1
|
Murugesu S, Theodorou E, Kasaven LS, Jones BP, Saso S, Ben-Nagi J. Intrauterine instillation of human chorionic gonadotropin at the time of blastocyst transfer: Systematic review and meta-analysis. J Gynecol Obstet Hum Reprod 2023; 52:102663. [PMID: 37666360 DOI: 10.1016/j.jogoh.2023.102663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Intrauterine instillation (IU) of Human Chorionic Gonadotropin (hCG) before embryo transfer (ET) has been proposed to enhance implantation success rates. This is the first meta-analysis to evaluate the effect at the blastocyst-stage. A systematic literature search was performed using Medline, Embase, Cochrane Library and Google. Randomized clinical trials (RCTs) were included. The primary outcome combined live birth rate (LBR) and ongoing pregnancy rate (OPR). The secondary outcomes were clinical pregnancy rate (CPR), implantation rate (IR) and miscarriage rate (MR). 93 citations were identified, of which there were seven eligible RCTs. 2499 participants were included in the meta-analysis; 1331 were assigned to an experimental group and 1168 were assigned to the control group. The overall effect of IU hCG instillation on LBR and OPR was not significant: risk ratio (RR) 1.00 (95% CI, 0.90-1.12). Analysis of secondary outcomes found the effect of IU hCG instillation was not significant. Analysis of the data suggests that the studies conducted have too much heterogeneity to identify whether a specific cohort may have a significant benefit. The findings of this meta-analysis demonstrate that there is insufficient evidence at present to support the use of IU hCG instillation prior to blastocyst-stage ET.
Collapse
Affiliation(s)
- Sughashini Murugesu
- Hammersmith Hospital, Imperial College NHS Trust, London, W12 0HS, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | - Efstathios Theodorou
- Centre for Reproductive and Genetic Health, Great Portland Street, London, W1W 5QS, UK
| | - Lorraine S Kasaven
- Hammersmith Hospital, Imperial College NHS Trust, London, W12 0HS, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Benjamin P Jones
- Hammersmith Hospital, Imperial College NHS Trust, London, W12 0HS, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Srdjan Saso
- Hammersmith Hospital, Imperial College NHS Trust, London, W12 0HS, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jara Ben-Nagi
- Centre for Reproductive and Genetic Health, Great Portland Street, London, W1W 5QS, UK; Institute of Reproductive Biology, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
2
|
Keleş ID, Günel T, Özgör BY, Ülgen E, Gümüşoğlu E, Hosseini MK, Sezerman U, Buyru F, Yeh J, Baştu E. Gene pathway analysis of the endometrium at the start of the window of implantation in women with unexplained infertility and unexplained recurrent pregnancy loss: is unexplained recurrent pregnancy loss a subset of unexplained infertility? HUM FERTIL 2023; 26:1129-1141. [PMID: 36369952 DOI: 10.1080/14647273.2022.2143299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 06/05/2022] [Indexed: 11/14/2022]
Abstract
This study aims to understand differences/similarities in the genetic profile of the endometrium at the start of window of implantation (WOI) in women with unexplained infertility (UI) and unexplained recurrent pregnancy loss (uRPL). Differentially expressed genes (DEGs) from the endometrium were evaluated using gene expression array and pathway enrichment analysis was performed to analyse gene expression pathways involved in both conditions. We found 2,171 genes arranged in 117 pathways and 730 genes arranged in 33 pathways differentially expressed in endometrium of patients in UI and uRPL, respectively. Complement-coagulation cascades, morphine addiction pathway, and PI3K-Akt signalling pathway were predominantly differentially expressed in UI. Cancer pathways, NF-κB signalling pathway, and actin cytoskeleton regulation pathway showed significant changes in uRPL. Forty-eight percent of DEGs and 84% of differentially expressed pathways in uRPL were found in the endometrium of UI patients. Unexpected close association in gene expression pathways between UI and uRPL is observed supporting the hypothesis 'uRPL is a clinical subset of UI'. Yet 100% DEGs overlap wasn't found suggesting the endometrium has still some different gene expression patterns at start of WOI in UI and uRPL. Lastly, diagnostic tools may be developed for uRPL because more specific genes-pathways are involved compared with UI, which shows broader genetic expression profile.
Collapse
Affiliation(s)
- Irem Demiral Keleş
- Department of Obstetrics and Gynecology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Tuba Günel
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Bahar Yüksel Özgör
- Department of Obstetrics and Gynecology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ege Ülgen
- Department of Biostatistics and Medical Informatics, Acibadem University School of Medicine, Istanbul, Turkey
| | - Ece Gümüşoğlu
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | | | - Uğur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University School of Medicine, Istanbul, Turkey
| | - Faruk Buyru
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey
| | - John Yeh
- Department of Obstetrics and Gynecology, UMass Memorial Medical Center, Worcester, MA, USA
| | - Ercan Baştu
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Acar N, Soylu H, Avci S, Ustunel I. Expressions of Notch signalling pathway members during early pregnancy in mice. J Mol Histol 2023; 54:297-312. [PMID: 37344690 DOI: 10.1007/s10735-023-10132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Although pregnancy is initiated and maintained through highly complex mechanisms, it is essential to understand the events that occur before and during early pregnancy to understand a healthy implantation process. The Notch signal, thought to be involved in this process, is frequently the subject of research with its different aspects. To better understand the role of Notch signaling in the peri-implantation period of the mouse uterus, we investigated the state of expression and localization of Notch 3, Notch 4, Rbp-J, Hes1, Hes7, Hey2, HeyL, and Fbw7 in the uterus and implantation sites in early pregnancy. Balb/C mice were divided into groups D1, D4, D5, D6, and D8. For D5 and D6 groups, implantation sites were identified by intravenous injection of Chicago blue. IHC, WB, and QRT-PCR methods were used. Notch 3 was very strong positive on the 4th day of pregnancy. Notch 4 was highly expressed on days 4, 5, 6, and 8 of pregnancy when P4 levels were high. Hes 1 level was at the lowest on the 4th day of pregnancy. Hes 7 protein expression gradually increased from D1 to D8 in the uteri and implantation sites. Hey 2 expression was at the highest level on the 1st and 4th days. Hey L expression was on the apical of the glands. Fbxw7 that expression was high on the 1st and 4th days of pregnancy. Notch signaling may play an essential role in regulating endometrial receptivity. In addition, our Hes7 results are new to the literature.
