms and the risk of endometriosis in South Indian women. J OBSTET GYNAECOL 2022; 42:3230-3235. [PMID: 35980861 DOI: 10.1080/01443615.2022.2109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of the study was to investigate the association between Histone deacetylase 1 (HDAC1), Sirtuin1 (SIRT1), and Sirtuin3 (SIRT3) single-nucleotide polymorphisms (SNPs) and risk of endometriosis in South Indian women. A total of 300 subjects were recruited in this case-control study comprising 150 affected women and 150 women with no evidence of disease. All the subjects were of South Indian origin. The genotyping of HDAC1, SIRT1, and SIRT3 SNPs (rs1741981T/C, rs144124002A/G, and rs536715G/A) was carried out on DNA from subjects by PCR-RFLP and sequencing analysis. The genotype (p = .00782) and allele (p = .02561) frequencies of the HDAC1 rs1741981 polymorphism showed significant difference between cases and controls. In contrast, SIRT1 (rs144124002) and SIRT3 (rs536715) SNPs did not show significant association with the disease. The HDAC1 polymorphism may constitute a heritable risk factor for endometriosis in South Indian women. To date, there is no reported study on the association of polymorphisms in HDAC1, SIRT1, and SIRT3 with endometriosis risk. Impact StatementWhat is already known on this subject? Endometriosis is a benign gynaecological disease characterised by the implantation of functional endometrial tissue at ectopic positions, associated with an increased risk of malignant transformation. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns. Histone modification, including deacetylation of lysine residues by HDACs, is a key epigenetic mechanism of gene expression regulation in endometriosis, therefore genetic variation in HDACs causing epigenetic control defects might lead to disease susceptibility.What do the results of this study add? Our study shows that the HDAC1 SNP is significantly associated with endometriosis in South Indian women, whereas the SNPs of SIRT1 and SIRT3 could not show any association with the disease.What are the implications of these findings for clinical practice and/or further research? The polymorphism of HDAC1 rs1741981 could be used as an important marker of genetic susceptibility to endometriosis development. Analysis of this SNP might help to identify patients at high risk for disease outcome.
Collapse
Affiliation(s)
- K V Veena
- Department of Biochemistry, Osmania University, Hyderabad, India
| | | | - Mamata Deenadayal
- Infertility Institute and Research Centre (IIRC), Secundrabad, India
| | - Shivaji Sisinthy
- Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad, India
| |
Collapse
|
19
|
Epigenetic Factors in Eutopic Endometrium in Women with Endometriosis and Infertility. Int J Mol Sci 2022; 23:ijms23073804. [PMID: 35409163 PMCID: PMC8998720 DOI: 10.3390/ijms23073804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Eutopic endometrium in patients with endometriosis is characterized by aberrant expression of essential genes during the implantation window. It predisposes to disturbance of endometrial receptivity. The pathomechanism of implantation failures in women with endometriosis remains unclear. This paper aims to summarize the knowledge on epigenetic mechanisms in eutopic endometrium in the group of patients with both endometriosis and infertility. The impaired DNA methylation patterns of gene promoter regions in eutopic tissue was established. The global profile of histone acetylation and methylation and the analysis of selected histone modifications showed significant differences in the endometrium of women with endometriosis. Aberrant expression of the proposed candidate genes may promote an unfavorable embryonic implantation environment of the endometrium due to an immunological dysfunction, inflammatory reaction, and apoptotic response in women with endometriosis. The role of the newly discovered proteins regulating gene expression, i.e., TET proteins, in endometrial pathology is not yet completely known. The cells of the eutopic endometrium in women with endometriosis contain a stable, impaired methylation pattern and a histone code. Medication targeting critical genes responsible for the aberrant gene expression pattern in eutopic endometrium may help treat infertility in women with endometriosis.
Collapse
|
20
|
Carbajo-García MC, García-Alcázar Z, Corachán A, Monleón J, Trelis A, Faus A, Pellicer A, Ferrero H. Histone deacetylase inhibition by suberoylanilide hydroxamic acid: a therapeutic approach to treat human uterine leiomyoma. Fertil Steril 2021; 117:433-443. [PMID: 34809976 DOI: 10.1016/j.fertnstert.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the effect of inhibition of histone deacetylases (HDACs) by suberoylanilide hydroxamic acid (SAHA) treatment of human uterine leiomyoma primary (HULP) cells in vitro on cell proliferation, cell cycle, extracellular matrix (ECM) formation, and transforming growth factor β3 (TGF-β3) signaling. DESIGN Prospective study comparing uterine leiomyoma (UL) vs. adjacent myometrium (MM) tissue and cells with or without SAHA treatment. SETTING Hospital and university laboratories. PATIENT(S) Women with UL without any hormone treatment. INTERVENTION(S) Myomectomy or hysterectomy surgery in women for leiomyoma disease. MAIN OUTCOME MEASURE(S) HDAC activity was assessed by enzyme-linked immunosorbent assay, and gene expression was assessed by quantitative real-time polymerase chain reaction. Effects of SAHA on HULP cells were analyzed by CellTiter (Promega, Madison, Wisconsin), Western blot, and quantitative real-time polymerase chain reaction. RESULT(S) The expression of HDAC genes (HDAC1, fold change [FC] = 1.65; HDAC3, FC = 2.08; HDAC6, FC = 2.42) and activity (0.56 vs. 0.10 optical density [OD]/h/mg) was significantly increased in UL vs. MM tissue. SAHA decreased HDAC activity in HULP cells but not in MM cells. Cell viability significantly decreased in HULP cells (81.68% at 5 μM SAHA, 73.46% at 10 μM SAHA), but not in MM cells. Proliferating cell nuclear antigen expression was significantly inhibited in SAHA-treated HULP cells (5 μM SAHA, FC = 0.556; 10 μM SAHA, FC = 0.622). Cell cycle markers, including C-MYC (5 μM SAHA, FC = 0.828) and CCND1 (5 μM SAHA, FC = 0.583; 10 μM SAHA, FC = 0.482), were significantly down-regulated after SAHA treatment. SAHA significantly inhibited ECM protein expression, including FIBRONECTIN (5 μM SAHA, FC = 0.815; 10 μM SAHA, FC = 0.673) and COLLAGEN I (5 μM SAHA, FC = 0.599; 10 μM SAHA, FC = 0.635), in HULP cells. TGFβ3 and MMP9 gene expression was also significantly down-regulated by 10 μM SAHA (TGFβ3, FC = 0.596; MMP9, FC = 0.677). CONCLUSION(S) SAHA treatment inhibits cell proliferation, cell cycle, ECM formation, and TGF-β3 signaling in HULP cells, suggesting that histone deacetylation may be useful for treatment of UL.
