1
|
India Aldana S, Demateis D, Valvi D, Just AC, Gutiérrez-Avila I, Estrada-Gutierrez G, Téllez Rojo MM, Wright RO, Baccarelli AA, Wu H, Keller KP, Wilson A, Colicino E. Windows of susceptibility to air pollution during and surrounding pregnancy in relation to longitudinal maternal measures of adiposity and lipid profiles. ENVIRONMENTAL RESEARCH 2025; 274:121198. [PMID: 39986430 PMCID: PMC12048285 DOI: 10.1016/j.envres.2025.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
Pregnancy is a critical window for long-term metabolic programming of fetal effects stemming from airborne particulate matter ≤2.5 μm (PM2.5) exposure. Yet, little is known about long-term metabolic effects of PM2.5 exposure during and surrounding pregnancy in mothers. We assessed potential critical windows of PM2.5 exposure during and surrounding pregnancy with maternal adiposity and lipid measures later in life. We included 517 pregnant women from the PROGRESS cohort with adiposity [body mass index (BMI), waist circumference (WC), % body fat] and lipids [total cholesterol, high-density-lipoprotein (HDL), low-density-lipoprotein (LDL)] measured repeatedly at 4, 6 and 8 years post-delivery. Monthly average PM2.5 exposure was estimated at each participant's address using a validated spatiotemporal model. We employed distributed lag interaction models (DLIMs) adjusting for socio-demographics and clinical covariates. We found that a 1 μg/m3 increase in PM2.5 exposure throughout mid-/late-pregnancy was associated with higher WC at 6-years post-delivery, peaking at 6 months of gestation: 0.04 cm (95%CI: 0.01, 0.06). We also identified critical windows of PM2.5 exposure during and surrounding pregnancy associated with higher LDL and lower HDL both measured at 4 years post-delivery with peaks at pre-conception for LDL [0.17 mg/dL (95%CI: 0.00, 0.34)] and at the 11th month after conception for HDL [-0.07 mg/dL (95%CI: -0.11, -0.02)]. Stratified analyses by fetal sex indicated stronger associations with adiposity measures in mothers carrying a male, while with lipids in mothers carrying a female fetus. Stratified analyses also indicated potential stronger deleterious lagged effects in women with folic acid intake lower than 600mcg/day during pregnancy.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Danielle Demateis
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Iván Gutiérrez-Avila
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guadalupe Estrada-Gutierrez
- Department of Immunobiochemistry, Research Division, National Institute of Perinatology, Mexico City, Mexico
| | - Martha María Téllez Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kayleigh P Keller
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Elena Colicino
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Zhang K, Chen W, Divigalpitiya P, Xing S, Luo E. A retrospective study on the association of ambient air pollutants and temperature co-exposure with female infertility risk in Chengdu, China. Sci Rep 2025; 15:18605. [PMID: 40437115 PMCID: PMC12119891 DOI: 10.1038/s41598-025-03601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/21/2025] [Indexed: 06/01/2025] Open
Abstract
Few studies explored air pollution's role in female infertility, especially with temperature factors. Investigating these effects is essential given global climate change and declining fertility rates. This retrospective study, conducted in Chengdu, China, included 1158 patients with primary infertility, 804 patients with secondary infertility, and 1809 fertile women who visited outpatient clinics between 2018 and 2023. Individual exposure levels to six air pollutants and temperatures were determined based on residential addresses. Multinomial logistic regression assessed the associations between air pollutants, temperature, and female infertility across five exposure windows (3-36 months before diagnosis). A stratified analysis by age was performed, and the interactions and combined exposure effects were further evaluated. Exposure to NO2 during 6 and 24 months before diagnosis was associated with a higher risk of primary infertility [OR (95% CI) = 1.17 (1.06-1.28); 1.08 (1.03-1.14)], exposure to PM10 during 24 months before diagnosis was associated with a higher likelihood of primary infertility (OR = 1.32 [1.04-1.57]). Exposure to PM2.5 during the 3 months before diagnosis had a higher risk of secondary infertility (OR = 1.32 [1.08-1.56]), as well as during the 36 months before diagnosis (OR = 1.08 [1.01-1.13]). PM10 exposure during the 3 months, 12, and 36 months before diagnosis (OR = 1.09 [1.01-1.17]; 1.21 [1.05-1.38]; 1.14 [1.03-1.23]), was associated with a higher risk of secondary infertility. Higher temperature exposure in the 3 months before diagnosis was associated with a lower risk of both primary and secondary infertility [OR = 0.92 (0.85-0.96); 0.91 (0.83-0.95)]. Women under 32 years of age exhibited increased sensitivity to NO2, CO, and temperature exposure. Additionally, co-exposure to low temperatures and high concentrations of SO2 or NO2 heightened the risk of primary infertility during the 3 months before diagnosis [OR = 1.86 (1.12-3.04); 1.62 (1.13-2.33)]. Co-exposure to low temperatures and high concentrations of PM10 increased the risk of secondary infertility during 3, 12, and 36 months before diagnosis [OR = 1.51 (1.13-2.03); 1.48 (1.07-2.21); 1.71 (1.13-2.52)]. This study emphasizes the potential for mitigating female infertility risk through reduced exposure to NO2, PM10, and PM2.5, and by appropriately adjusting environmental temperatures.
Collapse
Affiliation(s)
- Kaili Zhang
- Graduate School of Human-Environment Studies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Wei Chen
- School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | | | - Shasha Xing
- School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Erdan Luo
- School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
3
|
Li F, Duan X, Li M, Gao Y, Kang Y, Zheng W, Guo X, Chen Y. Environmental pollution and human fertility: investigating the relationship between PM2.5 exposure and assisted reproductive technology outcomes. BMC Public Health 2025; 25:1357. [PMID: 40217240 PMCID: PMC11987471 DOI: 10.1186/s12889-025-22518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
OBJECTIVE To investigate the impact of seasonal variations in particulate matter with an aerodynamic diameter of 2.5 µm or less (PM2.5) exposure on assisted reproductive technology (ART) outcomes. METHODS This retrospective study, conducted at the First People's Hospital of Shangqiu, analyzed data from 13,476 patients who underwent ART procedures between February 2018 and December 2022. Patients were categorized based on seasonal PM2.5 exposure levels. A generalized additive model (GAM), linear regression analysis, and multivariate logistic regression were used to assess the relationship between PM2.5 exposure and ART outcomes, including oocyte and embryo quality, pregnancy rates, live birth rates, and miscarriage rates. RESULTS Significant differences were observed in oocyte number, metaphase II (MII) oocyte number, transferable embryos, and good-quality embryos across seasonal PM2.5 exposure subgroups. Pregnancy rates and live birth rates also demonstrated statistically significant variations. Linear regression analysis revealed a consistent negative correlation between PM2.5 concentrations and key ART outcomes. Multivariate logistic regression analysis, adjusting for age and seasonal variations, confirmed a significant negative association between PM2.5 exposure and both pregnancy rates (OR = 0.995, 95% CI: 0.994-0.996, p < 0.001) and live birth rates (OR = 0.996, 95% CI: 0.995-0.997, p < 0.001). However, no significant relationship was found between PM2.5 exposure and miscarriage rates. GAM analysis further identified a nonlinear, threshold-like association between pregnancy outcomes and predictive factors, with significantly higher live birth rates observed in spring, summer, and autumn compared to winter. CONCLUSIONS The study complements existing evidence that exposure to PM2.5 can lead to decreased success rates of pregnancy and live births, as well as significantly impact the outcomes of ART. Future research should focus on developing strategies to mitigate the adverse effects of environmental pollution on ART success rates.
Collapse
Affiliation(s)
- Fei Li
- Center for Reproductive Medicine, Clinical College, The First People'S Hospital of Shangqiu, Xinxiang Medical University, 292 Kaixuan South Road, Shangqiu, Henan, China
| | - Xiaoyan Duan
- Center for Reproductive Medicine, Clinical College, The First People'S Hospital of Shangqiu, Xinxiang Medical University, 292 Kaixuan South Road, Shangqiu, Henan, China
| | | | - Yumei Gao
- Center for Reproductive Medicine, Clinical College, The First People'S Hospital of Shangqiu, Xinxiang Medical University, 292 Kaixuan South Road, Shangqiu, Henan, China
| | - Yuejuan Kang
- Center for Reproductive Medicine, Clinical College, The First People'S Hospital of Shangqiu, Xinxiang Medical University, 292 Kaixuan South Road, Shangqiu, Henan, China
| | - WenJun Zheng
- Center for Reproductive Medicine, Clinical College, The First People'S Hospital of Shangqiu, Xinxiang Medical University, 292 Kaixuan South Road, Shangqiu, Henan, China
| | - XueYan Guo
- Center for Reproductive Medicine, Clinical College, The First People'S Hospital of Shangqiu, Xinxiang Medical University, 292 Kaixuan South Road, Shangqiu, Henan, China
| | - Ying Chen
- Center for Reproductive Medicine, Clinical College, The First People'S Hospital of Shangqiu, Xinxiang Medical University, 292 Kaixuan South Road, Shangqiu, Henan, China.
| |
Collapse
|
4
|
India Aldana S, Petrick L, Niedzwiecki MM, Valvi D, Just AC, Gutiérrez-Avila I, Kloog I, Barupal DK, Téllez-Rojo MM, Wright RO, Baccarelli AA, Wu H, Colicino E. Pregnancy as a Susceptible Period to Ambient Air Pollution Exposure on the Maternal Postpartum Metabolome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6400-6413. [PMID: 40129413 DOI: 10.1021/acs.est.4c10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pregnancy is a potential critical window to air pollution exposure for long-term maternal metabolic effects. However, little is known about potential early metabolic mechanisms linking air pollution to maternal metabolic health. We included 544 pregnant Mexican women with both ambient PM2.5 levels during pregnancy and untargeted serum metabolomics to examine associations between pregnancy PM2.5 exposure (overall and monthly) and postpartum metabolites, implementing FDR-adjusted robust linear regression controlling for covariates. Pathway enrichment analyses (in Reactome and MetaboAnalyst) and effect modification by fetal sex and folic acid supplementation were also evaluated. Higher PM2.5 exposure levels throughout pregnancy were associated with higher bile acids and amino acids, dysregulated glycerophospholipids, or lower fatty acyl levels (FDR < 0.05), among other metabolites. Potential critical windows of susceptibility to monthly PM2.5 on metabolites were observed in early to midpregnancy (FDR < 0.005). Main findings were consistent by strata of fetal sex and folic acid supplementation. Metabolic pathways corresponding to positive PM2.5-metabolite associations indicated enriched bile acid, dietary lipid, and transmembrane transport metabolism, whereas for negative PM2.5-metabolite associations, we identified altered pathways involving adipogenesis, incretin peptide hormone, GLP-1, PPAR-alpha, and fatty acid receptors (FDR < 0.05). PM2.5 exposures during pregnancy, especially in early gestation, altered maternal postpartum lipids as well as amino acid metabolism.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Lauren Petrick
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Megan M Niedzwiecki
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Damaskini Valvi
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Allan C Just
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island 02912, United States
| | - Iván Gutiérrez-Avila
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Itai Kloog
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Dinesh K Barupal
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos 62100, Mexico
| | - Robert O Wright
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrea A Baccarelli
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Elena Colicino
- Department of Environmental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
5
|
Wang JY, Yun X, Qu R, Zhang WQ, Liang J, Guan Y, Tang DD, Chen Y, Yin TL. Durational Exposure to Particulate Matter and Changes in Fertility Intentions: A Study of Adults in China. Curr Med Sci 2025; 45:363-372. [PMID: 40205300 DOI: 10.1007/s11596-025-00046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE The effects of prolonged exposure to persistently elevated atmospheric pollutants, commonly termed air pollution waves, on fertility intentions remain inadequately understood. This study aims to investigate the association between particulate matter (PM) exposure and fertility intentions. METHODS In this nationwide cross-sectional study, we analyzed data from 10,747 participants (5496 females and 5251 males). PM waves were defined as periods lasting 3‒6 consecutive days during which the daily average concentrations exceeded China's Ambient Air Quality Standards Grade II thresholds (PM2.5 > 75 μg/m3 and PM10 > 150 μg/m3). We employed multivariate logistic regression models to assess the association between exposure to PM waves and fertility intentions. RESULTS Significant inverse associations were detected between exposure to PM2.5 wave events (characterized by concentrations exceeding 75 μg/m3 for durations of 4‒6 days, P < 0.05) and PM10 wave events (defined as concentrations exceeding 150 μg/m3 for 6 consecutive days, P < 0.05) and fertility intentions among females. In contrast, neither the PM2.5 wave nor the PM10 wave events demonstrated statistically significant correlations with fertility intentions in males (P > 0.05 for all comparisons). The potentially susceptible subgroup was identified as females aged 20-30 years. CONCLUSIONS Our results provide the first evidence that PM2.5 and PM10 waves are associated with a reduction in female fertility intentions, offering critical insights for the development of public health policies and strategies aimed at individual protection.
Collapse
Affiliation(s)
- Jia-Yu Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Yun
- Wuhan Huchuang United Technology Co., Ltd., Wuhan, 430060, China
| | - Rui Qu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei-Qian Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia Liang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Guan
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Dong-Dong Tang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- MOE Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Hefei, 230032, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yu Chen
- Reproductive Medicine Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, China.