Collapse
Affiliation(s)
- Nuray Acar
- School of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey.
| | - Hakan Soylu
- School of Medicine, Department of Histology and Embryology, Duzce University, Duzce, Turkey
| | - Sema Avci
- School of Medicine, Department of Histology and Embryology, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ismail Ustunel
- School of Medicine, Department of Histology and Embryology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Ruane PT, Garner T, Parsons L, Babbington PA, Wangsaputra I, Kimber SJ, Stevens A, Westwood M, Brison DR, Aplin JD. Trophectoderm differentiation to invasive syncytiotrophoblast is promoted by endometrial epithelial cells during human embryo implantation. Hum Reprod 2022; 37:777-792. [PMID: 35079788 PMCID: PMC9398450 DOI: 10.1093/humrep/deac008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/24/2021] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTION How does the human embryo breach the endometrial epithelium at implantation? SUMMARY ANSWER Embryo attachment to the endometrial epithelium promotes the formation of multinuclear syncytiotrophoblast from trophectoderm, which goes on to breach the epithelial layer. WHAT IS KNOWN ALREADY A significant proportion of natural conceptions and assisted reproduction treatments fail due to unsuccessful implantation. The trophectoderm lineage of the embryo attaches to the endometrial epithelium before breaching this barrier to implant into the endometrium. Trophectoderm-derived syncytiotrophoblast has been observed in recent in vitro cultures of peri-implantation embryos, and historical histology has shown invasive syncytiotrophoblast in embryos that have invaded beyond the epithelium, but the cell type mediating invasion of the epithelial layer at implantation is unknown. STUDY DESIGN, SIZE, DURATION Fresh and frozen human blastocyst-stage embryos (n = 46) or human trophoblast stem cell (TSC) spheroids were co-cultured with confluent monolayers of the Ishikawa endometrial epithelial cell line to model the epithelial phase of implantation in vitro. Systems biology approaches with published transcriptomic datasets were used to model the epithelial phase of implantation in silico. PARTICIPANTS/MATERIALS, SETTING, METHODS Human embryos surplus to treatment requirements were consented for research. Day 6 blastocysts were co-cultured with Ishikawa cell layers until Day 8, and human TSC spheroids modelling blastocyst trophectoderm were co-cultured with Ishikawa cell layers for 48 h. Embryo and TSC morphology was assessed by immunofluorescence microscopy, and TSC differentiation by real-time quantitative PCR (RT-qPCR) and ELISA. Single-cell human blastocyst transcriptomes, and bulk transcriptomes of TSC and primary human endometrial epithelium were used to model the trophectoderm-epithelium interaction in silico. Hypernetworks, pathway analysis, random forest machine learning and RNA velocity were employed to identify gene networks associated with implantation. MAIN RESULTS AND THE ROLE OF CHANCE The majority of embryos co-cultured with Ishikawa cell layers from Day 6 to 8 breached the epithelial layer (37/46), and syncytiotrophoblast was seen in all of these. Syncytiotrophoblast was observed at the embryo-epithelium interface before breaching, and syncytiotrophoblast mediated all pioneering breaching events observed (7/7 events). Multiple independent syncytiotrophoblast regions were seen in 26/46 embryos, suggesting derivation from different regions of trophectoderm. Human TSC spheroids co-cultured with Ishikawa layers also exhibited syncytiotrophoblast formation upon invasion into the epithelium. RT-qPCR comparison of TSC spheroids in isolated culture and co-culture demonstrated epithelium-induced upregulation of syncytiotrophoblast genes CGB (P = 0.03) and SDC1 (P = 0.008), and ELISA revealed the induction of hCGβ secretion (P = 0.03). Secretory-phase primary endometrial epithelium surface transcriptomes were used to identify trophectoderm surface binding partners to model the embryo-epithelium interface. Hypernetwork analysis established a group of 25 epithelium-interacting trophectoderm genes that were highly connected to the rest of the trophectoderm transcriptome, and epithelium-coupled gene networks in cells of the polar region of the trophectoderm exhibited greater connectivity (P < 0.001) and more organized connections (P < 0.0001) than those in the mural region. Pathway analysis revealed a striking similarity with syncytiotrophoblast differentiation, as 4/6 most highly activated pathways upon TSC-syncytiotrophoblast differentiation (false discovery rate (FDR < 0.026)) were represented in the most enriched pathways of epithelium-coupled gene networks in both polar and mural trophectoderm (FDR < 0.001). Random forest machine learning also showed that 80% of the endometrial epithelium-interacting trophectoderm genes identified in the hypernetwork could be quantified as classifiers of TSC-syncytiotrophoblast differentiation. This multi-model approach suggests that invasive syncytiotrophoblast formation from both polar and mural trophectoderm is promoted by attachment to the endometrial epithelium to enable embryonic invasion. LARGE SCALE DATA No omics datasets were generated in this study, and those used from previously published studies are cited. LIMITATIONS, REASONS FOR CAUTION In vitro and in silico models may not recapitulate the dynamic embryo-endometrial interactions that occur in vivo. The influence of other cellular compartments in the endometrium, including decidual stromal cells and leukocytes, was not represented in these models. WIDER IMPLICATIONS OF THE FINDINGS Understanding the mechanism of human embryo breaching of the epithelium and the gene networks involved is crucial to improve implantation success rates after assisted reproduction. Moreover, early trophoblast lineages arising at the epithelial phase of implantation form the blueprint for the placenta and thus underpin foetal growth trajectories, pregnancy health and offspring health. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by grants from Wellbeing of Women, Diabetes UK, the NIHR Local Comprehensive Research Network and Manchester Clinical Research Facility, and the Department of Health Scientist Practitioner Training Scheme. None of the authors has any conflict of interest to declare.