Collapse
Affiliation(s)
- María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | | | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Spain
| | - Javier Monleón
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|
21
|
Chadchan SB, Popli P, Ambati CR, Tycksen E, Han SJ, Bulun SE, Putluri N, Biest SW, Kommagani R. Gut microbiota-derived short-chain fatty acids protect against the progression of endometriosis. Life Sci Alliance 2021; 4:4/12/e202101224. [PMID: 34593556 PMCID: PMC8500332 DOI: 10.26508/lsa.202101224] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, ∼196 million are afflicted with endometriosis, a painful disease in which endometrial tissue implants and proliferates on abdominal peritoneal surfaces. Theories on the origin of endometriosis remained inconclusive. Whereas up to 90% of women experience retrograde menstruation, only 10% develop endometriosis, suggesting that factors that alter peritoneal environment might contribute to endometriosis. Herein, we report that whereas some gut bacteria promote endometriosis, others protect against endometriosis by fermenting fiber to produce short-chain fatty acids. Specifically, we found that altered gut microbiota drives endometriotic lesion growth and feces from mice with endometriosis contained less of short-chain fatty acid and n-butyrate than feces from mice without endometriosis. Treatment with n-butyrate reduced growth of both mouse endometriotic lesions and human endometriotic lesions in a pre-clinical mouse model. Mechanistic studies revealed that n-butyrate inhibited human endometriotic cell survival and lesion growth through G-protein-coupled receptors, histone deacetylases, and a GTPase activating protein, RAP1GAP. Our findings will enable future studies aimed at developing diagnostic tests, gut bacteria metabolites and treatment strategies, dietary supplements, n-butyrate analogs, or probiotics for endometriosis.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Pooja Popli
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Chandrasekhar R Ambati
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Fienberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott W Biest
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Division of Minimally Invasive Gynecologic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA .,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
22
|
Zhu J, Wu P, Zeng C, Xue Q. Increased SUMOylation of TCF21 improves its stability and function in human endometriotic stromal cells†. Biol Reprod 2021; 105:128-136. [PMID: 33693540 DOI: 10.1093/biolre/ioab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/08/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is an estrogen-dependent disease. Our previous study demonstrated that elevated levels of transcription factor 21 (TCF21) in endometriotic tissues enhanced steroidogenic factor-1 (SF-1) and estrogen receptor β (ERβ) expression by forming a heterodimer with upstream stimulatory factor 2 (USF2), allowing these TCF21/USF2 complexes to bind to the promoters of SF-1 and ERβ. Furthermore, TCF21 contributed to the increased proliferation of endometriotic stromal cells (ESCs), suggesting that TCF21 may play a vital role in the pathogenesis of endometriosis. SUMOylation is a posttranslational modification that has emerged as a crucial molecular regulatory mechanism. However, the mechanism regulating TCF21 SUMOylation in endometriosis is incompletely characterized. Thus, this study aimed to explore the effect of TCF21 SUMOylation on its expression and regulation in ovarian endometriosis. We found that the levels of SUMOylated TCF21 were increased in endometriotic tissues and stromal cells compared with eutopic endometrial tissues and stromal cells and enhanced by estrogen. Treatment with the SUMOylation inhibitor ginkgolic acid and the results of a protein half-life assay demonstrated that SUMOylation can stabilize the TCF21 protein. A coimmunoprecipitation assay showed that SUMOylation probably increased its interaction with USF2. Further analyses elucidated that SUMOylation of TCF21 significantly increased the binding activity of USF2 to the SF-1 and ERβ promoters. Moreover, the SUMOylation motifs in TCF21 affected the proliferation ability of ESCs. The results of this study suggest that SUMOylation plays a critical role in mediating the high expression of TCF21 in ESCs and may participate in the development of endometriosis.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Peili Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
23
|
Gujral P, Mahajan V, Lissaman AC, Ponnampalam AP. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol 2020; 18:84. [PMID: 32791974 PMCID: PMC7425564 DOI: 10.1186/s12958-020-00637-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Histone acetylation is a critical epigenetic modification that changes chromatin architecture and regulates gene expression by opening or closing the chromatin structure. It plays an essential role in cell cycle progression and differentiation. The human endometrium goes through cycles of regeneration, proliferation, differentiation, and degradation each month; each phase requiring strict epigenetic regulation for the proper functioning of the endometrium. Aberrant histone acetylation and alterations in levels of two acetylation modulators - histone acetylases (HATs) and histone deacetylases (HDACs) - have been associated with endometrial pathologies such as endometrial cancer, implantation failures, and endometriosis. Thus, histone acetylation is likely to have an essential role in the regulation of endometrial remodelling throughout the menstrual cycle.