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
6
|
Wesselink AK, Johannesen BR, Wang TR, Ketzel M, Mikkelsen EM, Brandt J, Khan J, Hertel O, Laursen ASD, Willis MD, Levy JI, Rothman KJ, Sørensen HT, Wise LA, Hatch EE. Residential Exposure to PM 2.5 Constituents and Fecundability in a Danish Preconception Cohort. Paediatr Perinat Epidemiol 2025; 39:256-261. [PMID: 39876487 PMCID: PMC11996601 DOI: 10.1111/ppe.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Epidemiologic studies have demonstrated that ambient concentrations of particulate matter < 2.5 μm (PM2.5) are associated with reduced fecundability, the per cycle probability of conception. The specific constituents driving this association are unknown. OBJECTIVES We examined the association between ambient concentrations of PM2.5 constituents and fecundability in a Danish preconception cohort study. METHODS During 2007-2018, we enrolled female pregnancy planners in an Internet-based preconception cohort study. We included the 5905 participants who had been trying to conceive for < 3 cycles at study enrollment. Participants completed a baseline questionnaire and follow-up questionnaires every 8 weeks to update pregnancy status. We geocoded time-varying residential addresses to estimate ambient concentrations of total PM2.5 and the following PM2.5 constituents: elemental carbon (EC), primary organic aerosol (POA), secondary organic aerosols (SOA), sulfate (SO4 2-), ammonium (NH4 +), nitrate (NO3 -), and sea salt. We averaged concentrations of each pollutant across each menstrual cycle at risk. We fit proportional probabilities regression models to estimate fecundability ratios (FR) and 95% confidence intervals (CI), adjusting for potential confounders and co-pollutants. RESULTS Total PM2.5 concentrations were associated with reduced fecundability (the FR for an IQR increase, corresponding to 3.2 μg/m3, was 0.93 [95% CI 0.87, 0.99]). The association was strongest for POA: the FR for an IQR increase, corresponding to 1.3 μg/m3, was 0.92 (95% CI 0.84, 1.01). The corresponding FRs for the remaining PM2.5 constituents were 0.96 (95% CI 0.87, 1.05) for EC (IQR = 0.5 μg/m3), 0.98 (95% CI 0.91, 1.06) for SOA (IQR = 0.5), 0.97 (95% CI 0.92, 1.02) for SO2 4- (IQR = 0.4), 0.95 (95% CI 0.91, 1.01) for NH4 + (IQR = 0.5), 0.97 (95% CI 0.93, 1.01) for NO3 - (IQR = 1.0), and 1.00 (95% CI 0.95, 1.06) for sea salt (IQR = 0.4). CONCLUSIONS In this Danish preconception cohort study, PM2.5 constituents derived from biomass and transportation-related combustion may drive the association between PM2.5 concentrations and fecundability.
Collapse
Affiliation(s)
- Amelia K. Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Benjamin R. Johannesen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Tanran R. Wang
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ellen M. Mikkelsen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate, Interdisciplinary Centre for Climate Change, Aarhus University, Aarhus, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health, Aarhus University, Roskilde, Denmark
| | - Ole Hertel
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Anne Sofie Dam Laursen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Mary D. Willis
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jonathan I. Levy
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Kenneth J. Rothman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Henrik T. Sørensen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Lauren A. Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Elizabeth E. Hatch
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Ward G, Correia Watts MP, Hansson SR. The unintended consequences of modernity: Pollution and its effect on reproductive, maternal and fetal health. Pregnancy Hypertens 2025; 40:101204. [PMID: 40015200 DOI: 10.1016/j.preghy.2025.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 03/01/2025]
Abstract
Over the past 50 years there has been an unprecedented increase in pollution globally. Population growth and higher standards of living have resulted in increases in global consumption facilitated by industrialisation and globalisation of goods and services thus resulting in the release of environmental pollutants on a mass scale. This article analyses the effects and consequences of pollution on important aspects of reproductive health including fertility, pregnancy and infant health. It is a narrative review based on a search of PubMed using the terms 'pollution and fertility,' 'pollution and pregnancy,' 'pollution and infant health,' and 'history of pollution.' Additional references were identified through articles provided by the authors of related studies. Studies were included based on their relevance to the topic and were prioritized for their methodological rigour and recency. While no formal quality assessment tools were employed, the potential limitations of individual studies are discussed where applicable.
Collapse
Affiliation(s)
- Gregory Ward
- Consultant Obstetrician Croydon University Hospital and Divisional Medical Director Lewisham and Greenwich NHS Trust, London, UK
| | - Maria Pinto Correia Watts
- Post CCT Specialist Registrar in Obstetrics and Gynaecology, St George's Hospital NHS Trust, London, UK
| | - Stefan R Hansson
- Vice Prefect for Research, Institute of Clinical Sciences Lund, Lund University, Sweden; Department of Obstetrics and Gynaecology, Institute of Clinical Sciences Lund, Lund University Sweden; Senior Consultant in Obstetrics and Gynaecology, Skåne University hospital, Sweden.
| |
Collapse
|
8
|
Leathersich SJ, Roche CS, Walls M, Nathan E, Hart RJ. Particulate air pollution at the time of oocyte retrieval is independently associated with reduced odds of live birth in subsequent frozen embryo transfers. Hum Reprod 2025; 40:110-118. [PMID: 39673285 DOI: 10.1093/humrep/deae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Indexed: 12/16/2024] Open
Abstract
STUDY QUESTION Does exposure to particulate matter (PM) air pollution prior to oocyte retrieval or subsequent frozen embryo transfer (FET) affect the odds of live birth? SUMMARY ANSWER Live birth rates are lower when particulate matter (PM2.5 and PM10) levels are higher prior to oocyte retrieval, regardless of the conditions at the time of embryo transfer. WHAT IS KNOWN ALREADY Exposure to air pollution is associated with adverse reproductive outcomes, including reduced fecundity and ovarian reserve, and an increased risk of infertility and pregnancy loss. It is uncertain whether the effect on ART outcomes is due to the effects of pollution on oogenesis or on early pregnancy. STUDY DESIGN, SIZE, DURATION This retrospective cohort study included 3659 FETs in 1835 patients between January 2013 and December 2021, accounting for all FETs performed at a single clinic over the study period. The primary outcome was the live birth rate per FET. Outcome data were missing for two embryo transfers which were excluded. Daily levels of PM2.5, PM10, nitric oxide, nitrogen dioxide, sulphur dioxide, ozone and carbon monoxide were collected during the study period and calculated for the day of oocyte retrieval and the day of embryo transfer, and during the preceding 2-week, 4-week, and 3-month periods. PARTICIPANTS/MATERIALS, SETTING, METHODS Clinical and embryological outcomes were analysed for their association with pollution over 24 hours, 2 weeks, 4 weeks, and 3 months, with adjustment for repeated cycles per participant, age at the time of oocyte retrieval, a quadratic age term, meteorological season, year, and co-exposure to air pollutants. Multi-pollutant models were constructed to adjust for co-exposures to other pollutants. Median concentrations in pollutant quartiles were modelled as continuous variables to test for overall linear trends; a Bonferroni correction was applied to maintain an overall alpha of 0.05 across the four exposure periods tested. MAIN RESULTS AND THE ROLE OF CHANCE Increased PM2.5 exposure in the 3 months prior to oocyte retrieval was associated with decreased odds of live birth (linear trend P = 0.011); the odds of live birth when PM2.5 concentrations were in the highest quartile were reduced by 34% (OR 0.66, 95% CI 0.47-0.92) when compared to the lowest quartile. A consistent direction of effect was seen across other exposure periods prior to oocyte retrieval, with an apparent dose-dependent relationship. Increased exposure to PM10 particulate matter in the 2 weeks prior to oocyte retrieval was associated with decreased odds of live birth (linear trend P = 0.009); the odds of live birth were decreased by 38% (OR 0.62, 95% CI 0.43-0.89, P = 0.010) when PM10 concentrations were in the highest quartile compared with the lowest quartile. Consistent trends were not seen across other exposure periods. None of the gaseous pollutants had consistent effects, prior to either oocyte retrieval or embryo transfer. LIMITATIONS, REASONS FOR CAUTION This was a retrospective cohort study, however, all FETs during the study period were included and data were missing for only two FETs. The results are based on city-level pollution exposures, and we were not able to adjust for all possible factors that may affect live birth rates. Results were not stratified based on specific patient populations, and it was not possible to calculate the cumulative live birth rate per commenced cycle. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to specifically analyse FETs to separate the effects of environmental exposures prior to oocyte retrieval from those around the time of embryo transfer. Our findings suggest that increased PM exposure prior to oocyte retrieval is associated with reduced live birth rate following FET, independent of the conditions at the time of embryo transfer. Importantly, the air quality during the study period was excellent, suggesting that even 'acceptable' levels of air pollution have detrimental reproductive effects during gametogenesis. At the low pollution levels in our study, exposure to gaseous pollutants did not appear to affect live birth rates. This has important implications for our understanding of the effects of pollution on reproduction, and highlights the urgent need for effective policies limiting pollution exposure to protect human health and reproduction. STUDY FUNDING/COMPETING INTEREST(S) No funding was provided for this study. S.J.L. is supported by the Jean Murray Jones Scholarship from the Royal Australian and New Zealand College of Obstetricians and Gynaecologists, has received educational sponsorship from Besins, Ferring, Merck, and Organon, honoraria from Hologic and Organon, consulting fees from Merck unrelated to the current study, and is a member of the Reproductive Technology Council of Western Australia. S.J.L. and R.J.H. are board members of Menopause Alliance Australia. C.S.R., M.W., and E.N. have no conflicts of interest to declare. R.J.H. is the Medical Director of Fertility Specialists of Western Australia, the National Medical Director of City Fertility Australia, and a shareholder in CHA SMG. He chairs the Western Australian Minister's Expert Panel on ART and Surrogacy. R.J.H. has made presentations for and received honoraria from Merck, Merck-Serono, Origio, Igenomix, Gideon-Richter, and Ferring, and has received support for attending meetings from Merck, Organon, and Ferring. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- S J Leathersich
- Department of Reproductive Medicine, King Edward Memorial Hospital, Subiaco, Australia
- City Fertility, Claremont, Australia
- Fertility Specialists of Western Australia, Claremont, Australia
- Dexeus Fertility, Department of Obstetrics, Gynecology and Reproductive Medicine, Dexeus University Hospital, Barcelona, Spain
| | - C S Roche
- Department of Reproductive Medicine, King Edward Memorial Hospital, Subiaco, Australia
| | - M Walls
- City Fertility, Claremont, Australia
- Fertility Specialists of Western Australia, Claremont, Australia
- Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, Australia
| | - E Nathan
- Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, Australia
| | - R J Hart
- Department of Reproductive Medicine, King Edward Memorial Hospital, Subiaco, Australia
- City Fertility, Claremont, Australia
- Fertility Specialists of Western Australia, Claremont, Australia
- Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, Australia
| |
Collapse
|
9
|
Yopo Díaz M, Watkins L. Beyond the body: Social, structural, and environmental infertility. Soc Sci Med 2025; 365:117557. [PMID: 39642584 DOI: 10.1016/j.socscimed.2024.117557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Infertility is often thought of as a disease of the male or female reproductive system defined by the failure to achieve a pregnancy after 12 months or more of regular, unprotected sexual intercourse. However, as fertility rates rapidly decline worldwide, we observe that the inability to conceive and have children stems not only from anatomical, physiological, or genetic conditions within the body but also from social, structural, and environmental conditions in society. Drawing on a wide array of international and interdisciplinary scholarship, this article rethinks infertility by focusing on the social, structural, and environmental conditions hindering the ability of individuals and couples to have children and become parents. We argue that accounting for infertility requires transcending its biomedical understanding as an individual disease located within the body and address the complex connections between the inability to conceive and the collective and structural dimensions of the environments where people's lives unfold. In doing so, we also emphasise that assisted reproductive technologies are important but not sufficient to tackle the diversity of contemporary infertility experiences. Accomplishing this also requires collective action ranging from family policies improving childcare facilities and parental leave to environmental policies reducing exposure to pollution and toxicity. By rethinking infertility beyond the body, this article contributes new perspectives for understanding the inability to have children, tackling reproductive inequalities, and advancing reproductive justice.
Collapse
Affiliation(s)
- Martina Yopo Díaz
- Instituto de Sociología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Macul, Santiago, Chile; Instituto de Sociología, Pontificia Universidad Católica de Chile, Santiago, Chile; Escuela de Sociología, Universidad Diego Portales, Santiago, Chile.
| | - Loreto Watkins
- Instituto de Sociología, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Macul, Santiago, Chile; Instituto de Sociología, Pontificia Universidad Católica de Chile, Santiago, Chile; Escuela de Antropología, Universidad Diego Portales, Santiago, Chile.
| |
Collapse
|
10
|
Chen Y, Zhang J, Zhang T, Wu Y, Xi Y, Wu T, Li M, Li Y, Zhou S, Wu M, Wang S. Circulating Interleukin-6 Mediates PM 2.5-Induced Ovarian Injury by Suppressing the PPARγ Pathway. RESEARCH (WASHINGTON, D.C.) 2024; 7:0538. [PMID: 39639885 PMCID: PMC11617621 DOI: 10.34133/research.0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Exposure to airborne fine particulate matter (PM2.5) is strongly associated with poor fertility and ovarian damage. However, the mechanism underlying this remains largely unclear. Here, we found that PM2.5 markedly impaired murine ovarian reserve, decreased hormone levels, and aggravated ovarian inflammation. Circulating interleukin-6 (IL-6) was elevated in PM2.5-exposed mice and was further confirmed to mediate this damage by IL-6 recombinant protein intervention. PM2.5 exposure led to increased alveolar macrophage infiltration in the lungs. However, alveolar macrophage clearance with clodronate liposomes could not fully reverse the elevated IL-6 levels and ovarian injury, suggesting that alveolar macrophages were probably not the only source of circulating IL-6. Further experiments indicated that IL-6 mainly targeted ovarian theca-interstitial cells and impaired testosterone synthesis via suppressing the peroxisome proliferator-activated receptor γ (PPARγ) pathway. In addition, apoptosis of granulosa cells and restriction of follicular growth were observed in co-cultures with IL-6-treated theca-interstitial cells, which could be further reversed by the PPARγ agonist. Moreover, IL-6-neutralizing antibodies ameliorated PM2.5-induced ovarian damage. Notably, increased levels of circulating IL-6 were observed in premature ovarian aging patients and were inversely associated with their ovarian function. In summary, our findings offer a mechanistic explanation for PM2.5-induced ovarian dysfunction and verify IL-6 as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou University, Zhengzhou, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Yaling Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Yueyue Xi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Mo Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Latifi M, Rahim F, Ahmadlou M, Pouladian N, Allahbakhshian L. How Can Outdoor Air Pollutants Adversely Affect the Women's Fertility? Systematic Review. Adv Biomed Res 2024; 13:115. [PMID: 39717257 PMCID: PMC11665180 DOI: 10.4103/abr.abr_45_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 12/25/2024] Open
Abstract
In the current century, air pollution is known as one of the most critical environmental problems and it is important to find the relations of air pollution and human health. Various air pollutants, such as volatile organic compounds (VOCs), can negatively affect women's fertility. An exhaustive electronic search was done from 2013 until July 2023 in PUBMED and The Cochrane Central Register of Controlled Trials. The following keywords were combined using Boolean hints in the databases queried: air pollution AND (fertility OR miscarriage OR embryo quality OR embryo development OR pregnancy OR implantation OR live birth). The randomized controlled trials, case-control and cohort studies analyzing the impact of air pollutants on fertility were included in the review. In this systematic review, a significant relation was found between the increase in air pollution and the reduction of fertility health, live birth rates, embryo quality, fertility, implantation rates, and miscarriage in exposed women. These results suggest low fertility health rates are associated with traffic-related air pollution. This review has concluded four components (particulate matter, nitrogen dioxide, sulfur, and carbon monoxide) of traffic pollution that can impair women's fertility. Air pollution harms women's fertility. These effects affect gamete's quality at the genetic and epigenetic level. These effects also alter fetal development. Studies have also reported an effect on fetal growth with increased miscarriages. Since air pollution is everywhere and has many sources, it seems necessary to increase the awareness of people and government officials, especially in hygiene and health, to limit air pollutants as much as possible.