Collapse
Affiliation(s)
- Peter T Ruane
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK,Correspondence address. Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, School of Medical Sciences, Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9WL, UK. E-mail: https://orcid.org/0000-0002-1476-1666
| | - Terence Garner
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Lydia Parsons
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Phoebe A Babbington
- Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ivan Wangsaputra
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Susan J Kimber
- Faculty of Biology Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Adam Stevens
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Melissa Westwood
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Daniel R Brison
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK,Department of Reproductive Medicine, Old Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - John D Aplin
- Faculty of Biology, Medicine and Health, Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Saint Mary’s Hospital, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK,Maternal and Fetal Health Research Centre, Saint Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
5
|
Schaefer J, Vilos AG, Vilos GA, Bhattacharya M, Babwah AV. Uterine kisspeptin receptor critically regulates epithelial estrogen receptor α transcriptional activity at the time of embryo implantation in a mouse model. Mol Hum Reprod 2021; 27:gaab060. [PMID: 34524460 PMCID: PMC8786495 DOI: 10.1093/molehr/gaab060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Embryo implantation failure is a major cause of infertility in women of reproductive age and a better understanding of uterine factors that regulate implantation is required for developing effective treatments for female infertility. This study investigated the role of the uterine kisspeptin receptor (KISS1R) in the molecular regulation of implantation in a mouse model. To conduct this study, a conditional uterine knockout (KO) of Kiss1r was created using the Pgr-Cre (progesterone receptor-CRE recombinase) driver. Reproductive profiling revealed that while KO females exhibited normal ovarian function and mated successfully to stud males, they exhibited significantly fewer implantation sites, reduced litter size and increased neonatal mortality demonstrating that uterine KISS1R is required for embryo implantation and a healthy pregnancy. Strikingly, in the uterus of Kiss1r KO mice on day 4 (D4) of pregnancy, the day of embryo implantation, KO females exhibited aberrantly elevated epithelial ERα (estrogen receptor α) transcriptional activity. This led to the temporal misexpression of several epithelial genes [Cftr (Cystic fibrosis transmembrane conductance regulator), Aqp5 (aquaporin 5), Aqp8 (aquaporin 8) and Cldn7 (claudin 7)] that mediate luminal fluid secretion and luminal opening. As a result, on D4 of pregnancy, the lumen remained open disrupting the final acquisition of endometrial receptivity and likely accounting for the reduction in implantation events. Our data clearly show that uterine KISS1R negatively regulates ERα signaling at the time of implantation, in part by inhibiting ERα overexpression and preventing detrimentally high ERα activity. To date, there are no reports on the regulation of ERα by KISS1R; therefore, this study has uncovered an important and powerful regulator of uterine ERα during early pregnancy.
Collapse
Affiliation(s)
- Jennifer Schaefer
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Angelos G Vilos
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - George A Vilos
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Andy V Babwah
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Linehan L, Hennessy M, O'Donoghue K. Infertility and subsequent recurrent miscarriage: Current state of the literature and future considerations for practice and research. HRB Open Res 2021. [DOI: 10.12688/hrbopenres.13397.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Recurrent miscarriage (RM) and infertility are independently associated with adverse pregnancy outcomes, in addition to psychological sequelae. Experiencing pregnancy loss alongside infertility is particularly difficult. International guidance regarding RM is conflicting, and applicability to women with infertility is undetermined. The aim of this study was to: (i) establish if women/couples with a history of infertility are recognised in the literature on the investigation and management of RM, and (ii) determine if the specific needs of women/couples experiencing RM and infertility are ascertained and incorporated into clinical management strategies. Methods: We examined the wide-ranging literature to ascertain what gaps existed. Studies were retrieved through searches of PubMed and Google Scholar up to 21 January 2021 using appropriate controlled vocabulary and combinations of key words. No language or study design restrictions were applied. Results: While women/couples experiencing RM after infertility appear in studies evaluating investigations and proposed treatments, high-quality studies are lacking. Furthermore, they are largely excluded from international clinical guidance and qualitative research. Conclusions: The experiences of women/couples with RM and infertility and their specific care needs within maternity and fertility services are underexplored. It is unclear from current RM guidelines how best to manage and support this complex cohort. Women/couples with infertility and RM are underserved in the literature and in clinical guidance. Further robust studies are warranted to examine pregnancy outcomes, investigations and treatments currently used. Qualitative research is also required to identify their medical and psychological needs to better support this vulnerable group.
Collapse
|
7
|
Paule SG, Heng S, Samarajeewa N, Li Y, Mansilla M, Webb AI, Nebl T, Young SL, Lessey BA, Hull ML, Scelwyn M, Lim R, Vollenhoven B, Rombauts LJ, Nie G. Podocalyxin is a key negative regulator of human endometrial epithelial receptivity for embryo implantation. Hum Reprod 2021; 36:1353-1366. [PMID: 33822049 DOI: 10.1093/humrep/deab032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/09/2020] [Indexed: 02/02/2023] Open
Abstract
STUDY QUESTION How is endometrial epithelial receptivity, particularly adhesiveness, regulated at the luminal epithelial surface for embryo implantation in the human? SUMMARY ANSWER Podocalyxin (PCX), a transmembrane protein, was identified as a key negative regulator of endometrial epithelial receptivity; specific downregulation of PCX in the luminal epithelium in the mid-secretory phase, likely mediated by progesterone, may act as a critical step in converting endometrial surface from a non-receptive to an implantation-permitting state. WHAT IS KNOWN ALREADY The human endometrium must undergo major molecular and cellular changes to transform from a non-receptive to a receptive state to accommodate embryo implantation. However, the fundamental mechanisms governing receptivity, particularly at the luminal surface where the embryo first interacts with, are not well understood. A widely held view is that upregulation of adhesion-promoting molecules is important, but the details are not well characterized. STUDY DESIGN, SIZE, DURATION This study first aimed to identify novel adhesion-related membrane proteins with potential roles in receptivity in primary human endometrial epithelial cells (HEECs). Further experiments were then conducted to determine candidates' in vivo expression pattern in the human endometrium across the menstrual cycle, regulation by progesterone using cell culture, and functional importance in receptivity using in vitro human embryo attachment and invasion models. PARTICIPANTS/MATERIALS, SETTING, METHODS Primary HEECs (n = 9) were isolated from the proliferative phase endometrial tissue, combined into three pools, subjected to plasma membrane protein enrichment by ultracentrifugation followed by proteomics analysis, which led to the discovery of PCX as a novel candidate of interest. Immunohistochemical analysis determined the in vivo expression pattern and cellular localization of PCX in the human endometrium across the menstrual cycle (n = 23). To investigate whether PCX is regulated by progesterone, the master driver of endometrial differentiation, primary HEECs were treated in culture with estradiol and progesterone and analyzed by RT-PCR (n = 5) and western blot (n = 4). To demonstrate that PCX acts as a negative regulator of receptivity, PCX was overexpressed in Ishikawa cells (a receptive line) and the impact on receptivity was determined using in vitro attachment (n = 3-5) and invasion models (n = 4-6), in which an Ishikawa monolayer mimicked the endometrial surface and primary human trophoblast spheroids mimicked embryos. Mann-Whitney U-test and ANOVA analyses established statistical significance at *P ≤ 0.05 and **P ≤ 0.01. MAIN RESULTS AND THE ROLE OF CHANCE PCX was expressed on the apical surface of all epithelial and endothelial cells in the non-receptive endometrium, but selectively downregulated in the luminal epithelium from the mid-secretory phase coinciding with the establishment of receptivity. Progesterone was confirmed to be able to suppress PCX in primary HEECs, suggesting this hormone likely mediates the downregulation of luminal PCX in vivo for receptivity. Overexpression of PCX in Ishikawa monolayer inhibited not only the attachment but also the penetration of human embryo surrogates, demonstrating that PCX acts as an important negative regulator of epithelial receptivity for implantation. LIMITATIONS, REASONS FOR CAUTION Primary HEECs isolated from the human endometrial tissue contained a mixture of luminal and glandular epithelial cells, as further purification into subtypes was not possible due to the lack of specific markers. Future study would need to investigate how progesterone differentially regulates PCX in endometrial epithelial subtypes. In addition, this study used primary human trophoblast spheroids as human embryo mimics and Ishikawa as endometrial epithelial cells in functional models, future studies with human blastocysts and primary epithelial cells would further validate the findings. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study add important new knowledge to the understanding of human endometrial remodeling for receptivity. The identification of PCX as a negative regulator of epithelial receptivity and the knowledge that its specific downregulation in the luminal epithelium coincides with receptivity development may provide new avenues to assess endometrial receptivity and individualize endometrial preparation protocols in assisted reproductive technology (ART). The study also discovered PCX as progesterone target in HEECs, identifying a potentially useful functional biomarker to monitor progesterone action, such as in the optimization of progesterone type/dose/route of administration for luteal support. STUDY FUNDING/COMPETING INTEREST(S) Study funding was obtained from ESHRE, Monash IVF and NHMRC. LR reports potential conflict of interests (received grants from Ferring Australia; personal fees from Monash IVF Group and Ferring Australia; and non-financial support from Merck Serono, MSD, and Guerbet outside the submitted work. LR is also a minority shareholder and the Group Medical Director for Monash IVF Group, a provider of fertility preservation services). The remaining authors have no potential conflict of interest to declare. TRIAL REGISTRATION NUMBER NA.