Collapse
Affiliation(s)
- Palak Gujral
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Vishakha Mahajan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Abbey C Lissaman
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
24
|
Zubrzycka A, Zubrzycki M, Perdas E, Zubrzycka M. Genetic, Epigenetic, and Steroidogenic Modulation Mechanisms in Endometriosis. J Clin Med 2020; 9:E1309. [PMID: 32370117 PMCID: PMC7291215 DOI: 10.3390/jcm9051309] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is a chronic gynecological disease, affecting up to 10% of reproductive-age women. The exact cause of the disease is unknown; however, it is a heritable condition affected by multiple genetic, epigenetic, and environmental factors. Previous studies reported variations in the epigenetic patterns of numerous genes known to be involved in the aberrant modulation of cell cycle steroidogenesis, abnormal hormonal, immune and inflammatory status in endometriosis, apoptosis, adhesion, angiogenesis, proliferation, immune and inflammatory processes, response to hypoxia, steroidogenic pathway and hormone signaling are involved in the pathogenesis of endometriosis. Accumulating evidence suggest that various epigenetic aberrations may contribute to the pathogenesis of endometriosis. Among them, DNA methyltransferases, histone deacetylators, and non-coding microRNAs demonstrate differential expression within endometriotic lesions and in the endometrium of patients with endometriosis. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may contribute to the discovery of a useful prognostic biomarker, which could aid in the future earlier detection, timely diagnosis, and initiation of a new approach to the treatment of endometriosis, as well as inform us about the effectiveness of treatment and the stage of the disease. As the etiology of endometriosis is highly complex and still far from being fully elucidated, the presented review focuses on different approaches to identify the genetic and epigenetic links of endometriosis and its pathogenesis.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; Poland;
- Department of Operative and Conservative Gynecology, K. Jonscher Memorial Hospital, Milionowa 14, 93-113 Lodz, Poland
| | - Marek Zubrzycki
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszynski Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Ewelina Perdas
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| |
Collapse
|
25
|
Laganà AS, Garzon S, Götte M, Viganò P, Franchi M, Ghezzi F, Martin DC. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. Int J Mol Sci 2019; 20:E5615. [PMID: 31717614 PMCID: PMC6888544 DOI: 10.3390/ijms20225615] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
The etiopathogenesis of endometriosis is a multifactorial process resulting in a heterogeneous disease. Considering that endometriosis etiology and pathogenesis are still far from being fully elucidated, the current review aims to offer a comprehensive summary of the available evidence. We performed a narrative review synthesizing the findings of the English literature retrieved from computerized databases from inception to June 2019, using the Medical Subject Headings (MeSH) unique ID term "Endometriosis" (ID:D004715) with "Etiology" (ID:Q000209), "Immunology" (ID:Q000276), "Genetics" (ID:D005823) and "Epigenesis, Genetic" (ID:D044127). Endometriosis may origin from Müllerian or non-Müllerian stem cells including those from the endometrial basal layer, Müllerian remnants, bone marrow, or the peritoneum. The innate ability of endometrial stem cells to regenerate cyclically seems to play a key role, as well as the dysregulated hormonal pathways. The presence of such cells in the peritoneal cavity and what leads to the development of endometriosis is a complex process with a large number of interconnected factors, potentially both inherited and acquired. Genetic predisposition is complex and related to the combined action of several genes with limited influence. The epigenetic mechanisms control many of the processes involved in the immunologic, immunohistochemical, histological, and biological aberrations that characterize the eutopic and ectopic endometrium in affected patients. However, what triggers such alterations is not clear and may be both genetically and epigenetically inherited, or it may be acquired by the particular combination of several elements such as the persistent peritoneal menstrual reflux as well as exogenous factors. The heterogeneity of endometriosis and the different contexts in which it develops suggest that a single etiopathogenetic model is not sufficient to explain its complex pathobiology.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Piazza Biroldi 1, 21100 Varese, Italy; (S.G.); (F.G.)
| | - Simone Garzon
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Piazza Biroldi 1, 21100 Varese, Italy; (S.G.); (F.G.)
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, D-48149 Münster, Germany;
| | - Paola Viganò
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Via Olgettina 60, 20136 Milan, Italy;
| | - Massimo Franchi
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Piazzale Aristide Stefani 1, 37126 Verona, Italy;
| | - Fabio Ghezzi
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, Piazza Biroldi 1, 21100 Varese, Italy; (S.G.); (F.G.)
| | - Dan C. Martin
- School of Medicine, University of Tennessee Health Science Center, 910 Madison Ave, Memphis, TN 38163, USA;
- Virginia Commonwealth University, 907 Floyd Ave, Richmond, VA 23284, USA
| |
Collapse
|
26
|
Guo S. Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reprod Med Biol 2018; 17:369-397. [PMID: 30377392 PMCID: PMC6194252 DOI: 10.1002/rmb2.12221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/03/2018] [Accepted: 06/24/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND One recent study reports cancer driver mutations in deep endometriosis, but its biological/clinical significance remains unclear. Since the natural history of endometriosis is essentially gradual progression toward fibrosis, it is thus hypothesized that the six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation. METHODS Extensive PubMed search to see whether RP and another set of driver genes not yet reported (NR) to be mutated in endometriosis have any roles in fibrogenesis. All studies reporting on the role of fibrogenesis of the genes in both RP and NR sets were retrieved and evaluated in this review. RESULTS All six RP genes were involved in various aspects of fibrogenesis as compared with only three NR genes. These nine genes can be anchored in networks linking with their upstream and downstream genes that are known to be aberrantly expressed in endometriosis, piecing together seemingly unrelated findings. CONCLUSIONS Given that somatic driver mutations can and do occur frequently in physiologically normal tissues, it is argued that these mutations in endometriosis are not necessarily synonymous with malignancy or premalignancy, but the result of enormous pressure for fibrogenesis.
Collapse
Affiliation(s)
- Sun‐Wei Guo
- Shanghai Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine‐Related DiseasesShanghaiChina
| |
Collapse
|
27
|
From pathogenesis to clinical practice: Emerging medical treatments for endometriosis. Best Pract Res Clin Obstet Gynaecol 2018; 51:92-101. [DOI: 10.1016/j.bpobgyn.2018.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
|
28
|
Affiliation(s)
- Fabio Barra
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, Ospedale Policlinico San Martino, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
29
|
Colón-Caraballo M, Flores-Caldera I. Translational Aspects of the Endometriosis Epigenome. EPIGENETICS IN HUMAN DISEASE 2018:717-749. [DOI: 10.1016/b978-0-12-812215-0.00023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Hirakawa T, Nasu K, Aoyagi Y, Takebayashi K, Narahara H. Arcyriaflavin a, a cyclin D1-cyclin-dependent kinase4 inhibitor, induces apoptosis and inhibits proliferation of human endometriotic stromal cells: a potential therapeutic agent in endometriosis. Reprod Biol Endocrinol 2017; 15:53. [PMID: 28720098 PMCID: PMC5516342 DOI: 10.1186/s12958-017-0272-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/28/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We previously showed that microRNA-503 (miR-503) transfection into endometriotic cyst stromal cells (ECSCs) induced cell cycle arrest at the G0/G1 phase by suppressing cyclin D1. This finding prompted us to evaluate the potential therapeutic effects of cyclin D1 inhibitors in endometriotic cells. This study aimed to determine whether arcyriaflavin A, a representative inhibitor of cyclin D1-cyclin-dependent kinase 4 (CDK4), is beneficial in the treatment of endometriosis. METHODS ECSCs were isolated from the ovarian endometriotic tissues of 32 women. The effects of arcyriaflavin A on cell viability and proliferation, vascular endothelial growth factor A expression, apoptosis, and cell cycle progression were evaluated using a modified methylthiazoletetrazolium assay, enzyme-linked immunosorbent assay (ELISA), Caspase-Glo® 3/7 assay, and flow cytometry. RESULTS Arcyriaflavin A significantly inhibited cell viability, proliferation, and angiogenesis of ECSCs as assessed using the 5-bromo-2-deoxyuridine (BrdU) and methylthiazoletetrazolium bromide (MTT) assays, and vascular endothelial growth factor (VEGF) ELISA. Arcyriaflavin A induced apoptosis as shown in the Caspase-Glo® 3/7 assay and cell death detection ELISA whilethe cell cycle was arrested at the G0/G1 phase. CONCLUSION The findings indicate that cyclin D1-CDK4 inhibitors may be promising candidates for the treatment of endometriosis. This is the first study to demonstrate the potential usefulness of arcyriaflavin A as a therapeutic agent for endometriosis. Further studies of the effects of cyclin D1-CDK4 inhibitors on endometriosis may provide useful information on pathogenesis and treatment.