Collapse
Affiliation(s)
- Masoomeh Latifi
- Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Forough Rahim
- Department of Information Management, Regional Information Center for Science and Technology, Shiraz, Iran
| | - Mojtaba Ahmadlou
- Department of Biostatistics, Clinical Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Nima Pouladian
- Department of Foreign Languages, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leili Allahbakhshian
- Vice Chancellery for Research and Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Tao Q, Zhao Z, Yang R, Li Q, Qiao J. Fine particulate matter and ovarian health: A review of emerging risks. Heliyon 2024; 10:e40503. [PMID: 39650185 PMCID: PMC11625118 DOI: 10.1016/j.heliyon.2024.e40503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/26/2024] [Accepted: 11/17/2024] [Indexed: 12/11/2024] Open
Abstract
Fine particulate matter (PM2.5) pollution has raised significant public concerns, especially for vulnerable populations. Studies have indicated the association between PM2.5 and ovarian disorders, although the mechanisms underlying the effects have not yet been fully elucidated. In this review, we elucidated three main conditions pertaining to ovarian function that may result from exposure to PM2.5: diminished ovarian reserve, polycystic ovary syndrome, and infertility. Specific effects of ovarian disorders caused by PM2.5 are discussed, including reactive oxygen species, apoptosis, DNA damage, and inflammation.
Collapse
Affiliation(s)
- Qingqing Tao
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
| | - Zhengyang Zhao
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Qin Li
- Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health, Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
13
|
India Aldana S, Demateis D, Valvi D, Just AC, Gutiérrez-Avila I, Estrada-Gutierrez G, Téllez Rojo MM, Wright RO, Baccarelli AA, Wu H, Keller KP, Wilson A, Colicino E. Windows of Susceptibility to Air Pollution During and Surrounding Pregnancy in Relation to Longitudinal Maternal Measures of Adiposity and Lipid Profiles. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.23.24317830. [PMID: 39649614 PMCID: PMC11623712 DOI: 10.1101/2024.11.23.24317830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Pregnancy is a critical window for long-term metabolic programming of fetal effects stemming from airborne particulate matter ≤2.5μm (PM 2.5 ) exposure. Yet, little is known about long-term metabolic effects of PM 2.5 exposure during and surrounding pregnancy in mothers. We assessed potential critical windows of PM 2.5 exposure during and surrounding pregnancy with maternal adiposity and lipid measures later in life. We included 517 pregnant women from the PROGRESS cohort with adiposity [body mass index (BMI), waist circumference (WC), % body fat] and lipids [total cholesterol, high-density-lipoprotein (HDL), low-density-lipoprotein (LDL)] measured repeatedly at 4, 6 and 8 years post-delivery. Monthly average PM 2.5 exposure was estimated at each participant's address using a validated spatiotemporal model. We employed distributed lag interaction models (DLIMs) adjusting for socio-demographics and clinical covariates. We found that a 1 μg/m 3 increase in PM 2.5 exposure throughout mid-/late-pregnancy was associated with higher WC at 6-years post-delivery, peaking at 6 months of gestation: 0.04 cm (95%CI: 0.01, 0.06). We also identified critical windows of PM 2.5 exposure during and surrounding pregnancy associated with higher LDL and lower HDL both measured at 4 years post-delivery with peaks at pre-conception for LDL [0.17 mg/dL (95%CI: 0.00, 0.34)] and at the 11 th month after conception for HDL [-0.07 mg/dL (95%CI: -0.11, -0.02)]. Stratified analyses by fetal sex indicated stronger associations with adiposity measures in mothers carrying a male, whereas stronger associations were observed with lipids in mothers carrying a female fetus. Stratified analyses also indicated potential stronger deleterious lagged effects in women with folic acid intake lower than 600mcg/day during pregnancy.
Collapse
|
14
|
Zhang X, Wang X, Li H, Wang H, Du D, Huang H. ATF3 mediates PM2.5-induced apoptosis and inflammation in ovarian granulosa cells. J Ovarian Res 2024; 17:215. [PMID: 39501310 PMCID: PMC11536620 DOI: 10.1186/s13048-024-01539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/18/2024] [Indexed: 11/09/2024] Open
Abstract
Particulate matter 2.5 (PM2.5) pollution has emerged as a major global public health concern because of its adverse effects on human health. Our group has previously demonstrated that PM2.5 exposure can seriously impair ovarian function. However, the underlying mechanisms remain a mystery. This study verifies ovarian damage in mice, evidenced by inflammatory cell infiltration and follicular atresia, following 5 months of PM2.5 exposure via tracheal drip (35 µg/m³ for low dose and 150 µg/m³ for high dose). In addition, PM2.5 exposure inhibited the cell viability of human granulosa cells (KGN) and induced apoptosis at the concentrations of 50, 100, and 150 µg/mL for 24 h. The apoptosis of KGN cells induced by inflammation contributes to follicular atresia. Furthermore, we conducted RNA-sequencing analysis to identify the genes and pathways triggered by PM2.5 (100 µg/mL) exposure, which decreases the KGN cell viability. We found a significant increase in Activating Transcription Factor 3 (ATF3). Further mechanistic studies reveal a strong association between PM2.5-induced apoptosis, inflammation, and ATF3 with its downstream oxidative stress signals. In summary, the ATF3 pathway serves a vital role in the ovarian injury caused by PM2.5 exposures.
Collapse
Affiliation(s)
- Xiandan Zhang
- Department of Gynecology and Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xuan Wang
- Department of Dermatology, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Hao Li
- College of Life and Science, Xiamen University, Xiamen, China
| | - Haihong Wang
- Department of Gynecology and Obstetrics, The 900 Hospital of the Joint Service Support Force of the People's Liberation Army of China, Fuzhou, China
| | - Dewei Du
- Department of Gynecology and Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Huijuan Huang
- Department of Gynecology and Obstetrics, The 900 Hospital of the Joint Service Support Force of the People's Liberation Army of China, Fuzhou, China.
| |
Collapse
|
15
|
Sørensen M, Poulsen AH, Nøhr B, Khan J, Ketzel M, Brandt J, Raaschou-Nielsen O, Jensen A. Long term exposure to road traffic noise and air pollution and risk of infertility in men and women: nationwide Danish cohort study. BMJ 2024; 386:e080664. [PMID: 39231578 PMCID: PMC11372855 DOI: 10.1136/bmj-2024-080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
OBJECTIVE To investigate associations between long term residential exposure to road traffic noise and particulate matter with a diameter <2.5 µm (PM2.5) and infertility in men and women. DESIGN Nationwide prospective cohort study. SETTING Denmark. PARTICIPANTS 526 056 men and 377 850 women aged 30-45 years, with fewer than two children, cohabiting or married, and residing in Denmark between 2000 and 2017. MAIN OUTCOME MEASURE Incident infertility in men and women during follow-up in the Danish National Patient Register. RESULTS Infertility was diagnosed in 16 172 men and 22 672 women during a mean follow-up of 4.3 years and 4.2 years, respectively. Mean exposure to PM2.5 over five years was strongly associated with risk of infertility in men, with hazard ratios of 1.24 (95% confidence interval 1.18 to 1.30) among men aged 30-36.9 years and 1.24 (1.15 to 1.33) among men aged 37-45 years for each interquartile (2.9 µg/m3) higher PM2.5 after adjustment for sociodemographic variables and road traffic noise. PM2.5 was not associated with infertility in women. Road traffic noise (Lden, most exposed facade of residence) was associated with a higher risk of infertility among women aged 35-45 years, with a hazard ratio of 1.14 (1.10 to 1.18) for each interquartile (10.2 dB) higher five year mean exposure. Noise was not associated with infertility among younger women (30-34.9 years). In men, road traffic noise was associated with higher risk of infertility in the 37-45 age group (1.06, 1.02 to 1.11), but not among those aged 30-36.9 years (0.93, 0.91 to 0.96). CONCLUSIONS PM2.5 was associated with a higher risk of an infertility diagnosis in men, whereas road traffic noise was associated with a higher risk of an infertility diagnosis in women older than 35 years, and potentially in men older than 37 years. If these results are confirmed in future studies, higher fertility could be added to the list of health benefits from regulating noise and air pollution.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Bugge Nøhr
- Department of Obstetrics and Gynaecology, University Hospital of Herlev and Gentofte, Herlev, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, UK
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ole Raaschou-Nielsen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Allan Jensen
- Virus, Lifestyle and Genes, Danish Cancer Institute, Copenhagen, Denmark
| |
Collapse
|
16
|
Wang H, Zhu Z, Benmarhnia T, Chen X, Jalaludin B, Wulayin M, Huang C, Zhang T, Xu L, Wang Q. Estimation of couple fecundity in the general population and the association with monthly time-varying ambient particulate matter exposure in low- and middle-income countries: A population-based multi-center epidemiological study. ENVIRONMENT INTERNATIONAL 2024; 191:108951. [PMID: 39159516 DOI: 10.1016/j.envint.2024.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Declining total fertility rates have been observed in low- and middle-income countries (LMICs). However, it remains unclear if this trend is related to a reduction in fecundity of general population. Research evidence on contributing factors to fecundity reduction is also limited. We aimed to first estimate couple fecundity in LMICs and then investigate its association with ambient particulate matter (PM) exposure. METHODS Using the information from Demographic and Health Surveys between 2003 and 2019, we estimated median time to pregnancy (TTP) and infertility prevalence across 30 LMICs, by employing a current duration approach. Individual PM (PM1, PM2.5, and PM10) exposure during the period of 'at risk' of pregnancy was assessed by months. An accelerated failure model was used to elucidate the association between monthly time-varying PM exposure and TTP. Subsequently, we estimated the prolonged TTP attributable to PM exposures above the World Health Organization (WHO)'s recommended air quality level in 2021. RESULTS Within the study regions, median TTP ranged from 6.90 (95 % CI 6.02-7.87) months in Latin America & Caribbean to 10.29 (95 % CI 9.28-11.36) months in East Asia & Pacific, with corresponding infertility prevalence varying from 33 % (95 % CI 29 %-36 %) to 44 % (95 % CI 41 %-48 %). Our estimations indicated that TTP was 1.08 (95 % CI: 0.99-1.18), 1.12 (95 % CI 1.06-1.19), and 1.05 (95 % CI 1.03-1.07) times longer for every 10 μg/m3 increment in PM1, PM2.5, and PM10, respectively. The prolonged TTP attributable to PM exposures surpassing the WHO guideline ranged from 0.11 to 2.81 months across the studied regions. DISCUSSION Ambient particulate matter is identified as a potential contributing factor to impaired fecundity in general population of LMICs. The findings underscore the importance of coordinated efforts to control ambient air pollution to mitigate the risk of fecundity reduction among the general population.
Collapse
Affiliation(s)
- Huailin Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; The Eighth Affiliated Hospital, Sun Yat-sen University, ShenZhen 518033, China
| | - Zhenghong Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
| | - Xin Chen
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Jalaludin
- School of Population Health, University of New South Wales, Sydney 2052, Australia
| | | | - Cunrui Huang
- Wanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Tuantuan Zhang
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Lianlian Xu
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Papadiochou A, Diamanti A, Metallinou D, Georgakopoulou VE, Taskou C, Kagkouras I, Sarantaki A. Impact of Climate Change on Reproductive Health and Pregnancy Outcomes: A Systematic Review. Cureus 2024; 16:e68221. [PMID: 39347228 PMCID: PMC11439441 DOI: 10.7759/cureus.68221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Climate change has emerged as a significant global health challenge, with growing evidence linking environmental factors to adverse reproductive health outcomes. The primary objective of this review is to assess the effects of climate change-driven environmental factors, such as air pollution and temperature extremes, on reproductive health outcomes, including fertility rates, miscarriage, preterm birth, and congenital anomalies. A comprehensive search of PubMed, Google Scholar, and Web of Science was conducted until July 2024. Studies included in the review were observational, experimental, and randomized controlled trials that reported quantitative data on reproductive outcomes in relation to climate-related environmental exposures. A total of 49 studies were selected for qualitative synthesis. The review found that increased exposure to particulate matter (PM2.5), extreme temperatures, and proximity to traffic were consistently associated with reduced fertility, increased risks of miscarriage, preterm birth, and low birth weight. Adverse effects were particularly pronounced among vulnerable populations, such as pregnant women of lower socioeconomic status and those living in disaster-prone areas. The studies also highlighted potential transgenerational effects, with prenatal exposure to environmental stressors influencing the long-term health of offspring. The findings underscore the urgent need for public health interventions and policies to mitigate environmental exposures that negatively impact reproductive health. Future research should focus on longitudinal and interventional studies to establish causal relationships and inform effective public health strategies.