Collapse
Affiliation(s)
- Sarah G Paule
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sophea Heng
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Nirukshi Samarajeewa
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Ying Li
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Mary Mansilla
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Andrew I Webb
- Advance Technology and Biology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Thomas Nebl
- Advance Technology and Biology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health System, Greenville, SC, USA
| | - M Louise Hull
- The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | | | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.,Womens and Newborn Programme, Monash Health, Clayton, VIC, Australia
| | - Luk J Rombauts
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.,Womens and Newborn Programme, Monash Health, Clayton, VIC, Australia
| | - Guiying Nie
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| |
Collapse
|
8
|
Norton KA, Niri F, Weatherill CB, Williams CE, Duong K, McDermid HE. Implantation failure and embryo loss contribute to subfertility in female mice mutant for chromatin remodeler Cecr2†. Biol Reprod 2021; 104:835-849. [PMID: 33354716 DOI: 10.1093/biolre/ioaa231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/10/2020] [Accepted: 12/18/2020] [Indexed: 01/26/2023] Open
Abstract
Defects in the maternal reproductive system that result in early pregnancy loss are important causes of human female infertility. A wide variety of biological processes are involved in implantation and establishment of a successful pregnancy. Although chromatin remodelers have been shown to play an important role in many biological processes, our understanding of the role of chromatin remodelers in female reproduction remains limited. Here, we demonstrate that female mice mutant for chromatin remodeler Cecr2 are subfertile, with defects detected at the peri-implantation stage or early pregnancy. Using both a less severe hypomorphic mutation (Cecr2GT) and a more severe presumptive null mutation (Cecr2Del), we demonstrate a clear difference in the severity of the phenotype depending on the mutation. Although neither strain shows detectable defects in folliculogenesis, both Cecr2GT/GT and Cecr2GT/Del dams show defects in pregnancy. Cecr2GT/GT females have a normal number of implantation sites at embryonic day 5.5 (E5.5), but significant embryo loss by E10.5 accompanied by the presence of vaginal blood. Cecr2GT/Del females show a more severe phenotype, with significantly fewer detectable implantation sites than wild type at E5.5. Some Cecr2GT/Del females also show premature loss of decidual tissue after artificial decidualization. Together, these results suggest a role for Cecr2 in the establishment of a successful pregnancy.
Collapse
Affiliation(s)
- Kacie A Norton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Farshad Niri
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chelsey B Weatherill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christine E Williams
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Duong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Heather E McDermid
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Lee CJ, Hong SH, Yoon MJ, Lee KA, Ko JJ, Koo HS, Kim JH, Choi DH, Kwon H, Kang YJ. Endometrial profilin 1: a key player in embryo-endometrial crosstalk. Clin Exp Reprod Med 2020; 47:114-121. [PMID: 32466630 PMCID: PMC7315858 DOI: 10.5653/cerm.2019.03454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 01/23/2023] Open
Abstract
Objective Despite extensive research on implantation failure, little is known about the molecular mechanisms underlying the crosstalk between the embryo and the maternal endometrium, which is critical for successful pregnancy. Profilin 1 (PFN1), which is expressed both in the embryo and in the endometrial epithelium, acts as a potent regulator of actin polymerization and the cytoskeletal network. In this study, we identified the specific role of endometrial PFN1 during embryo implantation. Methods Morphological alterations depending on the status of PFN1 expression were assessed in PFN1-depleted or control cells grown on Matrigel-coated cover glass. Day-5 mouse embryos were cocultured with Ishikawa cells. Comparisons of the rates of F-actin formation and embryo attachment were performed by measuring the stability of the attached embryo onto PFN1-depleted or control cells. Results Depletion of PFN1 in endometrial epithelial cells induced a significant reduction in cell-cell adhesion displaying less formation of colonies and a more circular cell shape. Mouse embryos co-cultured with PFN1-depleted cells failed to form actin cytoskeletal networks, whereas more F-actin formation in the direction of surrounding PFN1-intact endometrial epithelial cells was detected. Furthermore, significantly lower embryo attachment stability was observed in PFN1-depleted cells than in control cells. This may have been due to reduced endometrial receptivity caused by impaired actin cytoskeletal networks associated with PFN1 deficiency. Conclusion These observations definitively demonstrate an important role of PFN1 in mediating cell-cell adhesion during the initial stage of embryo implantation and suggest a potential therapeutic target or novel biomarker for patients suffering from implantation failure.