Collapse
Affiliation(s)
- Tomoko Hirakawa
- 0000 0001 0665 3553grid.412334.3Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593 Japan
| | - Kaei Nasu
- 0000 0001 0665 3553grid.412334.3Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593 Japan
- 0000 0001 0665 3553grid.412334.3Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Oita Prefecture, Oita 879-5593 Japan
| | - Yoko Aoyagi
- 0000 0001 0665 3553grid.412334.3Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593 Japan
| | - Kanetoshi Takebayashi
- 0000 0001 0665 3553grid.412334.3Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593 Japan
| | - Hisashi Narahara
- 0000 0001 0665 3553grid.412334.3Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593 Japan
| |
Collapse
|
31
|
Logan PC, Yango P, Tran ND. Endometrial Stromal and Epithelial Cells Exhibit Unique Aberrant Molecular Defects in Patients With Endometriosis. Reprod Sci 2017; 25:140-159. [PMID: 28490276 DOI: 10.1177/1933719117704905] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT Endometriosis is a chronic inflammatory disease that causes pain and infertility in women of reproductive age. OBJECTIVE To investigate the pathologic pathways in endometrial stromal and epithelial cells that contribute to the manifestation of endometriosis. DESIGN In vitro cellular and molecular analyses of isolated eutopic endometrial stromal and epithelial cells. METHODS Eutopic stromal and epithelial cells from endometriotic and normal patients were isolated by fluorescence-activated cell sorting for paired sibling RNA sequencing and microRNA microarray. Aberrant pathways were identified using ingenuity pathway analysis networks and confirmed with in vitro modulation of the affected pathways in stromal and epithelial cell cultures. RESULTS Both stromal versus epithelial cell types and paired endometriotic versus normal samples exhibited distinct hierarchical clustering. Compared to normal samples, there were 151 and 215 differentially expressed genes in the endometriotic stromal and epithelial populations, respectively, and concomitantly 9 and 16 differentially expressed microRNAs. Overall, endometriotic stromal and epithelial cells revealed distinct defects. In endometriotic stromal cells, key decidualization genes Zinc finger E-box Binding protein 1 (ZEB1), Heart And Neural crest Derivatives expressed 2 (HAND2), WNT4, and Interleukin 15 (IL-15) were found to be downregulated and Periostin (POSTN) and Matrix Metallopeptidase 7 (MMP7) were upregulated. Specifically, ZEB1 was downregulated in stromal cells by aberrant elevation in miR-200b. In contrast, ZEB1 was found to be upregulated in endometriotic epithelial cells through associated upregulation of transforming growth factor β1 (TGFβ1), inducer of the TGFβ1-Bone Morphogenetic Protein 2 (BMP2)-MMP2-Prostaglandin-endoperoxide Synthase 2 (COX2)-ZEB1 pathway, which activates epithelial-mesenchymal transition. CONCLUSION Manifestation of endometriosis involves dysregulation of unique molecular pathways within the diseased endometrial stromal and epithelial cells in the endometrium. Targeting the cell type-specific defects may offer a novel approach to treating endometriosis.
Collapse
Affiliation(s)
- Philip C Logan
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Pamela Yango
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nam D Tran
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
32
|
Rogers PAW, Adamson GD, Al-Jefout M, Becker CM, D’Hooghe TM, Dunselman GAJ, Fazleabas A, Giudice LC, Horne AW, Hull ML, Hummelshoj L, Missmer SA, Montgomery GW, Stratton P, Taylor RN, Rombauts L, Saunders PT, Vincent K, Zondervan KT. Research Priorities for Endometriosis. Reprod Sci 2017; 24:202-226. [PMID: 27368878 PMCID: PMC5933154 DOI: 10.1177/1933719116654991] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The 3rd International Consensus Workshop on Research Priorities in Endometriosis was held in São Paulo on May 4, 2014, following the 12th World Congress on Endometriosis. The workshop was attended by 60 participants from 19 countries and was divided into 5 main sessions covering pathogenesis/pathophysiology, symptoms, diagnosis/classification/prognosis, disease/symptom management, and research policy. This research priorities consensus statement builds on earlier efforts to develop research directions for endometriosis. Of the 56 research recommendations from the 2011 meeting in Montpellier, a total of 41 remained unchanged, 13 were updated, and 2 were deemed to be completed. Fifty-three new research recommendations were made at the 2014 meeting in Sao Paulo, which in addition to the 13 updated recommendations resulted in a total of 66 new recommendations for research. The research recommendations published herein, as well as those from the 2 previous papers from international consensus workshops, are an attempt to promote high-quality research in endometriosis by identifying and agreeing on key issues that require investigation. New areas included in the 2014 recommendations include infertility, patient stratification, and research in emerging nations, in addition to an increased focus on translational research. A revised and updated set of research priorities that builds on this document will be developed at the 13th World Congress on Endometriosis to be held on May 17-20, 2017, in Vancouver, British Columbia, Canada.