Collapse
Affiliation(s)
| | - Athina Diamanti
- Department of Midwifery, University of West Attica, Athens, GRC
| | | | | | | | | | | |
Collapse
|
18
|
Deng L, Chen G, Duan T, Xie J, Huang G, Li X, Huang S, Zhang J, Luo Z, Liu C, Zhu S, He G, Dong X, Liu T, Ma W, Gong Y, Shen X, Yang P. Mixed effects of ambient air pollutants on oocyte-related outcomes: A novel insight from women undergoing assisted reproductive technology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116525. [PMID: 38852468 DOI: 10.1016/j.ecoenv.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Air pollution is widely acknowledged as a significant risk factor for human health, especially reproductive health. Nevertheless, many studies have disregarded the potentially mixed effects of air pollutants on reproductive outcomes. We performed a retrospective cohort study involving 8048 women with 9445 cycles undergoing In Vitro Fertilization (IVF) and Intracytoplasmic Sperm Injection (ICSI) in China, from 2017 to 2021. A land-use random forest model was applied to estimate daily residential exposure to air pollutants, including sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and fine particulate matter (PM2.5). Individual and joint associations between air pollutants and oocyte-related outcomes of ART were evaluated. In 90 days prior to oocyte pick-up to oocyte pick-up (period A), NO2, O3 and CO was negatively associated with total oocyte yield. In the 90 days prior to oocyte pick-up to start of gonadotropin medication (Gn start, period B), there was a negative dose-dependent association of exposure to five air pollutants with total oocyte yield and mature oocyte yield. In Qgcomp analysis, increasing the multiple air pollutants mixtures by one quartile was related to reducing the number of oocyte pick-ups by -2.00 % (95 %CI: -2.78 %, -1.22 %) in period A, -2.62 % (95 %CI: -3.40 %, -1.84 %) in period B, and -0.98 % (95 %CI: -1.75 %, -0.21 %) in period C. During period B, a 1-unit increase in the WQS index of multiple air pollutants exposure was associated with fewer number of total oocyte (-1.27 %, 95 %CI: -2.16 %, -0.36 %) and mature oocyte (-1.42 %, 95 %CI: -2.41 %, -0.43 %). O3 and NO2 were major contributors with adverse effects on the mixed associations. Additionally, period B appears to be the susceptible window. Our study implies that exposure to air pollution adversely affects oocyte-related outcomes, which raises concerns about the potential adverse impact of air pollution on women's reproductive health.
Collapse
Affiliation(s)
- Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guimin Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, PR China
| | - Tiantian Duan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guangtong Huang
- School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Jinglei Zhang
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Zicong Luo
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China
| | - Chaoqun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China
| | - Yajie Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China.
| | - Xiaoting Shen
- Reproductive Medicine Center, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China.
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangdong, Guangzhou 510632, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 510632, PR China.
| |
Collapse
|
19
|
Tong M, Lu H, Xu H, Fan X, Zhang JJ, Kelly FJ, Gong J, Han Y, Li P, Wang R, Li J, Zhu T, Xue T. Reduced human fecundity attributable to ambient fine particles in low- and middle-income countries. ENVIRONMENT INTERNATIONAL 2024; 189:108784. [PMID: 38852259 DOI: 10.1016/j.envint.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5) has been associated with reduced human fecundity. However, the attributable burden has not been estimated for low- and middle-income countries (LMICs), where the exposure-response function between PM2.5 and the infertility rate has been insufficiently studied. OBJECTIVE This study examined the associations between long-term exposure to PM2.5 and human fecundity indicators, namely the expected time to pregnancy (TTP) and 12-month infertility rate (IR), and then estimated PM2.5-attributable burden of infertility in LMICs. METHODS We analyzed 164,593 eligible women from 100 Demographic and Health Surveys conducted in 49 LMICs between 1999 and 2021. We assessed PM2.5 exposures during the 12 months before a pregnancy attempt using the global satellite-derived PM2.5 estimates produced by Atmospheric Composition Analysis Group (ACAG). First, we created a series of pseudo-populations with balanced covariates, given different levels of PM2.5 exposure, using a matching approach based on the generalized propensity score. For each pseudo-population, we used 2-stage generalized Gamma models to derive TTP or IR from the probability distribution of the questionnaire-based duration time for the pregnancy attempt before the interview. Second, we used spline regressions to generate nonlinear PM2.5 exposure-response functions for each of the two fecundity indicators. Finally, we applied the exposure-response functions to estimate number of infertile couples attributable to PM2.5 exposure in 118 LMICs. RESULTS Based on the Gamma models, each 10 µg/m3 increment in PM2.5 exposure was associated with a TTP increase by 1.7 % (95 % confidence interval [CI]: -2.3 %-6.0 %) and an IR increase by 2.3 % (95 %CI: 0.6 %-3.9 %). The nonlinear exposure-response function suggested a robust effect of an increased IR for high-concentration PM2.5 exposure (>75 µg/m3). Based on the PM2.5-IR function, across the 118 LMICs, the number of infertile couples attributable to PM2.5 exposure exceeding 35 µg/m3 (the first-stage interim target recommended by the World Health Organization global air quality guidelines) was 0.66 million (95 %CI: 0.061-1.43), accounting for 2.25 % (95 %CI: 0.20 %-4.84 %) of all couples affected by infertility. Among the 0.66 million, 66.5 % were within the top 10 % high-exposure infertile couples, mainly from South Asia, East Asia, and West Africa. CONCLUSION PM2.5 contributes significantly to human infertility in places with high levels of air pollution. PM2.5-pollution control is imperative to protect human fecundity in LMICs.
Collapse
Affiliation(s)
- Mingkun Tong
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China
| | - Hong Lu
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China
| | - Huiyu Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Xinguang Fan
- Department of Sociology, Peking University, Beijing, China
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, & Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Frank J Kelly
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yiqun Han
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Pengfei Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang, China
| | - Ruohan Wang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jiajianghui Li
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
20
|
Zhang R, Zhao J, Zhang Y, Hong X, Zhang H, Zheng H, Wu J, Wang Y, Peng Z, Zhang Y, Jiang L, Zhao Y, Wang Q, Shen H, Zhang Y, Yan D, Wang B, Ma X. Association between fine particulate matter and fecundability in Henan, China: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2024; 188:108754. [PMID: 38781703 DOI: 10.1016/j.envint.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE To investigate the relationship between ambient fine particulate matter (PM2.5) exposure and fecundability. METHODS This study included 751,270 female residents from Henan Province who participated in the National Free Pre-conception Check-up Projects during 2015-2017. Ambient cycle-specific PM2.5 exposure was assessed at the county level for each participant using satellite-based PM2.5 concentration data at 1-km resolution. Cox proportional hazards models with time-varying exposure were used to estimate the association between fecundability and PM2.5 exposure, adjusted for potential individual risk factors. RESULTS During the study period, 568,713 participants were pregnant, monthly mean PM2.5 concentrations varied from 25.5 to 114.0 µg/m3 across study areas. For each 10 µg/m3 increase in cycle-specific PM2.5, the hazard ratio for fecundability was 0.951 (95 % confidence interval: 0.950-0.953). The association was more pronounced in women who were older, with urban household registration, history of pregnancy, higher body mass index (BMI), hypertension, without exposure to tobacco, or whose male partners were older, with higher BMI, or hypertension. CONCLUSION In this population-based prospective cohort, ambient cycle-specific PM2.5 exposure was associated with reduced fecundability. These findings may support the adverse implications of severe air pollution on reproductive health.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Jun Zhao
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China
| | - Yue Zhang
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Hongguang Zhang
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China
| | - Hanyue Zheng
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Jingwei Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, United States
| | - Yuanyuan Wang
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China
| | - Zuoqi Peng
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China
| | - Ya Zhang
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China
| | - Lifang Jiang
- Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, NHC Key Laboratory of Birth Defects Prevention, Henan, China
| | - Yueshu Zhao
- The Third Affiliated Hospital of Zhengzhou University, Henan, China
| | - Qiaomei Wang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Haiping Shen
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Yiping Zhang
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Donghai Yan
- Department of Maternal and Child Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Bei Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China; National Human Genetic Resources Center, Beijing, China.
| |
Collapse
|
21
|
Santacruz-Márquez R, Neff AM, Mourikes VE, Fletcher EJ, Flaws JA. The effects of inhaled pollutants on reproduction in marginalized communities: a contemporary review. Inhal Toxicol 2024; 36:286-303. [PMID: 37075037 PMCID: PMC10584991 DOI: 10.1080/08958378.2023.2197941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/25/2023] [Indexed: 04/20/2023]
Abstract
Important differences in health that are closely linked with social disadvantage exist within and between countries. According to the World Health Organization, life expectancy and good health continue to increase in many parts of the world, but fail to improve in other parts of the world, indicating that differences in life expectancy and health arise due to the circumstances in which people grow, live, work, and age, and the systems put in place to deal with illness. Marginalized communities experience higher rates of certain diseases and more deaths compared to the general population, indicating a profound disparity in health status. Although several factors place marginalized communities at high risk for poor health outcomes, one important factor is exposure to air pollutants. Marginalized communities and minorities are exposed to higher levels of air pollutants than the majority population. Interestingly, a link exists between air pollutant exposure and adverse reproductive outcomes, suggesting that marginalized communities may have increased reproductive disorders due to increased exposure to air pollutants compared to the general population. This review summarizes different studies showing that marginalized communities have higher exposure to air pollutants, the types of air pollutants present in our environment, and the associations between air pollution and adverse reproductive outcomes, focusing on marginalized communities.
Collapse
Affiliation(s)
| | - Alison M. Neff
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| | | | - Endia J. Fletcher
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| | - Jodi A. Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign
| |
Collapse
|
22
|
Kornfield M, Rubin E, Parker P, Garg B, O'Leary T, Phillips S, Madding R, Baldwin M, Amato P, Lee D, Wu D, Krieg S. Unhealthy air quality secondary to wildfires is associated with lower blastocyst yield. Fertil Steril 2024; 121:842-852. [PMID: 38244020 DOI: 10.1016/j.fertnstert.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
OBJECTIVE To study the impact of unhealthy air quality from the 2020 Oregon wildfires on outcomes for patients undergoing in vitro fertilization (IVF) treatment. DESIGN A retrospective cohort study. SETTING A university-based fertility clinic. PATIENTS Subjects were undergoing IVF treatment from the 6 weeks preceding the wildfires through a 10-day exposure period. Cohorts were classified on the basis of whether subjects experienced patient and/or laboratory exposure to unhealthy air quality. Patient exposure was defined as at least 4 days of ovarian stimulation overlapping with the exposure, and laboratory exposure was defined as at least 2 days of IVF treatment and embryogenesis overlapping with the exposure. The unexposed cohort consisted of remaining subjects without defined exposure, with cycles in the 6 weeks preceding the wildfires. As some subjects had dual exposure and appeared in both patient and laboratory exposure cohorts, each cohort was separately compared with the unexposed control cohort. INTERVENTION A 10-day period of unhealthy air quality caused by smoke plumes from a wildfire event. MAIN OUTCOME MEASURES The primary outcome was the blastulation rate. Secondary outcomes included fertilization rate, number of blastocysts obtained, and cycles with no blastocysts frozen or transferred. RESULTS Sixty-nine subjects underwent ovarian stimulation and IVF treatment during the 6 weeks preceding the wildfires through the 10-day period of unhealthy air quality. Of these, 15 patients were in the laboratory exposure cohort, 16 were in the patient exposure cohort, and 44 were unexposed. Six subjects appeared in both laboratory and patient exposure cohorts. Although neither exposure cohort had significantly decreased blastulation rate compared with the unexposed, the median number of blastocysts obtained was significantly lower in the laboratory exposure cohort than the unexposed group (2 [range 0-14] vs. 4.5 [range 0-21], respectively). The laboratory exposure cohort had significantly more cycles with no blastocysts obtained (3/15 [20%] vs. 1/44 [2%]). There were no significant differences in IVF treatment outcomes between patient exposure and unexposed cohorts. These findings persisted after controlling for age. There were no significant differences in pregnancy outcomes observed after embryo transfer between the exposure group and the unexposed group. CONCLUSION For a cohort of patients undergoing IVF treatment, an acute episode of outside wildfire smoke exposure during fertilization and embryogenesis was associated with decreased blastocyst yield.