Collapse
Affiliation(s)
- Chang-Jin Lee
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam, Korea
| | - Seon-Hwa Hong
- CHA Fertility Center Bundang, CHA University, Seongnam, Korea
| | - Min-Ji Yoon
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam, Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam, Korea
| | - Jung-Jae Ko
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam, Korea
| | - Hwa Seon Koo
- CHA Fertility Center Bundang, CHA University, Seongnam, Korea
| | - Jee Hyun Kim
- CHA Fertility Center Bundang, CHA University, Seongnam, Korea
| | - Dong Hee Choi
- CHA Fertility Center Bundang, CHA University, Seongnam, Korea
| | - Hwang Kwon
- CHA Fertility Center Bundang, CHA University, Seongnam, Korea
| | - Youn-Jung Kang
- Department of Biomedical Science, School of Life Science, CHA University, Seongnam, Korea.,CHA Fertility Center Bundang, CHA University, Seongnam, Korea.,Department of Biochemistry, School of Medicine, CHA University, Seongnam, Korea
| |
Collapse
|
10
|
Gonçalves NJN, Frantz N, de Oliveira RM. Platelet-rich plasma (PRP) therapy: An approach in reproductive medicine based on successful animal models. Anim Reprod 2020; 16:93-98. [PMID: 33299482 PMCID: PMC7720930 DOI: 10.21451/1984-3143-ar2018-093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023] Open
Abstract
Platelet-rich plasma (PRP) has been fully studied for different clinical applications in veterinary medicine for many years with promising results. As a result, therapeutic studies to elucidate pathways for PRP use in human reproduction have been performed. PRP applications in human reproductive medicine are recent, but the role of platelet growth factors in improving the endometrial environment is well known. Indications for PRP therapy show its positive effects in promoting endometrial and follicular growth and gestation in assisted reproduction cycles, as has been proven in animals. We summarized the putative role of PRP on endometrial receptivity with a brief history of promising results in research and clinical therapies.
Collapse
|
11
|
Berneau SC, Ruane PT, Brison DR, Kimber SJ, Westwood M, Aplin JD. Characterisation of Osteopontin in an In Vitro Model of Embryo Implantation. Cells 2019; 8:E432. [PMID: 31075896 PMCID: PMC6562724 DOI: 10.3390/cells8050432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 11/23/2022] Open
Abstract
At the onset of pregnancy, embryo implantation is initiated by interactions between the endometrial epithelium and the outer trophectoderm cells of the blastocyst. Osteopontin (OPN) is expressed in the endometrium and is implicated in attachment and signalling roles at the embryo-epithelium interface. We have characterised OPN in the human endometrial epithelial Ishikawa cell line using three different monoclonal antibodies, revealing at least nine distinct molecular weight forms and a novel secretory pathway localisation in the apical domain induced by cell organisation into a confluent epithelial layer. Mouse blastocysts co-cultured with Ishikawa cell layers served to model embryo apposition, attachment and initial invasion at implantation. Exogenous OPN attenuated initial, weak embryo attachment to Ishikawa cells but did not affect the attainment of stable attachment. Notably, exogenous OPN inhibited embryonic invasion of the underlying cell layer, and this corresponded with altered expression of transcription factors associated with differentiation from trophectoderm (Gata2) to invasive trophoblast giant cells (Hand1). These data demonstrate the complexity of endometrial OPN forms and suggest that OPN regulates embryonic invasion at implantation by signalling to the trophectoderm.
Collapse
Affiliation(s)
- Stéphane C Berneau
- Maternal and Fetal Health Centre and Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester M13 9WL, UK.
| | - Peter T Ruane
- Maternal and Fetal Health Centre and Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester M13 9WL, UK.
| | - Daniel R Brison
- Maternal and Fetal Health Centre and Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester M13 9WL, UK.
- Department of Reproductive Medicine, Old St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, UK.
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK.
| | - Melissa Westwood
- Maternal and Fetal Health Centre and Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester M13 9WL, UK.
| | - John D Aplin
- Maternal and Fetal Health Centre and Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester M13 9WL, UK.
| |
Collapse
|
12
|
Zhang Y, Wang Y, Wang XH, Zhou WJ, Jin LP, Li MQ. Crosstalk between human endometrial stromal cells and decidual NK cells promotes decidualization in vitro by upregulating IL‑25. Mol Med Rep 2018; 17:2869-2878. [PMID: 29257317 PMCID: PMC5783502 DOI: 10.3892/mmr.2017.8267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/10/2017] [Indexed: 11/24/2022] Open
Abstract
Embryo implantation is essential for a successful pregnancy, and leads to the decidualization of endometrial stromal cells (ESCs) in the secretory phase of the menstrual cycle. It has previously been demonstrated that decidual stromal cells (DSCs) co‑express interleukin (IL)‑25/IL‑17RB and that IL‑25 further promotes the proliferation of DSCs via activating c‑Jun n‑terminal kinase and protein kinase B signals, therefore the present study primarily focused on the role of IL‑25 in the process of decidualization in vitro. It was demonstrated that the expression of IL‑25/IL‑17RB in ESCs was decreased compared with DSCs. In addition, following decidualization, the expression levels of IL‑25/IL‑17RB in ESCs were significantly elevated. Recombinant human (rh) IL‑25 promoted the decidualization of ESCs in the presence of 8‑bromoadenosine 3',5'‑cyclic monophosphate sodium salt and 6α‑methyl17α‑acetoxyprogesterone, which was partially inhibited by anti‑human IL‑25 neutralizing antibody (anti‑IL‑25) or anti‑IL‑17RB. In addition, decidual natural killer (dNK) cells not only secreted IL‑25, however also further accelerated the decidualization in vitro. Therefore, these findings indicated that ESCs differentiate into DSCs in the presence of ovarian hormones, resulting in the upregulation of IL‑25/IL‑17RB expression in ESCs. Furthermore, IL‑25 secreted by ESCs and dNK cells further facilitates the decidualization of ESCs, which may form a positive feedback mechanism at the maternal‑fetal interface and thus contribute to the establishment and maintenance of normal pregnancy.
Collapse
Affiliation(s)
- Yuan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiao-Hui Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
| |
Collapse
|
13
|
Abstract
At implantation, with the acquisition of a receptive phenotype in the uterine epithelium, an initial tenuous attachment of embryonic trophectoderm initiates reorganisation of epithelial polarity to enable stable embryo attachment and the differentiation of invasive trophoblasts. In this Cell Science at a Glance article, we describe cellular and molecular events during the epithelial phase of implantation in rodent, drawing on morphological studies both in vivo and in vitro, and genetic models. Evidence is emerging for a repertoire of transcription factors downstream of the master steroidal regulators estrogen and progesterone that coordinate alterations in epithelial polarity, delivery of signals to the stroma and epithelial cell death or displacement. We discuss what is known of the cell interactions that occur during implantation, before considering specific adhesion molecules. We compare the rodent data with our much more limited knowledge of the human system, where direct mechanistic evidence is hard to obtain. In the accompanying poster, we represent the embryo-epithelium interactions in humans and laboratory rodents, highlighting similarities and differences, as well as depict some of the key cell biological events that enable interstitial implantation to occur.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| | - Peter T Ruane
- Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| |
Collapse
|
14
|
Abstract
How many human embryos die between fertilisation and birth under natural conditions? It is widely accepted that natural human embryo mortality is high, particularly during the first weeks after fertilisation, with total prenatal losses of 70% and higher frequently claimed. However, the first external sign of pregnancy occurs two weeks after fertilisation with a missed menstrual period, and establishing the fate of embryos before this is challenging. Calculations are additionally hampered by a lack of data on the efficiency of fertilisation under natural conditions. Four distinct sources are used to justify quantitative claims regarding embryo loss: (i) a hypothesis published by Roberts & Lowe in TheLancet is widely cited but has no practical quantitative value; (ii) life table analyses give consistent assessments of clinical pregnancy loss, but cannot illuminate losses at earlier stages of development; (iii) studies that measure human chorionic gonadotrophin (hCG) reveal losses in the second week of development and beyond, but not before; and (iv) the classic studies of Hertig and Rock offer the only direct insight into the fate of human embryos from fertilisation under natural conditions. Re-examination of Hertig's data demonstrates that his estimates for fertilisation rate and early embryo loss are highly imprecise and casts doubt on the validity of his numerical analysis. A recent re-analysis of hCG study data concluded that approximately 40-60% of embryos may be lost between fertilisation and birth, although this will vary substantially between individual women. In conclusion, natural human embryo mortality is lower than often claimed and widely accepted. Estimates for total prenatal mortality of 70% or higher are exaggerated and not supported by the available data.