Collapse
Affiliation(s)
| | - G. David Adamson
- Palo Alto Medical Foundation Fertility Physicians of Northern California,
Palo Alto, CA, USA
- World Endometriosis Research Foundation (WERF), London, United Kingdom
| | | | - Christian M. Becker
- Nuffield Department of Obstetrics & Gynaecology, Endometriosis Care
Centre, Oxford, United Kingdom
| | | | - Gerard A. J. Dunselman
- Department of Obstetrics & Gynaecology, Research Institute GROW,
Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | - Linda C. Giudice
- World Endometriosis Research Foundation (WERF), London, United Kingdom
- University of California, San Francisco, CA, USA
- World Endometriosis Society (WES), Vancouver, Canada
| | - Andrew W. Horne
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh,
United Kingdom
| | - M. Louise Hull
- The Robinson Institute, University of Adelaide, Adelaide, Australia
| | - Lone Hummelshoj
- World Endometriosis Research Foundation (WERF), London, United Kingdom
- World Endometriosis Society (WES), Vancouver, Canada
| | - Stacey A. Missmer
- World Endometriosis Research Foundation (WERF), London, United Kingdom
- Harvard Schools of Medicine and Public Health, Boston, MA, USA
| | | | | | - Robert N. Taylor
- World Endometriosis Society (WES), Vancouver, Canada
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Luk Rombauts
- World Endometriosis Research Foundation (WERF), London, United Kingdom
- World Endometriosis Society (WES), Vancouver, Canada
- Monash University, Clayton, Australia
| | - Philippa T. Saunders
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh,
United Kingdom
| | - Katy Vincent
- Nuffield Department of Obstetrics & Gynaecology, Endometriosis Care
Centre, Oxford, United Kingdom
| | - Krina T. Zondervan
- Nuffield Department of Obstetrics & Gynaecology, Endometriosis Care
Centre, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford,
United Kingdom
| |
Collapse
|
33
|
Qiu X, Xiao X, Li N, Li Y. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:60-72. [PMID: 27614213 DOI: 10.1016/j.pnpbp.2016.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Accumulating evidence suggests that histone hypoacetylation which is partly mediated by histone deacetylase (HDAC), plays a causative role in the etiology of various clinical disorders such as cancer and central nervous diseases. HDAC inhibitors (HDACis) are natural or synthetic small molecules that can inhibit the activities of HDACs and restore or increase the level of histone acetylation, thus may represent the potential approach to treating a number of clinical disorders. This manuscript reviewed the progress of the most recent experimental application of HDACis as novel potential drugs or agents in a large number of clinical disorders including various brain disorders including neurodegenerative and neurodevelopmental cognitive disorders and psychiatric diseases like depression, anxiety, fear and schizophrenia, and cancer, endometriosis and cell reprogramming in somatic cell nuclear transfer in human and animal models of disease, and concluded that HDACis as potential novel therapeutic agents could be used alone or in adjunct to other pharmacological agents in various clinical diseases.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Xiong Xiao
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Nan Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China
| | - Yuemin Li
- School of Animal Science & Technology, Southwest University, Chong Qing 400715, PR China.
| |
Collapse
|
34
|
Borghese B, Zondervan K, Abrao M, Chapron C, Vaiman D. Recent insights on the genetics and epigenetics of endometriosis. Clin Genet 2016; 91:254-264. [DOI: 10.1111/cge.12897] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Affiliation(s)
- B. Borghese
- Cochin Institute, U1016 INSERM, CNRS 8104; Université Paris Descartes; Paris France
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest; Centre Hospitalier Universitaire Paris Centre; Paris France
| | - K.T. Zondervan
- Nuffield Department of Obstetrics and Gynaecology, Endometriosis Care Centre; University of Oxford; Oxford UK
| | - M.S. Abrao
- Endometriosis Division, Obstetrics and Gynecology Department; Sao Paulo University; Sao Paulo Brazil
- Reproductive Clinic; Sirio Libanes Hospital; Sao Paulo Brazil
| | - C. Chapron
- Cochin Institute, U1016 INSERM, CNRS 8104; Université Paris Descartes; Paris France
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest; Centre Hospitalier Universitaire Paris Centre; Paris France
| | - D. Vaiman
- Cochin Institute, U1016 INSERM, CNRS 8104; Université Paris Descartes; Paris France
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest; Centre Hospitalier Universitaire Paris Centre; Paris France
| |
Collapse
|
35
|
Hirakawa T, Nasu K, Abe W, Aoyagi Y, Okamoto M, Kai K, Takebayashi K, Narahara H. miR-503, a microRNA epigenetically repressed in endometriosis, induces apoptosis and cell-cycle arrest and inhibits cell proliferation, angiogenesis, and contractility of human ovarian endometriotic stromal cells. Hum Reprod 2016; 31:2587-2597. [PMID: 27619772 DOI: 10.1093/humrep/dew217] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022] Open
Abstract
STUDY QUESTION Is the micro-RNA (miRNA) miR-503, downregulated in endometriotic cyst stromal cells (ECSCs) and does this affect the cell cycle, cell proliferation, angiogenesis and contractility of these cells? SUMMARY ANSWER: miR-503 expression is downregulated in ECSCs by DNA hypermethylation and this contributes to their proliferation, resistance to apoptosis, extracellular matrix (ECM) contractility and angiogenesis through effects on cyclin D1, B-cell lymphoma/leukemia (Bcl)-2, Ras homology A and vascular endothelial growth factor A (VEGF-A). WHAT IS KNOWN ALREADY A variety of miRNAs are demonstrated to involve in the pathogenesis of endometriosis. miR-503 is a miRNA with tumor-suppressor functions, whose expression is suppressed in ECSCs. STUDY DESIGN, SIZE, DURATION We isolated ECSCs and normal endometrial stromal cells (NESCs) from ovarian endometriotic tissues (n = 32) and eutopic endometrial tissues without endometriosis (n = 8), respectively. PARTICIPANTS/MATERIALS, SETTING, METHODS We investigated the functions of miR-503 by using miR-503-transfected ECSCs and the DNA methylation status of miR-503 gene in ECSCs and NESCs by combined bisulfite restriction analysis. MAIN RESULTS AND THE ROLE OF CHANCE In ECSCs, miR-503 is downregulated by the DNA hypermethylation of its gene. The transfection of miR-503 into ECSCs resulted in the inhibition of cell proliferation and induction of cell-cycle arrest at G0/G1 phase through the suppression of cyclin D1, the induction of apoptosis through Bcl-2 suppression, the inhibition of VEGF-A production and the attenuation of ECM contractility via the suppression of Rho/Rho-associated coiled-coil-forming protein kinase-pathways. LARGE SCALE DATA NA. LIMITATIONS, REASONS FOR CAUTION The present experiments were carried out only with the stromal component of endometriosis and eutopic endometrium. The experiments with the eutopic endometrial stromal cells from women with endometriosis are not performed. WIDER IMPLICATIONS OF THE FINDINGS Our findings indicate that epigenetically repressed miR-503 in ECSCs is involved in the acquisition of endometriosis-specific cellular functions. STUDY FUNDING/COMPETING INTERESTS This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (no. 13237327 to K.N., no. 26861335 to K.K. and no. 23592407 to H.N.) and the Kanzawa Medical Research Foundation (to K.K.). There are no conflicts of interest to declare.