Collapse
Affiliation(s)
- Molly Kornfield
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon.
| | - Elizabeth Rubin
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Pamela Parker
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Bharti Garg
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Thomas O'Leary
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Sara Phillips
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Rachel Madding
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Maureen Baldwin
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Paula Amato
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - David Lee
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Diana Wu
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Sacha Krieg
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
23
|
Wang W, Gulliver J, Beevers S, Freni Sterrantino A, Davies B, Atkinson RW, Fecht D. Short-Term Nitrogen Dioxide Exposure and Emergency Hospital Admissions for Asthma in Children: A Case-Crossover Analysis in England. J Asthma Allergy 2024; 17:349-359. [PMID: 38623450 PMCID: PMC11016460 DOI: 10.2147/jaa.s448600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Background There is an increasing body of evidence associating short-term ambient nitrogen dioxide (NO2) exposure with asthma-related hospital admissions in children. However, most studies have relied on temporally resolved exposure information, potentially ignoring the spatial variability of NO2. We aimed to investigate how daily NO2 estimates from a highly resolved spatio-temporal model are associated with the risk of emergency hospital admission for asthma in children in England. Methods We conducted a time-stratified case-crossover study including 111,766 emergency hospital admissions for asthma in children (aged 0-14 years) between 1st January 2011 and 31st December 2015 in England. Daily NO2 levels were predicted at the patients' place of residence using spatio-temporal models by combining land use data and chemical transport model estimates. Conditional logistic regression models were used to obtain the odds ratios (OR) and confidence intervals (CI) after adjusting for temperature, relative humidity, bank holidays, and influenza rates. The effect modifications by age, sex, season, area-level income deprivation, and region were explored in stratified analyses. Results For each 10 µg/m³ increase in NO2 exposure, we observed an 8% increase in asthma-related emergency admissions using a five-day moving NO2 average (mean lag 0-4) (OR 1.08, 95% CI 1.06-1.10). In the stratified analysis, we found larger effect sizes for male (OR 1.10, 95% CI 1.07-1.12) and during the cold season (OR 1.10, 95% CI 1.08-1.12). The effect estimates varied slightly by age group, area-level income deprivation, and region. Significance Short-term exposure to NO2 was significantly associated with an increased risk of asthma emergency admissions among children in England. Future guidance and policies need to consider reflecting certain proven modifications, such as using season-specific countermeasures for air pollution control, to protect the at-risk population.
Collapse
Affiliation(s)
- Weiyi Wang
- UK Small Area Health Statistics Unit, MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- National Institute for Health and Care Research Health Protection Research Unit in Chemical and Radiation Threats and Hazards, School of Public Health, Imperial College London, London, UK
| | - John Gulliver
- Population Health Research Institute, St George’s, University of London, London, UK
| | - Sean Beevers
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, London, UK
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, School of Public Health, Imperial College London, London, UK
| | - Anna Freni Sterrantino
- UK Small Area Health Statistics Unit, MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- The Alan Turing Institute, London, UK
| | - Bethan Davies
- UK Small Area Health Statistics Unit, MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- National Institute for Health and Care Research Health Protection Research Unit in Chemical and Radiation Threats and Hazards, School of Public Health, Imperial College London, London, UK
| | - Richard W Atkinson
- Population Health Research Institute, St George’s, University of London, London, UK
| | - Daniela Fecht
- UK Small Area Health Statistics Unit, MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- National Institute for Health and Care Research Health Protection Research Unit in Chemical and Radiation Threats and Hazards, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
24
|
Yang Z, Liu S, Pan X. Research progress on mitochondrial damage and repairing in oocytes: A review. Mitochondrion 2024; 75:101845. [PMID: 38237648 DOI: 10.1016/j.mito.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Oocytes are the female germ cells, which are susceptible to stress stimuli. The development of oocytes in the ovary is affected by many environmental and metabolic factors, food toxins, aging, and pathological factors. Mitochondria are the main target organelles of these factors, and the damage to mitochondrial structure and function can affect the production of ATP, the regulation of redox reactions, and apoptosis in oocytes. Mitochondrial damage is closely related to the decrease in oocyte quality and is the main factor leading to female infertility. Antioxidant foods or drugs have been used to prevent mitochondrial damage from some stressors or to repair damaged mitochondria, thereby improving oocyte development and female reproductive outcomes. In this paper, the damage of mitochondria during oocyte development by the above factors has been reviewed, and the relevant measures to alleviate the damage of mitochondria in oocytes have been discussed. Our findings may provide a theoretical basis and experimental basis for improving female fertility.
Collapse
Affiliation(s)
- Zheqing Yang
- Center for Reproductive Medicine, Jilin Medical University, Jilin 132013, Jilin, China
| | - Sitong Liu
- Department of Anatomy, Jilin Medical University, Jilin 132013, Jilin, China
| | - Xiaoyan Pan
- Center for Reproductive Medicine, Jilin Medical University, Jilin 132013, Jilin, China.
| |
Collapse
|
25
|
LaPointe S, Lee JC, Nagy ZP, Shapiro DB, Chang HH, Wang Y, Russell AG, Hipp HS, Gaskins AJ. Ambient traffic related air pollution in relation to ovarian reserve and oocyte quality in young, healthy oocyte donors. ENVIRONMENT INTERNATIONAL 2024; 183:108382. [PMID: 38103346 PMCID: PMC10871039 DOI: 10.1016/j.envint.2023.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Studies in mice and older, subfertile women have found that air pollution exposure may compromise female reproduction. Our objective was to evaluate the effects of air pollution on ovarian reserve and outcomes of ovarian stimulation among young, healthy females. We included 472 oocyte donors who underwent 781 ovarian stimulation cycles at a fertility clinic in Atlanta, Georgia, USA (2008-2019). Antral follicle count (AFC) was assessed with transvaginal ultrasonography and total and mature oocyte count was assessed following oocyte retrieval. Ovarian sensitivity index (OSI) was calculated as the total number of oocytes divided by total gonadotrophin dose × 1000. Daily ambient exposure to nitric oxide (NOx), carbon monoxide (CO), and particulate matter ≤ 2.5 (PM2.5) was estimated using a fused regional + line-source model for near-surface releases at a 250 m resolution based on residential address. Generalized estimating equations were used to evaluate the associations of an interquartile range (IQR) increase in pollutant exposure with outcomes adjusted for donor characteristics, census-level poverty, and meteorological factors. The median (IQR) age among oocyte donors was 25.0 (5.0) years, and 31% of the donors were racial/ethnic minorities. The median (IQR) exposure to NOx, CO, and PM2.5 in the 3 months prior to stimulation was 37.7 (32.0) ppb, 612 (317) ppb, and 9.8 (2.9) µg/m3, respectively. Ambient air pollution exposure in the 3 months before AFC was not associated with AFC. An IQR increase in PM2.5 in the 3 months before AFC and during stimulation was associated with -7.5% (95% CI -14.1, -0.4) and -6.4% (95% CI -11.0, -1.6) fewer mature oocytes, and a -1.9 (95% CI -3.2, -0.5) and -1.0 (95% CI -1.8, -0.2) lower OSI, respectively. Our results suggest that lowering the current 24-h PM2.5 standard in the US to 25 µg/m3 may still not adequately protect against the reprotoxic effects of short-term PM2.5 exposure.
Collapse
Affiliation(s)
- Sarah LaPointe
- Department of Epidemiology, Emory University Rollins School of Public Heath, Atlanta, GA, United States
| | - Jaqueline C Lee
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zsolt P Nagy
- Reproductive Biology Associates, Sandy Springs, GA, United States
| | - Daniel B Shapiro
- Reproductive Biology Associates, Sandy Springs, GA, United States
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Yifeng Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Heather S Hipp
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Heath, Atlanta, GA, United States.
| |
Collapse
|
26
|
Aguilera J, Konvinse K, Lee A, Maecker H, Prunicki M, Mahalingaiah S, Sampath V, Utz PJ, Yang E, Nadeau KC. Air pollution and pregnancy. Semin Perinatol 2023; 47:151838. [PMID: 37858459 PMCID: PMC10843016 DOI: 10.1016/j.semperi.2023.151838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Increased fossil fuel usage and extreme climate change events have led to global increases in greenhouse gases and particulate matter with 99% of the world's population now breathing polluted air that exceeds the World Health Organization's recommended limits. Pregnant women and neonates with exposure to high levels of air pollutants are at increased risk of adverse health outcomes such as maternal hypertensive disorders, postpartum depression, placental abruption, low birth weight, preterm birth, infant mortality, and adverse lung and respiratory effects. While the exact mechanism by which air pollution exerts adverse health effects is unknown, oxidative stress as well as epigenetic and immune mechanisms are thought to play roles. Comprehensive, global efforts are urgently required to tackle the health challenges posed by air pollution through policies and action for reducing air pollution as well as finding ways to protect the health of vulnerable populations in the face of increasing air pollution.
Collapse
Affiliation(s)
- Juan Aguilera
- Department of Health Promotion and Behavioral Sciences, University of Texas Health Science Center at Houston, School of Public Health, El Paso, Texas
| | | | - Alexandra Lee
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford University, Palo Alto, CA
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, School of Medicine, Stanford University, Stanford, CA
| | - Mary Prunicki
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Shruthi Mahalingaiah
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA; Division of Reproductive Endocrinology and Infertility, Department of OB/GYN, Massachusetts General Hospital, Boston, MA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Paul J Utz
- Department of Medicine, Stanford University, Palo Alto, CA
| | - Emily Yang
- Department of Medicine, Stanford University, Palo Alto, CA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA.
| |
Collapse
|
27
|
Wesselink AK, Hystad P, Kirwa K, Kaufman JD, Willis MD, Wang TR, Szpiro AA, Levy JI, Savitz DA, Rothman KJ, Hatch EE, Wise LA. Air pollution and fecundability in a North American preconception cohort study. ENVIRONMENT INTERNATIONAL 2023; 181:108249. [PMID: 37862861 PMCID: PMC10841991 DOI: 10.1016/j.envint.2023.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Animal and epidemiologic studies indicate that air pollution may adversely affect fertility. However, the level of evidence is limited and specific pollutants driving the association are inconsistent across studies. METHODS We used data from a web-based preconception cohort study of pregnancy planners enrolled during 2013-2019 (Pregnancy Study Online; PRESTO). Eligible participants self-identified as female, were aged 21-45 years, resided in the United States (U.S.) or Canada, and were trying to conceive without fertility treatments. Participants completed a baseline questionnaire and bi-monthly follow-up questionnaires until conception or 12 months. We analyzed data from 8,747 participants (U.S.: 7,304; Canada: 1,443) who had been trying to conceive for < 12 cycles at enrollment. We estimated residential ambient concentrations of particulate matter < 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) using validated spatiotemporal models specific to each country. We fit country-specific proportional probabilities regression models to estimate the association between annual average, menstrual cycle-specific, and preconception average pollutant concentrations with fecundability, the per-cycle probability of conception. We calculated fecundability ratios (FRs) and 95% confidence intervals (CIs) and adjusted for individual- and neighborhood-level confounders. RESULTS In the U.S., the FRs for a 5-µg/m3 increase in annual average, cycle-specific, and preconception average PM2.5 concentrations were 0.94 (95% CI: 0.83, 1.08), 1.00 (95% CI: 0.93, 1.07), and 1.00 (95% CI: 0.93, 1.09), respectively. In Canada, the corresponding FRs were 0.92 (95% CI: 0.74, 1.16), 0.97 (95% CI: 0.87, 1.09), and 0.94 (95% CI: 0.80, 1.09), respectively. Likewise, NO2 and O3 concentrations were not strongly associated with fecundability in either country. CONCLUSIONS Neither annual average, menstrual cycle-specific, nor preconception average exposure to ambient PM2.5, NO2, and O3 were appreciably associated with reduced fecundability in this cohort of pregnancy planners.
Collapse
Affiliation(s)
- Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States.
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Kipruto Kirwa
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Joel D Kaufman
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Mary D Willis
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Tanran R Wang
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Adam A Szpiro
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, United States
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - David A Savitz
- Department of Epidemiology, Brown University School of Public Health, Providence, MA, United States
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Elizabeth E Hatch
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| |
Collapse
|
28
|
Zou Z, Yoshimura Y, Yamanishi Y, Oki S. Elucidating disease-associated mechanisms triggered by pollutants via the epigenetic landscape using large-scale ChIP-Seq data. Epigenetics Chromatin 2023; 16:34. [PMID: 37743474 PMCID: PMC10518938 DOI: 10.1186/s13072-023-00510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Despite well-documented effects on human health, the action modes of environmental pollutants are incompletely understood. Although transcriptome-based approaches are widely used to predict associations between chemicals and disorders, the molecular cues regulating pollutant-derived gene expression changes remain unclear. Therefore, we developed a data-mining approach, termed "DAR-ChIPEA," to identify transcription factors (TFs) playing pivotal roles in the action modes of pollutants. METHODS Large-scale public ChIP-Seq data (human, n = 15,155; mouse, n = 13,156) were used to predict TFs that are enriched in the pollutant-induced differentially accessible genomic regions (DARs) obtained from epigenome analyses (ATAC-Seq). The resultant pollutant-TF matrices were then cross-referenced to a repository of TF-disorder associations to account for pollutant modes of action. We subsequently evaluated the performance of the proposed method using a chemical perturbation data set to compare the outputs of the DAR-ChIPEA and our previously developed differentially expressed gene (DEG)-ChIPEA methods using pollutant-induced DEGs as input. We then adopted the proposed method to predict disease-associated mechanisms triggered by pollutants. RESULTS The proposed approach outperformed other methods using the area under the receiver operating characteristic curve score. The mean score of the proposed DAR-ChIPEA was significantly higher than that of our previously described DEG-ChIPEA (0.7287 vs. 0.7060; Q = 5.278 × 10-42; two-tailed Wilcoxon rank-sum test). The proposed approach further predicted TF-driven modes of action upon pollutant exposure, indicating that (1) TFs regulating Th1/2 cell homeostasis are integral in the pathophysiology of tributyltin-induced allergic disorders; (2) fine particulates (PM2.5) inhibit the binding of C/EBPs, Rela, and Spi1 to the genome, thereby perturbing normal blood cell differentiation and leading to immune dysfunction; and (3) lead induces fatty liver by disrupting the normal regulation of lipid metabolism by altering hepatic circadian rhythms. CONCLUSIONS Highlighting genome-wide chromatin change upon pollutant exposure to elucidate the epigenetic landscape of pollutant responses outperformed our previously described method that focuses on gene-adjacent domains only. Our approach has the potential to reveal pivotal TFs that mediate deleterious effects of pollutants, thereby facilitating the development of strategies to mitigate damage from environmental pollution.