Collapse
Affiliation(s)
- Gavin E. Jarvis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
15
|
Abstract
It is generally accepted that natural human embryo mortality during pregnancy is high - losses of 70% and higher from fertilisation to birth are frequently claimed. The first external sign of pregnancy occurs two weeks after fertilisation with a missed menstrual period. Establishing the fate of embryos before this is challenging, and hampered by a lack of data on the efficiency of fertilisation under natural conditions. Four distinct sources are cited to justify quantitative claims regarding embryo loss: (i) a hypothesis published by Roberts & Lowe in TheLancet is widely cited but has no quantitative value; (ii) life table analyses give consistent assessments of clinical pregnancy loss, but cannot illuminate losses at earlier stages of development; (iii) studies that measure human chorionic gonadotrophin (hCG) reveal losses in the second week of development and beyond, but not before; and (iv) the classic studies of Hertig and Rock offer the only direct insight into the fate of human embryos from fertilisation under natural conditions. Re-examination of Hertig's data demonstrates that his estimates for fertilisation rate and early embryo loss are highly imprecise and casts doubt on the validity of his numerical analysis. A recent re-analysis of hCG study data suggests that approximately 40-60% of embryos may be lost between fertilisation and birth, although this will vary substantially between individual women. In conclusion, it is clear that some published estimates of natural embryo mortality are exaggerated. Although available data do not provide a precise estimate, natural human embryo mortality is lower than is often claimed.
Collapse
Affiliation(s)
- Gavin E. Jarvis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
16
|
Perrini C, Strillacci MG, Bagnato A, Esposti P, Marini MG, Corradetti B, Bizzaro D, Idda A, Ledda S, Capra E, Pizzi F, Lange-Consiglio A, Cremonesi F. Microvesicles secreted from equine amniotic-derived cells and their potential role in reducing inflammation in endometrial cells in an in-vitro model. Stem Cell Res Ther 2016; 7:169. [PMID: 27863532 PMCID: PMC5114748 DOI: 10.1186/s13287-016-0429-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/22/2016] [Accepted: 10/21/2016] [Indexed: 12/24/2022] Open
Abstract
Background It is known that a paracrine mechanism exists between mesenchymal stem cells and target cells. This process may involve microvesicles (MVs) as an integral component of cell-to-cell communication. Methods In this context, this study aims to understand the efficacy of MVs in in-vitro endometrial stressed cells in view of potential healing in in-vivo studies. For this purpose, the presence and type of MVs secreted by amniotic mesenchymal stem cells (AMCs) were investigated and the response of endometrial cells to MVs was studied using a dose-response curve at different concentrations and times. Moreover, the ability of MVs to counteract the in vitro stress in endometrial cells induced by lipopolysaccharide was studied by measuring the rate of apoptosis and cell proliferation, the expression of some pro-inflammatory genes such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin 1β (IL-1β), and metalloproteinases (MMP) 1 and 13, and the release of some pro- or anti-inflammatory cytokines. Results MVs secreted by the AMCs ranged in size from 100 to 200 nm. The incorporation of MVs was gradual over time and peaked at 72 h. MVs reduced the apoptosis rate, increased cell proliferation values, downregulated pro-inflammatory gene expression, and decreased the secretion of pro-inflammatory cytokines. Conclusion Our data suggest that some microRNAs could contribute to counteracting in-vivo inflammation of endometrial tissue.
Collapse
Affiliation(s)
- Claudia Perrini
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | | | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| | - Paola Esposti
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Maria Giovanna Marini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Bruna Corradetti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Davide Bizzaro
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonella Idda
- Department of Veterinary Medicine, Università degli Studi di Sassari, Sassari, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, Università degli Studi di Sassari, Sassari, Italy
| | - Emanuele Capra
- Institute of Biology and Agricultural Biotechnology-CNR, Milano, Italy
| | - Flavia Pizzi
- Institute of Biology and Agricultural Biotechnology-CNR, Milano, Italy
| | - Anna Lange-Consiglio
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | - Fausto Cremonesi
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.,Department of Veterinary Medicine, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
17
|
Wirleitner B, Schuff M, Vanderzwalmen P, Stecher A, Okhowat J, Hradecký L, Kohoutek T, Králícková M, Spitzer D, Zech NH. Intrauterine administration of human chorionic gonadotropin does not improve pregnancy and life birth rates independently of blastocyst quality: a randomised prospective study. Reprod Biol Endocrinol 2015; 13:70. [PMID: 26141379 PMCID: PMC4491277 DOI: 10.1186/s12958-015-0069-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Successful embryo implantation depends on a well-timed maternal-embryonic crosstalk. Human chorionic gonadotropin (hCG) secreted by the embryo is known to play a key role in this process and to trigger a complex signal transduction cascade allowing the apposition, attachment, and invasion of the embryo into the decidualized uterus. Production of hCG was reported to be dependent on blastocyst quality and several articles suggested that intrauterine hCG injection increases pregnancy and implantation rates in IVF patients. However, no study has as yet analysed birth rates as final outcome. Our objective was to determine whether clinical outcome after blastocyst transfer can be improved by intrauterine injection of hCG and whether this is dependent on blastocyst quality. METHODS A prospective randomised study was conducted in two settings. In cohort A, hCG application was performed two days before blastocyst transfer. In cohort B, the administration of hCG occurred just prior to embryo transfer on day 5. For both cohorts, patients were randomised to either intrauterine hCG application or to the control group that received culture medium. Clinical outcome was analysed according to blastocyst quality of transferred embryos. RESULTS The outcome of 182 IVF-cycles (cohort A) and 1004 IVF-cycles (cohort B) was analysed. All patients received a fresh autologous blastocyst transfer on day five. Primary outcomes were pregnancy rates (PR), clinical pregnancy rates (cPR), miscarriage rates (MR), and live birth rates (LBR). No improvement of clinical outcome after intrauterine hCG administration on day 3 (cohort A) or day 5 (cohort B) was found, independently of blastocyst quality transferred. The final outcome in cohort A: LBR after transfer of top blastocysts was 50.0 % with hCG and 53.3 % in the control group. With non-top blastocysts, LBR of 17.1 % (hCG) and 18.2 % (control) were observed (n.s.). In cohort B, LBR with top blastocysts was 53.3 % (hCG) and 48.4 % (control), with non-top blastocysts it came to 28.7 % (hCG) and 35.0 % (control). The differences between the groups were statistically not significant. Furthermore, we investigated a possible benefit of hCG administration in correlation with female age. In both age groups (<38 years and ≥ 38 years) we found similar LBR after treatment with hCG vs. medium. A LBR of 47.1 % vs. 48.7 % was obtained in the younger group and 26.6 % vs. 30.8 % in the older group. CONCLUSIONS In contrast to previous studies indicating a substantial benefit from intrauterine hCG application in cleavage stage embryo transfers, in our study we could not find any evidence for improvement of clinical outcome in blastocyst transfer cycles, neither with top nor with non-top quality morphology.