Collapse
Affiliation(s)
- Tomoko Hirakawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan .,Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Wakana Abe
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan.,Genetic Counselling Office, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Mamiko Okamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Kentaro Kai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Kanetoshi Takebayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| |
Collapse
|
36
|
Kokcu A. A current view of the role of epigenetic changes in the aetiopathogenesis of endometriosis. J OBSTET GYNAECOL 2015; 36:153-9. [PMID: 26467001 DOI: 10.3109/01443615.2015.1036403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The purpose of the study was to examine the role of epigenetic changes in the aetiopathogenesis of endometriosis. The analysis and review of the relevant current literature in English language related to the role of epigenetic changes in the aetiopathogenesis of endometriosis. Epigenetic changes are common denominators for hormonal, immunological and inflammatory aberrations which play a key role in the aetiopathogenesis of endometriosis. Many internal and external factors may cause the different running of the epigenetic mechanism. As yet fully unknown genetic factors may increase the sensitivity of the epigenetic mechanism to various internal and external factors. The breakdown of epigenetic regulation is the main factor initiating the pathogenetic mechanisms for endometriosis formation.
Collapse
Affiliation(s)
- A Kokcu
- a Department of Obstetrics and Gynecology , Faculty of Medicine, University of Ondokuz Mayis , Samsun , Turkey
| |
Collapse
|
37
|
Baumann C, Olson M, Wang K, Fazleabas A, De La Fuente R. Arginine methyltransferases mediate an epigenetic ovarian response to endometriosis. Reproduction 2015. [DOI: 10.1530/rep-15-0212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endometriosis is associated with infertility and debilitating chronic pain. Abnormal epigenetic modifications in the human endometrium have recently been implicated in the pathogenesis of this condition. However, whether an altered epigenetic landscape contributes to pathological changes in the ovary is unknown. Using an established baboon endometriosis model, early-, and late-stage epigenetic changes in the ovary were investigated. Transcript profiling of key chromatin-modifying enzymes using pathway-focused PCR arrays on ovarian tissue from healthy control animals and at 3 and 15 months of endometriosis revealed dramatic changes in gene expression in a disease duration-dependent manner. Ingenuity Pathway Analysis indicated that transcripts for chromatin-remodeling enzymes associated with reproductive system disease and cancer development were abnormally regulated, most prominently the arginine methyltransferases CARM1, PRMT2, and PRMT8. Downregulation of CARM1 protein expression was also detected in the ovary, fully-grown oocytes and eutopic endometrium following 15 months of endometriosis. Sodium bisulfite sequencing revealed DNA hypermethylation within the PRMT8 promoter, suggesting that deregulated CpG methylation may play a role in transcriptional repression of this gene. These results demonstrate that endometriosis is associated with changes of epigenetic profiles in the primate ovary and suggest that arginine methyltransferases play a prominent role in mediating the ovarian response to endometriosis. Owing to the critical role of CARM1 in nuclear receptor-mediated transcription and maintenance of pluripotency in the cleavage stage embryo, our results suggest that epigenetic alterations in the ovary may have functional consequences for oocyte quality and the etiology of infertility associated with endometriosis.
Collapse
|
38
|
CHEN YU, CAI SHENGYUN, WANG JINGWEN, XU MINGJUAN. Valproic acid-induced histone acetylation suppresses CYP19 gene expression and inhibits the growth and survival of endometrial stromal cells. Int J Mol Med 2015; 36:725-32. [DOI: 10.3892/ijmm.2015.2263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/12/2015] [Indexed: 11/06/2022] Open
|
39
|
Sofo V, Götte M, Laganà AS, Salmeri FM, Triolo O, Sturlese E, Retto G, Alfa M, Granese R, Abrão MS. Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet 2015; 292:973-86. [DOI: 10.1007/s00404-015-3739-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
40
|
Koike N, Higashiura Y, Akasaka J, Uekuri C, Ito F, Kobayashi H. Epigenetic dysregulation of endometriosis susceptibility genes (Review). Mol Med Rep 2015; 12:1611-6. [PMID: 25891066 DOI: 10.3892/mmr.2015.3635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 03/05/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present review was to illustrate how dysregulation of hormonal signaling regulates expressional changes of spatially associated genes in endometriosis. From a multi‑platform endometriosis dataset, an integrated analysis was performed of epigenomic changes of several biologically relevant genes that have been validated in the literature. Estrogen receptor (ER) may act as a direct epigenetic driver for endometriosis establishment, maintenance and progression. A majority of endometriosis susceptibility genes may be present in functional downstream targets of ER and located near the known imprinting genes. Previous studies have shed light on the overlapping genetic signatures between endometriosis development and the defective decidualization process. The steroid hormone‑mediated decidualization signaling pathway was shown to be frequently dysregulated in endometriosis. DNA methylation is associated with various intragenic or intergenic epigenetic modifications of chromatin. Chromatin architecture may be established in temporal and spatial orchestration of the recruitment of genes specifically downregulated in endometriosis. In conclusion, defective chromatin architecture at the ER target locus may have a key role in endometriosis. Endometriosis represents an interesting model to explore the variation of expression of spatially associated genes.