Collapse
Affiliation(s)
- Zhaonan Zou
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yuka Yoshimura
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yoshihiro Yamanishi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8602, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
29
|
Geng Y, Liu Z, Hu R, Huang Y, Li F, Ma W, Wu X, Dong H, Song K, Xu X, Zhang Z, Song Y. Toxicity of microplastics and nanoplastics: invisible killers of female fertility and offspring health. Front Physiol 2023; 14:1254886. [PMID: 37700763 PMCID: PMC10493312 DOI: 10.3389/fphys.2023.1254886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) are emergent pollutants, which have sparked widespread concern. They can infiltrate the body via ingestion, inhalation, and cutaneous contact. As such, there is a general worry that MPs/NPs may have an impact on human health in addition to the environmental issues they engender. The threat of MPs/NPs to the liver, gastrointestinal system, and inflammatory levels have been thoroughly documented in the previous research. With the detection of MPs/NPs in fetal compartment and the prevalence of infertility, an increasing number of studies have put an emphasis on their reproductive toxicity in female. Moreover, MPs/NPs have the potential to interact with other contaminants, thus enhancing or diminishing the combined toxicity. This review summarizes the deleterious effects of MPs/NPs and co-exposure with other pollutants on female throughout the reproduction period of various species, spanning from reproductive failure to cross-generational developmental disorders in progenies. Although these impacts may not be directly extrapolated to humans, they do provide a framework for evaluating the potential mechanisms underlying the reproductive toxicity of MPs/NPs.
Collapse
Affiliation(s)
- Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Ma
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Wu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxu Dong
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunkun Song
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohu Xu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Thampy D, Vieira VM. Association between traffic-related air pollution exposure and fertility-assisted births. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:021005. [PMID: 37124069 PMCID: PMC10133988 DOI: 10.1088/2752-5309/accd10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
Previous studies have suggested that traffic-related air pollution is associated with adverse fertility outcomes, such as reduced fecundability and subfertility. The purpose of this research is to investigate if PM2.5 exposure prior to conception or traffic-related exposures (traffic density and distance to nearest major roadway) at birth address is associated with fertility-assisted births. We obtained all live and still births from the Massachusetts state birth registry with an estimated conception date between January 2002 through December 2008. All births requiring fertility drugs or assisted reproductive technology were identified as cases. We randomly selected 2000 infants conceived each year to serve as a common control group. PM2.5 exposure was assessed using 4 km spatial satellite remote sensing, meteorological and land use spatiotemporal models at geocoded birth addresses for the year prior to conception. The mean PM2.5 level was 9.81 µg m-3 (standard deviation = 1.70 µg m-3), with a maximum of 14.27 µg m-3. We calculated crude and adjusted fertility treatment odds ratios (ORs) and 95% confidence intervals (CI) per interquartile range of 1.72 µg m-3 increase in PM2.5 exposure. Our final analyses included 10 748 fertility-assisted births and 12 225 controls. After adjusting for parental age, marital status, race, maternal education, insurance status, parity, and year of birth, average PM2.5 exposure during the year prior to conception was weakly associated with fertility treatment (OR: 1.01; 95% CI: 0.97, 1.05). Fertility-assisted births were inversely associated with traffic density (highest quartile compared to lowest quartile, OR: 0.92; 95% CI: 0.83, 1.02) and positively associated with distance from major roadway (OR per 100 m: 1.01; 95% CI: 1.00, 1.02) in adjusted analyses. We did not find strong evidence to support an adverse relationship between traffic-related air pollution exposure and fertility-assisted births.
Collapse
Affiliation(s)
- Daphne Thampy
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, United States of America
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Verónica M Vieira
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, United States of America
- Author to whom any correspondence should be addressed
| |
Collapse
|
31
|
Abdoli S, Masoumi SZ, Kazemi F. Environmental and occupational factors and higher risk of couple infertility: a systematic review study. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2022. [DOI: 10.1186/s43043-022-00124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Infertility is a global health problem that represents an increasing trend due to new lifestyles following technological advances since individuals are facing more risk factors than before. The present systematic review study aimed to investigate the impact of environmental and occupational factors on reproductive parameters and increased risk of couple infertility.
Main body
Scopus, PubMed, SID, and Web of Science databases were searched for the available observational (i.e., cohort, case-control, and cross-sectional) systematic review, meta-analysis, and clinical trial studies between 2007 and 2019. To this end, keywords such as ‘Environmental exposure’, ‘Occupational exposure’, ‘Environmental pollutants’, ‘Environmental pollution’, ‘Couple infertility’, ‘Sterility’, and ‘Sub-fertility’ were used. The retrieved investigations examined the impact of environmental and occupational risk factors on reproductive indices and increased infertility risk. Totally, 66 out of 9519 papers were evaluated after considering the inclusion and exclusion criteria. The reported risk factors in the reviewed studies were heavy metals, cigarette smoking, and exposure to chemicals through consumer goods, urban life, and proximity to main roads. In addition, occupational factors included heavy physical activity, prolonged sitting, exposure to a hot environment, contact with formaldehyde, pesticides, insecticides, mechanical vibration, and contact with ionizing radiation, all of which affected the reproductive parameters. However, some researchers found no significant associations in this regard.
Short conclusion
In general, individuals with known impairments in reproductive parameters were more exposed to risk factors. Nonetheless, more studies are needed to determine the risk of infertility in the population.
Collapse
|
32
|
Gutvirtz G, Sheiner E. Airway pollution and smoking in reproductive health. Best Pract Res Clin Obstet Gynaecol 2022; 85:81-93. [PMID: 36333255 DOI: 10.1016/j.bpobgyn.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/04/2022] [Indexed: 12/14/2022]
Abstract
Environmental exposure refers to contact with chemical, biological, or physical substances found in air, water, food, or soil that may have a harmful effect on a person's health. Almost all of the global population (99%) breathe air that contains high levels of pollutants. Smoking is one of the most common forms of recreational drug use and is the leading preventable cause of morbidity and mortality worldwide. The small particles from either ambient (outdoor) pollution or cigarette smoke are inhaled to the lungs and quickly absorbed into the bloodstream. These substances can affect virtually every organ in our body and have been associated with various respiratory, cardiovascular, endocrine, and also reproductive morbidities, including decreased fertility, adverse pregnancy outcomes, and offspring long-term morbidity. This review summarizes the latest literature reporting the reproductive consequences of women exposed to ambient (outdoor) air pollution and cigarette smoking.
Collapse
Affiliation(s)
- Gil Gutvirtz
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Soroka University Medical Center (SUMC), Department of Obstetrics and Gynecology B, Beer-Sheva, Israel.
| | - Eyal Sheiner
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Soroka University Medical Center (SUMC), Department of Obstetrics and Gynecology B, Beer-Sheva, Israel
| |
Collapse
|
33
|
Hwang S, Hood RB, Hauser R, Schwartz J, Laden F, Jones D, Liang D, Gaskins AJ. Using follicular fluid metabolomics to investigate the association between air pollution and oocyte quality. ENVIRONMENT INTERNATIONAL 2022; 169:107552. [PMID: 36191487 PMCID: PMC9620437 DOI: 10.1016/j.envint.2022.107552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIM Our objective was to use metabolomics in a toxicological-relevant target tissue to gain insight into the biological processes that may underlie the negative association between air pollution exposure and oocyte quality. METHODS Our study included 125 women undergoing in vitro fertilization at an academic fertility center in Massachusetts, US (2005-2015). A follicular fluid sample was collected during oocyte retrieval and untargeted metabolic profiling was conducted using liquid chromatography with ultra-high-resolution mass spectrometry and two chromatography columns (C18 and HILIC). Daily exposure to nitrogen dioxide (NO2), ozone, fine particulate matter, and black carbon was estimated at the women's residence using spatiotemporal models and averaged over the period of ovarian stimulation (2-weeks). Multivariable linear regression models were used to evaluate the associations between the air pollutants, number of mature oocytes, and metabolic feature intensities. A meet-in-the-middle approach was used to identify overlapping features and metabolic pathways. RESULTS Of the air pollutants, NO2 exposure had the largest number of overlapping metabolites (C18: 105; HILIC: 91) and biological pathways (C18: 3; HILIC: 6) with number of mature oocytes. Key pathways of overlap included vitamin D3 metabolism (both columns), bile acid biosynthesis (both columns), C21-steroid hormone metabolism (HILIC), androgen and estrogen metabolism (HILIC), vitamin A metabolism (HILIC), carnitine shuttle (HILIC), and prostaglandin formation (C18). Three overlapping metabolites were confirmed with level-1 or level-2 evidence. For example, hypoxanthine, a metabolite that protects against oxidant-induced cell injury, was positively associated with NO2 exposure and negatively associated with number of mature oocytes. Minimal overlap was observed between the other pollutants and the number of mature oocytes. CONCLUSIONS Higher exposure to NO2 during ovarian stimulation was associated with many metabolites and biologic pathways involved in endogenous vitamin metabolism, hormone synthesis, and oxidative stress that may mediate the observed associations with lower oocyte quality.
Collapse
Affiliation(s)
- Sueyoun Hwang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Robert B Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Dean Jones
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States.
| |
Collapse
|
34
|
Kim JH, Hong SH, Moon NL, Kang DR. Effects of Exposure Duration and Exposure Levels of Ambient Air Pollutants on the Risk of Polycystic Ovarian Syndrome: A 2015-2019 Korean Population-Based Cohort Study. TOXICS 2022; 10:542. [PMID: 36136507 PMCID: PMC9501187 DOI: 10.3390/toxics10090542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Exposure to ambient air pollution is associated with an increased risk of menstrual disorders and infertility. This study examined the relationships between the levels and duration of air pollution exposure and the risk of polycystic ovarian syndrome (PCOS) using Korean population-based cohort data (2015-2019). Real-time data on PM10, PM2.5, O3, CO, SO2, and NO2 were provided by the Korean Ministry of Environment. The average monthly air pollutant concentration from 1 January 2014 to 31 December 2018 was analyzed. To assess individual-level exposure to air pollutants, a spatial prediction model and an area-averaging approach were used. In total, 237,582 PCOS cases were analyzed. The annual age-adjusted PCOS incidence was 6.70, 8.28, 9.73, 11.58, and 11.97% from 2015-2019, respectively. The PCOS risk increased 1.29-1.32, 1.43-1.52, and 1.32-fold following exposure to the 2-year and 3-year average levels of PM2.5, O3, and NO2, respectively, compared to their 1-year average levels. The PCOS risk increased 1.75-fold (95% confidence interval: 1.66-1.85) in the fourth-quartile for the NO2 level. Increased SO2 and CO levels in the second- and third-quartiles were also associated with an increased PCOS risk. Exposure to air pollutants thus increased the risk for PCOS in the Korean population.
Collapse
Affiliation(s)
- Ju-Hee Kim
- Department of Nursing, College of Nursing Science, Kyung Hee University, Seoul 02447, Korea
| | - Se-Hwa Hong
- Department of Biostatistics, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Na-Lae Moon
- Department of Nursing, College of Nursing Science, Kyung Hee University, Seoul 02447, Korea
| | - Dae-Ryong Kang
- Department of Precision Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| |
Collapse
|
35
|
Segal TR, Giudice LC. Systematic review of climate change effects on reproductive health. Fertil Steril 2022; 118:215-223. [PMID: 35878942 DOI: 10.1016/j.fertnstert.2022.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 12/26/2022]
Abstract
Climate change is a major risk factor for overall health, including reproductive health, and well-being. Increasing temperatures, due mostly to increased greenhouse gases trapping excess heat in the atmosphere, result in erratic weather patterns, wildfires, displacement of large communities, and stagnant water resulting in vector-borne diseases that, together, have set the stage for new and devastating health threats across the globe. These conditions disproportionately affect disadvantaged and vulnerable populations, including women, pregnant persons, young children, the elderly, and the disabled. This review reports on the evidence for the adverse impacts of air pollution, wildfires, heat stress, floods, toxic chemicals, and vector-borne diseases on male and female fertility, the developing fetus, and obstetric outcomes. Reproductive health care providers are uniquely positioned and have an unprecedented opportunity to educate patients and policy makers about mitigating the impact of climate change to assure reproductive health in this and future generations.
Collapse
Affiliation(s)
- Thalia R Segal
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
36
|
Ambient Air Pollution Exposure Assessments in Fertility Studies: a Systematic Review and Guide for Reproductive Epidemiologists. CURR EPIDEMIOL REP 2022; 9:87-107. [DOI: 10.1007/s40471-022-00290-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
Purpose of Review
We reviewed the exposure assessments of ambient air pollution used in studies of fertility, fecundability, and pregnancy loss.
Recent Findings
Comprehensive literature searches were performed in the PUBMED, Web of Science, and Scopus databases. Of 168 total studies, 45 met the eligibility criteria and were included in the review. We find that 69% of fertility and pregnancy loss studies have used one-dimensional proximity models or surface monitor data, while only 35% have used the improved models, such as land-use regression models (4%), dispersion/chemical transport models (11%), or fusion models (20%). No published studies have used personal air monitors.
Summary
While air pollution exposure models have vastly improved over the past decade from a simple, one-dimensional distance or air monitor data to models that incorporate physiochemical properties leading to better predictive accuracy, precision, and increased spatiotemporal variability and resolution, the fertility literature has yet to fully incorporate these new methods. We provide descriptions of each of these air pollution exposure models and assess the strengths and limitations of each model, while summarizing the findings of the literature on ambient air pollution and fertility that apply each method.