Collapse
Affiliation(s)
| | | | - Pierre Vanderzwalmen
- IVF Centers Prof. Zech, Römerstrasse 2, 6900, Bregenz, Austria.
- Centre Hospitalier Inter Régional Edith Cavell (CHIREC), Braine-l'Alleud, Bruxelles, Belgium.
| | - Astrid Stecher
- IVF Centers Prof. Zech, Römerstrasse 2, 6900, Bregenz, Austria.
| | - Jasmin Okhowat
- IVF Centers Prof. Zech, Römerstrasse 2, 6900, Bregenz, Austria.
| | - Libor Hradecký
- IVF Centers Prof. Zech, B. Smetany 2, 30100, Pilsen, Czech Republic.
| | - Tomáš Kohoutek
- IVF Centers Prof. Zech, B. Smetany 2, 30100, Pilsen, Czech Republic.
| | - Milena Králícková
- Department of Histology and Embryology, Charles University in Prague - Faculty of Medicine in Pilsen, Karlovarská 48, 30166, Pilsen, Czech Republic.
| | - Dietmar Spitzer
- IVF Centers Prof. Zech, Innsbrucker Bundesstr. 35, 5020, Salzburg, Austria.
| | - Nicolas H Zech
- IVF Centers Prof. Zech, Römerstrasse 2, 6900, Bregenz, Austria.
| |
Collapse
|
18
|
Lange-Consiglio A, Cazzaniga N, Garlappi R, Spelta C, Pollera C, Perrini C, Cremonesi F. Platelet concentrate in bovine reproduction: effects on in vitro embryo production and after intrauterine administration in repeat breeder cows. Reprod Biol Endocrinol 2015; 13:65. [PMID: 26084726 PMCID: PMC4472162 DOI: 10.1186/s12958-015-0064-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/09/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A repeat breeder cow (RBC) can be defined as an animal that after 3 or more inseminations cannot get pregnant because of fertilization failure or early embryonic death. If no cause is identified precisely, inadequate uterine receptivity is responsible for implantation failures. Since a large number of identified molecular mediators, such as cytokines, growth factors and lipids have been postulated to be involved in early feto-maternal interaction, in this study a different approach to the treatment of RBC syndrome has been employed using a platelet concentrate (PC) that contains a significant amount of growth factors accumulated in its α-granules. METHODS Three explorative studies were performed. Initially, PC was supplemented in the in vitro embryo culture medium to study its effect on embryo-development. After the pilot study, 4 RBCs were treated with intrauterine administration of PC to evaluate proliferative potential of endometrium by immunohistochemical expression of the antigen Ki-67. Lastly, the effect of intrauterine administration of PC at 48 hrs after artificial insemination in RBCs was evaluated. RESULTS The in vitro results show that 5 % of PC and 5 % of fetal calf serum (FCS) increase the rate of blastocysts compared with the control containing 10 % FCS only (43.04 % vs 35.00 % respectively). The immunohistochemical study shows more proliferating nuclei in the treated uterine horn compared to the control one. After intrauterine insemination in RBCs, the percentage of pregnant cows in the control group was 33.33 % compared to 70 % of the treated animals. CONCLUSION We suppose that when embryo descends in uterus could find a more appropriate environment for nesting and subsequent pregnancy.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | - Nadia Cazzaniga
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | | | | | - Claudia Pollera
- Department of Veterinary Science and Public Health, Università degli Studi di Milano, 20133, Milan, Italy.
| | - Claudia Perrini
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
| | - Fausto Cremonesi
- Large Animal Hospital, Reproduction Unit, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy.
- Department of Veterinary Science for Animal Health, Production and Food Safety, Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
19
|
Statistical Correlations of the Spontaneous Abortion with Trombophilia and Other Associated Pathologies. CURRENT HEALTH SCIENCES JOURNAL 2015; 41:158-164. [PMID: 30364887 PMCID: PMC6201206 DOI: 10.12865/chsj.41.02.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/01/2015] [Indexed: 12/01/2022]
Abstract
15-20% of all known pregnancies progress with a miscarriage or an ectopic pregnancy. The recurrent miscarriage is a delicate clinical situation because with all the advances in genetic and immunologic research the incriminating factors haven't been discovered yet. The treatment is also subject to controversies, being perceived as either ineffective or aggressive. A number of 376 pregnant women with a gestational age smaller than 12 weeks have been selected, 226 of them with spontaneous abortion. In the study group of patients with previous spontaneous abortions we have found a series of associated pathology. From the cases with secondary non idiopathic recurrent miscarriage we have identified 4 cases of thrombophilia with antiphospholipid syndrome, 2 cases of thrombocytosis, one case of autoimmune thyroiditis, one case of uterine tumor, one case of MTHFR C homozygous thrombophilia and one case of FVL heterozygous thrombophilia. Knowing the correlations between the recurrent miscarriage and the hereditary thrombophilia as well as the options of treatment for increasing the chances of having a pregnancy with a normal evolution direct the doctors in testing the patients with recurrent miscarriage for hereditary thrombophilia.