Collapse
Affiliation(s)
- Natsuki Koike
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Yumi Higashiura
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Juria Akasaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Chiharu Uekuri
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Fuminori Ito
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
| |
Collapse
|
41
|
Sanchez AM, Viganò P, Somigliana E, Cioffi R, Panina-Bordignon P, Candiani M. The endometriotic tissue lining the internal surface of endometrioma: hormonal, genetic, epigenetic status, and gene expression profile. Reprod Sci 2015; 22:391-401. [PMID: 24700055 PMCID: PMC4812685 DOI: 10.1177/1933719114529374] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovarian endometriomas are found in a consistent proportion of patients with endometriosis and are associated with a more severe form of the disease. The endometriotic tissue lining the inside of the endometrioma has been extensively studied over the years mostly for the need to compare the molecular and cellular characteristics of eutopic and ectopic endometria. Several aspects of hormonal regulation, response to local inflammation, carcinogenesis, and modifications of the local environment have been investigated in order to characterize also the processes associated with peritoneal endometriosis. In this review, we have summarized the current knowledge of pathophysiology of endometrioma, with a particular focus on the cellular components lining the internal surface of the cyst in order to provide a comprehensive overview of the hormonal, genetic, epigenetic, and gene expression profiles of this essential part of the cyst.
Collapse
Affiliation(s)
- Ana Maria Sanchez
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, San Raffaele Scientific Institute, Milano, Italy
| | - Paola Viganò
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Edgardo Somigliana
- Department of Obstetrics, Gynecology and Neonatology, Fondazione Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Raffaella Cioffi
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Paola Panina-Bordignon
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Candiani
- Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Milano, Italy Obstetrics and Gynecology Unit, San Raffaele Scientific Institute, Vita-Salute University, Milano, Italy
| |
Collapse
|
42
|
Medical treatments for endometriosis-associated pelvic pain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:191967. [PMID: 25165691 PMCID: PMC4140197 DOI: 10.1155/2014/191967] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 05/26/2014] [Indexed: 11/17/2022]
Abstract
The main sequelae of endometriosis are represented by infertility and chronic pelvic pain. Chronic pelvic pain causes disability and distress with a very high economic impact. In the last decades, an impressive amount of pharmacological agents have been tested for the treatment of endometriosis-associated pelvic pain. However, only a few of these have been introduced into clinical practice. Following the results of the controlled studies available, to date, the first-line treatment for endometriosis associated pain is still represented by oral contraceptives used continuously. Progestins represent an acceptable alternative. In women with rectovaginal lesions or colorectal endometriosis, norethisterone acetate at low dosage should be preferred. GnRH analogues may be used as second-line treatment, but significant side effects should be taken into account. Nonsteroidal anti-inflammatory drugs are widely used, but there is inconclusive evidence for their efficacy in relieving endometriosis-associated pelvic pain. Other agents such as GnRH antagonist, aromatase inhibitors, immunomodulators, selective progesterone receptor modulators, and histone deacetylase inhibitors seem to be very promising, but there is not enough evidence to support their introduction into routine clinical practice. Some other agents, such as peroxisome proliferator activated receptors-γ ligands, antiangiogenic agents, and melatonin have been proven to be efficacious in animal studies, but they have not yet been tested in clinical studies.
Collapse
|
43
|
KOBAYASHI HIROSHI, IMANAKA SHOGO, NAKAMURA HARUKI, TSUJI AYUMI. Understanding the role of epigenomic, genomic and genetic alterations in the development of endometriosis (Review). Mol Med Rep 2014; 9:1483-505. [DOI: 10.3892/mmr.2014.2057] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 11/05/2022] Open
|
44
|
Kobayashi H, Higashiura Y, Koike N, Akasaka J, Uekuri C, Iwai K, Niiro E, Morioka S, Yamada Y. Genes Downregulated in Endometriosis Are Located Near the Known Imprinting Genes. Reprod Sci 2014; 21:966-972. [PMID: 24615936 DOI: 10.1177/1933719114526473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is now accumulating evidence that endometriosis is a disease associated with an epigenetic disorder. Genomic imprinting is an epigenetic phenomenon known to regulate DNA methylation of either maternal or paternal alleles. We hypothesize that hypermethylated endometriosis-associated genes may be enriched at imprinted gene loci. We sought to determine whether downregulated genes associated with endometriosis susceptibility are associated with chromosomal location of the known paternally and maternally expressed imprinting genes. Gene information has been gathered from National Center for Biotechnology Information database geneimprint.com. Several researchers have identified specific loci with strong DNA methylation in eutopic endometrium and ectopic lesion with endometriosis. Of the 29 hypermethylated genes in endometriosis, 19 genes were located near 45 known imprinted foci. There may be an association of the genomic location between genes specifically downregulated in endometriosis and epigenetically imprinted genes.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yumi Higashiura
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Natsuki Koike
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Juria Akasaka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Chiharu Uekuri
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Kana Iwai
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Emiko Niiro
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Sachiko Morioka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|
45
|
Kobayashi H, Iwai K, Niiro E, Morioka S, Yamada Y. Fetal programming theory: Implication for the understanding of endometriosis. Hum Immunol 2014; 75:208-17. [DOI: 10.1016/j.humimm.2013.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/05/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
46
|
Li X, Liu X, Guo SW. Histone deacetylase inhibitors as therapeutics for endometriosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.12.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Overexpression of lysine-specific demethylase 1 in ovarian endometriomas and its inhibition reduces cellular proliferation, cell cycle progression, and invasiveness. Fertil Steril 2014; 101:740-9. [PMID: 24388204 DOI: 10.1016/j.fertnstert.2013.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/28/2013] [Accepted: 11/22/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate whether lysine-specific demethylase 1 (LSD1) is aberrantly expressed in endometriomas and whether treatment with tranylcypromine, an LSD1 inhibitor, has any effect on cell viability, cell cycle, and invasiveness. DESIGN Laboratory study using human tissues. SETTING Academic hospital. PATIENT(S) Forty-two ectopic endometrial tissue samples, their homologue eutopic endometrial tissue samples, and 70 control endometrial tissue samples. INTERVENTION(S) Immunohistochemistry analysis of LSD1 of all human tissue samples, and Western blot analysis, quantitative real-time reverse-transcription polymerase chain reaction analysis, cell viability assay, cell cycle analysis, and invasion assay of eutopic and ectopic endometriotic stromal cells and normal endometrial stromal cells. MAIN OUTCOME MEASURE(S) Immunostaining levels of LSD1, gene and protein expression levels, cell viability, cell cycles, and invasiveness. RESULT(S) The expression of the LSD1 gene and protein in endometriosis was elevated. Treatment of endometriotic stromal cells with tranylcypromine statistically significantly reduced the cellular proliferation, cell cycle progression, and invasiveness. CONCLUSION(S) Because DNA and histones are intimately intertwined and work in concert in transcription regulation, conceivably histone demethylation activity of LSD1 could be wide ranging. The inhibition of LSD1 activity by tranylcypromine and the resultant inhibition of proliferation, cell cycle progression, and invasiveness suggest that LSD1 may be a candidate therapeutic target for endometriosis.