Collapse
|
37
|
Wan S, Zhao X, Niu Z, Dong L, Wu Y, Gu S, Feng Y, Hua X. Influence of ambient air pollution on successful pregnancy with frozen embryo transfer: A machine learning prediction model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113444. [PMID: 35367879 DOI: 10.1016/j.ecoenv.2022.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Numerous air pollutants have been reported to influence the outcomes of in vitro fertilization (IVF). However, whether air pollution affects implantation in frozen embryo transfer (FET) process is under debate. We aimed to find the association between ambient air pollution and implantation potential of FET and test the value of adding air pollution data to a random forest model (RFM) predicting intrauterine pregnancy. Using a retrospective study of a 4-year single-center design,we analyzed 3698 cycles of women living in Shanghai who underwent FET between 2015 and 2018. To estimate patients' individual exposure to air pollution, we computed averages of daily concentrations of six air pollutants including PM2.5, PM10, SO2, CO, NO2, and O3 measured at 9 monitoring stations in Shanghai for the exposure period (one month before FET). Moreover, A predictive model of 15 variables was established using RFM. Air pollutants levels of patients with or without intrauterine pregnancy were compared. Our results indicated that for exposure periods before FET, NO2 were negatively associated with intrauterine pregnancy (OR: 0.906, CI: 0.816-0.989). AUROC increased from 0.712 to 0.771 as air pollutants features were added. Overall, our findings demonstrate that exposure to NO2 before transfer has an adverse effect on clinical pregnancy. The performance to predict intrauterine pregnancy will improve with the use of air pollution data in RFM.
Collapse
Affiliation(s)
- Sheng Wan
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaobo Zhao
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhihong Niu
- Reproductive Medical Center, Obstetrics and Gynecology Department, Ruijin Hospital Affiliated with the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Lingling Dong
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuelin Wu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengyi Gu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Feng
- Reproductive Medical Center, Obstetrics and Gynecology Department, Ruijin Hospital Affiliated with the Medical School of Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaolin Hua
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
38
|
Fruh V, Cheng JJ, Aschengrau A, Mahalingaiah S, Lane KJ. Fine particulate matter and polycystic ovarian morphology. Environ Health 2022; 21:26. [PMID: 35180862 PMCID: PMC8855564 DOI: 10.1186/s12940-022-00835-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Polycystic ovary morphology (PCOM) is an ultrasonographic finding that can be present in women with ovulatory disorder and oligomenorrhea due to hypothalamic, pituitary, and ovarian dysfunction. While air pollution has emerged as a possible disrupter of hormone homeostasis, limited research has been conducted on the association between air pollution and PCOM. METHODS We conducted a longitudinal cohort study using electronic medical records data of 5,492 women with normal ovaries at the first ultrasound that underwent a repeated pelvic ultrasound examination during the study period (2004-2016) at Boston Medical Center. Machine learning text algorithms classified PCOM by ultrasound. We used geocoded home address to determine the ambient annual average PM2.5 exposures and categorized into tertiles of exposure. We used Cox Proportional Hazards models on complete data (n = 3,994), adjusting for covariates, and additionally stratified by race/ethnicity and body mass index (BMI). RESULTS Cumulative exposure to PM2.5 during the study ranged from 4.9 to 17.5 µg/m3 (mean = 10.0 μg/m3). On average, women were 31 years old and 58% were Black/African American. Hazard ratios and 95% confidence intervals (CI) comparing the second and third PM2.5 exposure tertile vs. the reference tertile were 1.12 (0.88, 1.43) and 0.89 (0.62, 1.28), respectively. No appreciable differences were observed across race/ethnicity. Among women with BMI ≥ 30 kg/m2, we observed weak inverse associations with PCOM for the second (HR: 0.93, 95% CI: 0.66, 1.33) and third tertiles (HR: 0.89, 95% CI: 0.50, 1.57). CONCLUSIONS In this study of reproductive-aged women, we observed little association between PM2.5 concentrations and PCOM incidence. No dose response relationships were observed nor were estimates appreciably different across race/ethnicity within this clinically sourced cohort.
Collapse
Affiliation(s)
- Victoria Fruh
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Jay Jojo Cheng
- Department of Biostatistics and Medical Informatics, University of Wisconsin, 702 West Johnson Street, Madison, WI, USA
| | - Ann Aschengrau
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Shruthi Mahalingaiah
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Obstetrics and Gynecology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114-2696, USA
| | - Kevin J Lane
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
39
|
Yang M, Tian F, Tao S, Xia M, Wang Y, Hu J, Pan B, Li Z, Peng R, Kan H, Xu Y, Li W. Concentrated ambient fine particles exposure affects ovarian follicle development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113178. [PMID: 35026587 DOI: 10.1016/j.ecoenv.2022.113178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ambient fine particles (PM2.5) are known to cause various reproductive and developmental diseases. However, the potential mechanisms of PM2.5 exposure induced female reproductive damage remain unclear. METHODS Four weeks old female C57BL/6 J mice were exposed to filtered air (FA, n = 10) or concentrated ambient PM2.5 (CAP, n = 10) using a versatile aerosol concentration enrichment system. After 9 weeks of the exposure, mice were sacrificed under sevoflurane anesthesia and tissue samples were collected. Immunohistochemical analysis, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, and RNA-sequencing were performed to analyze the effects of PM2.5 exposure on follicle development and elucidate its potential mechanisms. RESULTS Chronic PM2.5 exposure resulted in follicular dysplasia. Compared to the FA-exposed group, follicular atresia in the CAP-exposed mice were significantly increased. Further studies confirmed that CAP induced apoptosis in granulosa cells, accompanied by a distortion of hormone homeostasis. In addition, RNA-sequencing data demonstrated that CAP exposure induced the alteration of ovarian gene expressions and was associated with inflammatory response. CONCLUSIONS Chronic exposure to CAP can induce follicular atresia, which was associated with hormone modulation and inflammation.
Collapse
Affiliation(s)
- Mingjun Yang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Fang Tian
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Shimin Tao
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Minjie Xia
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Yuzhu Wang
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Jingying Hu
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- Key Laboratory of Reproduction Regulation of National Health Commission (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai 200032, China.
| |
Collapse
|
40
|
Luderer U, Lim J, Ortiz L, Nguyen JD, Shin JH, Allen BD, Liao LS, Malott K, Perraud V, Wingen LM, Arechavala RJ, Bliss B, Herman DA, Kleinman MT. Exposure to environmentally relevant concentrations of ambient fine particulate matter (PM 2.5) depletes the ovarian follicle reserve and causes sex-dependent cardiovascular changes in apolipoprotein E null mice. Part Fibre Toxicol 2022; 19:5. [PMID: 34996492 PMCID: PMC8740366 DOI: 10.1186/s12989-021-00445-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) exposure accelerates atherosclerosis and contains known ovotoxic chemicals. However, effects of exposure to PM2.5 on the finite ovarian follicle pool have hardly been investigated, nor have interactions between ovarian and cardiovascular effects. We hypothesized that subchronic inhalation exposure to human-relevant concentrations of PM2.5 results in destruction of ovarian follicles via apoptosis induction, as well as accelerated recruitment of primordial follicles into the growing pool. Further, we hypothesized that destruction of ovarian follicles enhances the adverse cardiovascular effects of PM2.5 in females. RESULTS Hyperlipidemic apolipoprotein E (Apoe) null ovary-intact or ovariectomized female mice and testis-intact male mice were exposed to concentrated ambient PM2.5 or filtered air for 12 weeks, 5 days/week for 4 h/day using a versatile aerosol concentration enrichment system. Primordial, primary, and secondary ovarian follicle numbers were decreased by 45%, 40%, and 17%, respectively, in PM2.5-exposed ovary-intact mice compared to controls (P < 0.05). The percentage of primary follicles with granulosa cells positive for the mitosis marker Ki67 was increased in the ovaries from PM2.5-exposed females versus controls (P < 0.05), consistent with increased recruitment of primordial follicles into the growing pool. Exposure to PM2.5 increased the percentages of primary and secondary follicles with DNA damage, assessed by γH2AX immunostaining (P < 0.05). Exposure to PM2.5 increased the percentages of apoptotic antral follicles, determined by TUNEL and activated caspase 3 immunostaining (P < 0.05). Removal of the ovaries and PM2.5-exposure exacerbated the atherosclerotic effects of hyperlipidemia in females (P < 0.05). While there were statistically significant changes in blood pressure and heart rate variability in PM2.5-compared to Air-exposed gonad-intact males and females and ovariectomized females, the changes were not consistent between exposure years and assessment methods. CONCLUSIONS These results demonstrate that subchronic PM2.5 exposure depletes the ovarian reserve by increasing recruitment of primordial follicles into the growing pool and increasing apoptosis of growing follicles. Further, PM2.5 exposure and removal of the ovaries each increase atherosclerosis progression in Apoe-/- females. Premature loss of ovarian function is associated with increased risk of osteoporosis, cardiovascular disease and Alzheimer's disease in women. Our results thus support possible links between PM2.5 exposure and other adverse health outcomes in women.
Collapse
Affiliation(s)
- Ulrike Luderer
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Center for Occupational and Environmental Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Jinhwan Lim
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA
| | - Laura Ortiz
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Johnny D. Nguyen
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Joyce H. Shin
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Barrett D. Allen
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA
| | - Lisa S. Liao
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Kelli Malott
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617 USA
| | - Veronique Perraud
- grid.266093.80000 0001 0668 7243Department of Chemistry, University of California Irvine, Irvine, CA 92617 USA
| | - Lisa M. Wingen
- grid.266093.80000 0001 0668 7243Department of Chemistry, University of California Irvine, Irvine, CA 92617 USA
| | - Rebecca J. Arechavala
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Bishop Bliss
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - David A. Herman
- grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| | - Michael T. Kleinman
- grid.266093.80000 0001 0668 7243Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Center for Occupational and Environmental Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA 92617 USA ,grid.266093.80000 0001 0668 7243Department of Medicine, University of California Irvine, Irvine, CA 92617 USA
| |
Collapse
|
41
|
Wesselink AK, Wang TR, Ketzel M, Mikkelsen EM, Brandt J, Khan J, Hertel O, Laursen ASD, Johannesen BR, Willis MD, Levy JI, Rothman KJ, Sørensen HT, Wise LA, Hatch EE. Air pollution and fecundability: Results from a Danish preconception cohort study. Paediatr Perinat Epidemiol 2022; 36:57-67. [PMID: 34890081 PMCID: PMC8712376 DOI: 10.1111/ppe.12832] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Animal and epidemiologic studies indicate that air pollution may adversely affect fertility. Epidemiologic studies have been restricted largely to couples undergoing fertility treatment or have retrospectively ascertained time-to-pregnancy among pregnant women. OBJECTIVES We examined the association between residential ambient air pollution and fecundability, the per-cycle probability of conception, in a large preconception cohort of Danish pregnancy planners. METHODS During 2007-2018, we used the Internet to recruit and follow women who were trying to conceive without the use of fertility treatment. Participants completed an online baseline questionnaire eliciting socio-demographic characteristics, lifestyle factors, and medical and reproductive histories and follow-up questionnaires every 8 weeks to ascertain pregnancy status. We determined concentrations of ambient nitrogen oxides (NOx ), nitrogen dioxide (NO2 ), carbon monoxide (CO), ozone (O3 ), particulate matter <2.5 µm (PM2.5 ) and <10 µm (PM10 ), and sulphur dioxide (SO2 ) at each participant's residential address. We calculated average exposure during the year before baseline, during each menstrual cycle over follow-up and during the entire pregnancy attempt time. We used proportional probabilities regression models to estimate fecundability ratios (FRs) and 95% confidence intervals (CIs), adjusting for potential confounders and co-pollutants. The analysis was restricted to the 10,183 participants who were trying to conceive for <12 cycles at study entry whose addresses could be geocoded. RESULTS During 12 months of follow-up, 73% of participants conceived. Higher concentrations of PM2.5 and PM10 were associated with small reductions in fecundability. For example, the FRs for a one interquartile range (IQR) increase in PM2.5 (IQR = 3.2 µg/m3 ) and PM10 (IQR = 5.3 µg/m3 ) during each menstrual cycle were 0.93 (95% CI: 0.87, 0.99) and 0.91 (95% CI: 0.84, 0.99), respectively. Other air pollutants were not appreciably associated with fecundability. CONCLUSIONS In this preconception cohort study of Danish women, residential exposures to PM2.5 and PM10 were associated with reduced fecundability.
Collapse
Affiliation(s)
- Amelia K. Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Tanran R. Wang
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, United Kingdom
| | - Ellen M. Mikkelsen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate, interdisciplinary Centre for Climate Change, Aarhus University, Aarhus, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | - Ole Hertel
- Department of Ecoscience, Aarhus University, Denmark
| | - Anne Sofie D. Laursen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Benjamin R. Johannesen
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Mary D. Willis
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Jonathan I. Levy
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Kenneth J. Rothman
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Research Triangle Institute, Durham, NC, USA
| | - Henrik T. Sørensen
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Lauren A. Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Elizabeth E. Hatch
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
42
|
Park SR, Lee JW, Kim SK, Yu WJ, Lee SJ, Kim D, Kim KW, Jung JW, Hong IS. The impact of fine particulate matter (PM) on various beneficial functions of human endometrial stem cells through its key regulator SERPINB2. Exp Mol Med 2021; 53:1850-1865. [PMID: 34857902 PMCID: PMC8741906 DOI: 10.1038/s12276-021-00713-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Fine particulate matter (PM) has a small diameter but a large surface area; thus, it may have broad toxic effects that subsequently damage many tissues of the human body. Interestingly, many studies have suggested that the recent decline in female fertility could be associated with increased PM exposure. However, the precise mechanisms underlying the negative effects of PM exposure on female fertility are still a matter of debate. A previous study demonstrated that resident stem cell deficiency limits the cyclic regenerative capacity of the endometrium and subsequently increases the pregnancy failure rate. Therefore, we hypothesized that PM exposure induces endometrial tissue damage and subsequently reduces the pregnancy rate by inhibiting various beneficial functions of local endometrial stem cells. Consistent with our hypothesis, we showed for the first time that PM exposure significantly inhibits various beneficial functions of endometrial stem cells, such as their self-renewal, transdifferentiation, and migratory capacities, in vitro and in vivo through the PM target gene SERPINB2, which has recently been shown to be involved in multiple stem cell functions. In addition, the PM-induced inhibitory effects on the beneficial functions of endometrial stem cells were significantly diminished by SERPINB2 depletion. Our findings may facilitate the development of promising therapeutic strategies for improving reproductive outcomes in infertile women. Airborne pollutants may reduce female fertility through their debilitating effects on the stem cells that maintain the endometrium, the interior lining of the uterus. Recent evidence suggests that toxic byproducts from fossil fuels known as ‘particulate matter’ represent a danger to women’s reproductive health. South Korean researchers led by Ji-Won Jung, Korea Centers for Disease Control and Prevention, and In-Sun Hong, Gachon University, Incheon, have investigated this risk by exposing cultured human endometrial stem cells to diesel-derived particulate matter. These stem cells normally maintain the endometrium, allowing embryonic implantation to take place, but exposure to particulate matter greatly impaired the cells’ regenerative function. Mice exposed to particulate matter exhibited similar impairments of endometrial maintenance. The researchers identified a molecular pathway associated with this response that could guide development of fertility-restoring treatments.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Joong Won Lee
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongwon-gun, Republic of Korea
| | - Seong-Kwan Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Deajeon, 34114, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Deajeon, 34114, Republic of Korea
| | - Doojin Kim
- Department of Surgery, Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Kun-Woo Kim
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Ji-Won Jung
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongwon-gun, Republic of Korea.