Collapse
|
20
|
Kang YJ, Lees M, Matthews LC, Kimber SJ, Forbes K, Aplin JD. MiR-145 suppresses embryo-epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J Cell Sci 2015; 128:804-14. [PMID: 25609710 DOI: 10.1242/jcs.164004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Successful implantation requires the synchronization of viable embryonic development with endometrial receptivity. The mechanisms allowing for the initiation of crosstalk between the embryo and the endometrium remain elusive; however, recent studies have revealed that there are alterations in endometrial microRNAs (miRs) in women suffering repeated implantation failure and that one of the altered miRs is miR-145. We assessed the role of miR-145 and its target IGF1R, in early implantation. miR-145 overexpression and IGF1R knockdown were achieved in Ishikawa endometrial cells. Quantitative PCR, western blotting and 3'UTR luciferase reporter assays confirmed that IGF1R is a direct target of miR-145 in the endometrium. Attachment of mouse embryos or IGF1-coated beads to endometrial epithelial cells was used to study the effects of altered miR-145 and/or IGF1R expression on early implantation events. miR-145 overexpression or specific reduction of IGF1R impaired attachment in both cases. An IGF1R target protector prevented the miR-145-mediated reduction in IGF1R and reversed the effect of miR-145 overexpression on attachment. The data demonstrate that miR-145 influences embryo attachment by reducing the level of IGF1R in endometrium.
Collapse
Affiliation(s)
- Youn-Jung Kang
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Miranda Lees
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Laura C Matthews
- Centre for Endocrinology & Diabetes, Institute of Human Development, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Susan J Kimber
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Karen Forbes
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester M13 9WL, UK St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
21
|
Schmid M, Steinlein C, Tian Q, Hanlon Newell AE, Gessler M, Olson SB, Rosenwald A, Kneitz B, Fedorov LM. Mosaic variegated aneuploidy in mouse BubR1 deficient embryos and pregnancy loss in human. Chromosome Res 2014; 22:375-92. [DOI: 10.1007/s10577-014-9432-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 12/23/2022]
|
22
|
Cuman C, Menkhorst E, Winship A, Van Sinderen M, Osianlis T, Rombauts LJ, Dimitriadis E. Fetal–maternal communication: the role of Notch signalling in embryo implantation. Reproduction 2014; 147:R75-86. [DOI: 10.1530/rep-13-0474] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The establishment of a successful pregnancy requires the implantation of a competent blastocyst into a ‘receptive’ endometrium, facilitating the formation of a functional placenta. Inadequate or inappropriate implantation and placentation is a major reason for infertility and is thought to lead to first-trimester miscarriage, placental insufficiency and other obstetric complications. Blastocyst–endometrial interactions are critical for implantation and placental formation. The Notch signalling family is a receptor–ligand family that regulates cellular processes as diverse as proliferation, apoptosis, differentiation, invasion and adhesion. Notch signalling is achieved via cell–cell interaction; thus, via Notch, cells can have direct effects on the fate of their neighbours. Recently, a number of studies have identified Notch receptors and ligands in the endometrium, blastocyst and placenta. This review collates current knowledge of this large receptor–ligand family and explores the role of Notch signalling during implantation and placentation, drawing on information from both human and animal studies. Overall, the evidence suggests that Notch signalling is a critical component of fetal–maternal communication during implantation and placentation and that abnormal Notch expression is associated with impaired placentation and pre-eclampsia.
Collapse
|
23
|
Karatas A, Eroz R, Bahadir A, Keskin F, Ozlu T, Ozyalvacli ME. Endothelial Nitric Oxide Synthase Gene Polymorphisms (Promoter -786T/C, Exon 894 G/T and Intron G10T) in Unexplained Female Infertility. Gynecol Obstet Invest 2014; 77:89-93. [DOI: 10.1159/000357442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/20/2013] [Indexed: 11/19/2022]
|
24
|
Najafi T, Novin MG, Ghazi R, Khorram O. Altered endometrial expression of endothelial nitric oxide synthase in women with unexplained recurrent miscarriage and infertility. Reprod Biomed Online 2012; 25:408-14. [PMID: 22877939 DOI: 10.1016/j.rbmo.2012.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 07/04/2012] [Accepted: 07/09/2012] [Indexed: 11/24/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) has diverse roles in the female reproductive system including a role in blastocyst implantation. Aberrant expression of eNOS could therefore be significant in the pathogenesis of disorders of implantation. In this study, eNOS protein and mRNA levels in the endometrium of women with recurrent miscarriages, unexplained infertility and a control group were determined by compartmental quantitative immunohistochemistry and real-time reverse-transcription PCR. eNOS was found to be immunolocalized to all layers of the endometrium and vascular endothelium. eNOS protein was higher in glandular epithelium (P = 0.004) and luminal epithelium (P = 0.002), but not vascular endothelium and stroma, in women with recurrent miscarriage. Similarly, in women with unexplained infertility, eNOS was significantly higher (P < 0.03) in luminal epithelium but not in any other compartments compared with the control group. The levels of mRNA confirmed the protein data, demonstrating higher eNOS mRNA in the endometrium of women with recurrent miscarriage and unexplained infertility compared with controls. In conclusion, increased expression of eNOS in glandular and luminal epithelium of the endometrium in women with recurrent miscarriages and unexplained infertility suggests a detrimental effect of excess nitric oxide in endometrial receptivity and implantation.
Collapse
Affiliation(s)
- Tohid Najafi
- Infertility and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, [corrected] Tehran, Iran
| | | | | | | |
Collapse
|
25
|
Brosens I, Brosens JJ, Fusi L, Al-Sabbagh M, Kuroda K, Benagiano G. Risks of adverse pregnancy outcome in endometriosis. Fertil Steril 2012; 98:30-5. [DOI: 10.1016/j.fertnstert.2012.02.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 01/13/2012] [Accepted: 02/16/2012] [Indexed: 01/08/2023]
|
26
|
Molecular aspects of implantation failure. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1943-50. [PMID: 22683339 DOI: 10.1016/j.bbadis.2012.05.017] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 05/30/2012] [Indexed: 12/19/2022]
Abstract
Despite expanding global experience with advanced reproductive technologies, the majority of IVF attempts do not result in a successful pregnancy, foremost as a result of implantation failure. The process of embryo implantation, a remarkably dynamic and precisely controlled molecular and cellular event, appears inefficient in humans and is poorly understood. However, insights gained from clinical implantation failure, early pregnancy loss, and emerging techologies that enable molecular interrogation of endometrial-embryo interactions are unravelling this major limiting step in human reproduction. We review current molecular concepts thought to underlie implantation failure, consider the contribution of embryonic and endometrial factors, and discuss the clinical value of putative markers of impaired endometrial receptivity. Finally we highlight the nature of the dialogue between the maternal endometrium and the implanting embryo and discuss the concept of natural embryo selection. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.
Collapse
|