Collapse
|
48
|
Forte A, Cipollaro M, Galderisi U. Genetic, epigenetic and stem cell alterations in endometriosis: new insights and potential therapeutic perspectives. Clin Sci (Lond) 2014; 126:123-138. [PMID: 24059589 DOI: 10.1042/cs20130099] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human endometrium is a highly dynamic tissue, undergoing periodic growth and regression at each menstrual cycle. Endometriosis is a frequent chronic pathological status characterized by endometrial tissue with an ectopic localization, causing pelvic pain and infertility and a variable clinical presentation. In addition, there is well-established evidence that, although endometriosis is considered benign, it is associated with an increased risk of malignant transformation in approximately 1.0% of affected women, with the involvement of multiple pathways of development. Increasing evidence supports a key contribution of different stem/progenitor cell populations not only in the cyclic regeneration of eutopic endometrium, but also in the pathogenesis of at least some types of endometriosis. Evidence has arisen from experiments in animal models of disease through different kinds of assays (including clonogenicity, the label-retaining cell approach, the analysis of undifferentiation markers), as well as from descriptive studies on ectopic and eutopic tissue samples harvested from affected women. Changes in stem cell populations in endometriotic lesions are associated with genetic and epigenetic alterations, including imbalance of miRNA expression, histone and DNA modifications and chromosomal aberrations. The present short review mainly summarizes the latest observations contributing to the current knowledge regarding the presence and the potential contribution of stem/progenitor cells in eutopic endometrium and the aetiology of endometriosis, together with a report of the most recently identified genetic and epigenetic alterations in endometriosis. We also describe the potential advantages of single cell molecular profiling in endometrium and in endometriotic lesions. All these data can have clinical implications and provide a basis for new potential therapeutic applications.
Collapse
Affiliation(s)
- Amalia Forte
- *Department of Experimental Medicine, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | | | | |
Collapse
|
49
|
Taguchi A, Wada-Hiraike O, Kawana K, Koga K, Yamashita A, Shirane A, Urata Y, Kozuma S, Osuga Y, Fujii T. Resveratrol suppresses inflammatory responses in endometrial stromal cells derived from endometriosis: a possible role of the sirtuin 1 pathway. J Obstet Gynaecol Res 2013; 40:770-8. [PMID: 24320086 DOI: 10.1111/jog.12252] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/27/2013] [Indexed: 01/03/2023]
Abstract
AIM Endometriosis is a chronic inflammatory disease. Sirtuin 1 (SIRT1) plays a role in regulation of inflammation. The role of SIRT1 in endometriosis remains unknown. We here addressed the anti-inflammatory effects of SIRT1 on endometriosis. METHODS The expression of SIRT1 in human ovarian endometriomas and eutopic endometria were examined using immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). Endometriotic stromal cells (ESC) obtained from endometriomas were exposed to either resveratrol or sirtinol, an activator or inhibitor of sirtuins, respectively, and tumor necrosis factor (TNF)-α-induced interleukin (IL)-8 release from the ESC was assessed at mRNA and protein levels. RESULTS Both immunochemistry and RT-PCR demonstrated that SIRT1 was expressed in ESC and normal endometrial stromal cells. Resveratrol suppressed TNF-α-induced IL-8 release from the ESC in a dose-dependent manner while sirtinol increased IL-8 release. CONCLUSION These opposing effects of SIRT1-related agents suggest that IL-8 release from the ESC is modulated through the SIRT1 pathway. Resveratrol may have the potential to ameliorate local inflammation in endometriomas.
Collapse
Affiliation(s)
- Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kai K, Nasu K, Kawano Y, Aoyagi Y, Tsukamoto Y, Hijiya N, Abe W, Okamoto M, Moriyama M, Narahara H. Death receptor 6 is epigenetically silenced by histone deacetylation in endometriosis and promotes the pathogenesis of endometriosis. Am J Reprod Immunol 2013; 70:485-96. [PMID: 24028773 DOI: 10.1111/aji.12155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/09/2013] [Indexed: 01/07/2023] Open
Abstract
PROBLEM The purpose of this study is to evaluate the involvement of death receptor (DR) 6 in the pathogenesis of endometriosis. METHODS OF STUDY Endometriotic cyst stromal cells (ECSCs) and normal endometrial stromal cells (NESCs) were isolated from ovarian endometriotic tissues and the eutopic endometrial tissues, respectively. The effect of valproic acid (VPA) on the DR6 expression in ECSCs was examined. The roles of DR6 in NESC proliferation and apoptosis were investigated with DR6 siRNA transfection. The distribution of DR6 protein in ovarian endometriotic tissues and normal proliferative-phase endometrium was examined by immunohistochemistry. The expression of DR6 mRNA and protein in ECSCs and NESCs was also examined. RESULTS Death receptor 6 expression was attenuated in ECSCs and in endometriotic tissues, and its expression was upregulated by VPA stimulation. VPA treatment resulted in an accumulation of acetylated histone H4 in the promoter region of the DR6 gene. DR6 knockdown directed the stimulation of cell proliferation and the resistance to apoptosis in NESCs. CONCLUSION The present findings suggested that DR6 is involved in the pathogenesis of endometriosis by creating the proliferative and anti-apoptotic characteristics of endometriosis. The results also suggest that histone deacetylase inhibitors are promising agents for the treatment of endometriosis.
Collapse
Affiliation(s)
- Kentaro Kai
- Department of Obstetrics and Gynecology, Oita University, Yufu-shi, Oita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|