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea.
| |
Collapse
|
43
|
Giudice LC, Llamas-Clark EF, DeNicola N, Pandipati S, Zlatnik MG, Decena DCD, Woodruff TJ, Conry JA. Climate change, women's health, and the role of obstetricians and gynecologists in leadership. Int J Gynaecol Obstet 2021; 155:345-356. [PMID: 34694628 PMCID: PMC9298078 DOI: 10.1002/ijgo.13958] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/07/2022]
Abstract
Climate change is one of the major global health threats to the world's population. It is brought on by global warming due in large part to increasing levels of greenhouse gases resulting from human activity, including burning fossil fuels (carbon dioxide), animal husbandry (methane from manure), industry emissions (ozone, nitrogen oxides, sulfur dioxide), vehicle/factory exhaust, and chlorofluorocarbon aerosols that trap extra heat in the earth's atmosphere. Resulting extremes of weather give rise to wildfires, air pollution, changes in ecology, and floods. These in turn result in displacement of populations, family disruption, violence, and major impacts on water quality and availability, food security, public health and economic infrastructures, and limited abilities for civil society to maintain citizen safety. Climate change also has direct impacts on human health and well-being. Particularly vulnerable populations are affected, including women, pregnant women, children, the disabled, and the elderly, who comprise the majority of the poor globally. Additionally, the effects of climate change disproportionally affect disadvantaged communities, including low income and communities of color, and lower-income countries that are at highest risk of adverse impacts when disasters occur due to inequitable distribution of resources and their socioeconomic status. The climate crisis is tilting the risk balance unfavorably for women's sexual and reproductive health and rights as well as newborn and child health. Obstetrician/gynecologists have the unique opportunity to raise awareness, educate, and advocate for mitigation strategies to reverse climate change affecting our patients and their families. This article puts climate change in the context of women's reproductive health as a public health issue, a social justice issue, a human rights issue, an economic issue, a political issue, and a gender issue that needs our attention now for the health and well-being of this and future generations. FIGO joins a broad coalition of international researchers and the medical community in stating that the current climate crisis presents an imminent health risk to pregnant people, developing fetuses, and reproductive health, and recognizing that we need society-wide solutions, government policies, and global cooperation to address and reduce contributors, including fossil fuel production, to climate change.
Collapse
Affiliation(s)
- Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Erlidia F Llamas-Clark
- Department of Obstetrics and Gynecology, Division of Ultrasound, University of the Philippines - Philippine General Hospital, Manila, Philippines
| | - Nathaniel DeNicola
- Department of Obstetrics and Gynecology, Johns Hopkins Health System, Washington, District of Columbia, USA
| | - Santosh Pandipati
- Obstetrix Medical Group/Mednax (Maternal-Fetal Medicine), Campbell, California, USA
| | - Marya G Zlatnik
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Maternal Fetal Medicine, Program on Reproductive Health and the Environment, Environmental Research and Translation for Health (EaRTH) Center, University of California, San Francisco, San Francisco, California, USA
| | - Ditas Cristina D Decena
- Departments of Anatomy, Clinical Epidemiology and Public Health International, University of Santo Tomas, Manila, Philippines
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Environmental Research and Translation for Health (EaRTH) Center, University of California, San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
44
|
Liu J, Zhao M, Zhang H, Zhao J, Kong H, Zhou M, Guan Y, Li TC, Wang X, Chan DYL. Associations between ambient air pollution and IVF outcomes in a heavily polluted city in China. Reprod Biomed Online 2021; 44:49-62. [PMID: 34836814 DOI: 10.1016/j.rbmo.2021.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
RESEARCH QUESTION Is air pollution related to IVF outcomes in a heavily polluted city in China? DESIGN A retrospective cohort study of 8628 fresh, autologous IVF cycles was conducted for the first time at the Reproductive Medicine Center of The Third Affiliated Hospital of Zhengzhou University between May 2014 and December 2018 (oocyte retrieval date). The exposure was divided into four periods (gonadotrophin injection to oocyte retrieval [P1], oocyte retrieval to embryo transfer [P2], 1 day after embryo transfer to embryo transfer +14 days [P3] and gonadotrophin injection to embryo transfer +14 days [P4]) and four levels (Q1-Q4 according to their 25th, 50th and 75th percentiles). RESULTS An interquartile range increase (Q2 versus Q1) in particulate matter ≤10 µm (PM10) during P3 and P4 and sulphur dioxide (SO2) during P3 significantly decreased the clinical pregnancy rate (adjusted odds ratio [aOR] 0.81, 95% confidence interval [CI] 0.71-0.92 for PM10 of P3; aOR 0.87, 95% CI 0.76-1.00 for PM10 of P4; aOR 0.82, 95% CI 0.73-0.93 for SO2 of P3). In addition, PM10 was associated with an increased biochemical pregnancy rate (Q3 versus Q1: aOR 1.55, 95% CI 1.09-2.19 for PM10 of P1) and decreased live birth rate (Q2 versus Q1: aOR 0.88, 95% CI 0.77-0.99 for PM10 of P3). The multivariate regression results were consistent with that of multiple treatments propensity score method (PSM) for SO2 pollutants in P3 and PM10 pollutants in P4. CONCLUSION From the early follicular stage to the pregnancy test period, high concentrations of PM10 and SO2 may have a negative impact on IVF treatment outcomes in the study area.
Collapse
Affiliation(s)
- Jing Liu
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Haoyang Zhang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Junliang Zhao
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjiao Kong
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengge Zhou
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yichun Guan
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xingling Wang
- Reproductive Medicine Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - David Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
45
|
González-Comadran M, Jacquemin B, Cirach M, Lafuente R, Cole-Hunter T, Nieuwenhuijsen M, Brassesco M, Coroleu B, Checa MA. The effect of short term exposure to outdoor air pollution on fertility. Reprod Biol Endocrinol 2021; 19:151. [PMID: 34615529 PMCID: PMC8493680 DOI: 10.1186/s12958-021-00838-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND There is evidence to suggest that long term exposure to air pollution could be associated with decreased levels of fertility, although there is controversy as to how short term exposure may compromise fertility in IVF patients and what windows of exposure during the IVF process patients could be most vulnerable. METHODS This prospective cohort study aimed to evaluate the impact of acute exposure that air pollution have on reproductive outcomes in different moments of the IVF process. Women undergoing IVF living in Barcelona were recruited. Individual air pollution exposures were modelled at their home address 15 and 3 days before embryo transfer (15D and 3D, respectively), the same day of transfer (D0), and 7 days after (D7). The pollutants modelled were: PM2.5 [particulate matter (PM) ≤2.5 μm], PMcoarse (PM between 2.5 and 10μm), PM10 (PM≤10 μm), PM2.5 abs, and NO2 and NOx. Outcomes were analyzed using multi-level regression models, with adjustment for co-pollutants and confouding factors. Two sensitivity analyses were performed. First, the model was adjusted for subacute exposure (received 15 days before ET). The second analysis was based on the first transfer performed on each patient aiming to exclude patients who failed previous transfers. RESULTS One hundred ninety-four women were recruited, contributing with data for 486 embryo transfers. Acute and subacute exposure to PMs showed a tendency in increasing miscarriage rate and reducing clinical pregnancy rate, although results were not statistically significant. The first sensitivity analysis, showed a significant risk of miscarriage for PM2.5 exposure on 3D after adjusting for subacute exposure, and an increased risk of achieving no pregnancy for PM2.5, PMcoarse and PM10 on 3D. The second sensitivity analysis showed a significant risk of miscarriage for PM2.5 exposure on 3D, and a significant risk of achieving no pregnancy for PM2.5, PMcoarse and PM10 particularly on 3D. No association was observed for nitrogen dioxides on reproductive outcomes. CONCLUSIONS Exposure to particulate matter has a negative impact on reproductive outcomes in IVF patients. Subacute exposure seems to increase the harmful effect of the acute exposure on miscarriage and pregnancy rates. Nitrogen dioxides do not modify significantly the reproductive success.
Collapse
Affiliation(s)
- Mireia González-Comadran
- Department of Obstetrics and Gynecology, Hospital del Mar, Barcelona, Spain
- Barcelona Research Infertility Group, IMIM Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Bénédicte Jacquemin
- Univ Rennes 1, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marta Cirach
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rafael Lafuente
- Centro de Infertilidad y Reproducción Humana (CIRH), Barcelona, Spain
| | - Thomas Cole-Hunter
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mario Brassesco
- Centro de Infertilidad y Reproducción Humana (CIRH), Barcelona, Spain
| | | | - Miguel Angel Checa
- Department of Obstetrics and Gynecology, Hospital del Mar, Barcelona, Spain.
- Barcelona Research Infertility Group, IMIM Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain.
- Universidad Autónoma de Barcelona, Barcelona, Spain.
- Fertty, ClÍnica de ReproducciÓn Asistida, Barcelona, Spain.
- Reproductive Medicine Division at Hospital del Mar de Barcelona, Passeig Marítim 25-29, 08003, Barcelona, Spain.
| |
Collapse
|
46
|
Lin SY, Yang YC, Lin CC, Chang CYY, Hsu WH, Wang IK, Lin CD, Hsu CY, Kao CH. Increased Incidence of Dysmenorrhea in Women Exposed to Higher Concentrations of NO, NO 2, NO x, CO, and PM 2.5: A Nationwide Population-Based Study. Front Public Health 2021; 9:682341. [PMID: 34222182 PMCID: PMC8247898 DOI: 10.3389/fpubh.2021.682341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Air pollution is speculated to affect the reproductive health of women. However, a longitudinal association between exposure to air pollution and dysmenorrhea has not been identified, which this study aimed to examine this point. Methods: Two nationwide databases, namely the Taiwan Air Quality Monitoring database and the Taiwan National Health Research Institutes database were linked. Women with a history of dysmenorrhea (International Classification of Disease, Ninth Revision, Clinical Modification code 625.3) before 2000 were excluded. All participants were followed from January 1, 2000 until the diagnosis of dysmenorrhea, withdrawal from National Health Insurance, or December 31, 2013. Furthermore, air pollutants were categorized into quartiles with three cut-off points (25th, 50th, and 75th percentiles). The Cox regression model was used to calculate the hazard ratios of dysmenorrhea. Results: This study enrolled 296,078 women. The mean concentrations of yearly air pollutants were 28.2 (±12.6) ppb for nitric oxides (NOx), 8.91 (±7.93) ppb for nitric oxide (NO), 19.3 (±5.49) ppb for nitrogen dioxide (NO2), 0.54 (±0.18) ppm for carbon monoxide (CO), and 31.8 (±6.80) μg/m3 for PM2.5. In total, 12,514 individuals developed dysmenorrhea during the 12-year follow-up. Relative to women exposed to Q1 concentrations of NOx, women exposed to Q4 concentrations exhibited a significantly higher dysmenorrhea risk [adjusted hazard ratio (aHR)= 27.9, 95% confidence interval (CI) = 21.6–31.3]; similarly higher risk was found for exposure to NO (aHR = 16.7, 95% CI = 15.4–18.4) and NO2 (aHR = 33.1, 95% CI = 30.9–37.4). For CO, the relative dysmenorrhea risk in women with Q4 level exposure was 28.7 (95% CI = 25.4–33.6). For PM2.5, women at the Q4 exposure level were 27.6 times (95% CI = 23.1–29.1) more likely to develop dysmenorrhea than those at the Q1 exposure level. Conclusion: Our results showed that women would have higher dysmenorrhea incidences while exposure to high concentrations of NO, NO2, NOx, CO, and PM2.5.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cih Yang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Chieh Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cherry Yin-Yi Chang
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Wu-Huei Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Chest Medicine, China Medical University Hospital, Taichung, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Der Lin
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department Teaching, China Medical University Hospital, Taichung, Taiwan.,Department Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Y Hsu
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
47
|
Feng X, Luo J, Wang X, Xie W, Jiao J, Wu X, Fan L, Qin G. Association of exposure to ambient air pollution with ovarian reserve among women in Shanxi province of north China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116868. [PMID: 33735795 DOI: 10.1016/j.envpol.2021.116868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Air pollution has been an important risk factor for female reproductive health. However, epidemiological evidence of ambient air pollution on the predictor for ovarian reserve (antral follicle count, AFC) is deficient. We aim to comprehensively evaluate the association of long-term exposure to ambient air pollution with AFC among women of reproductive age in Shanxi of north China. 600 women with spontaneous menstrual cycle, not using controlled ovarian stimulation, were enrolled in the retrospective study. Two distinct periods of antral follicle development were designed as exposure windows. Generalized linear model was employed to estimate the change of AFC associated with exposure of atmospheric pollutants (SO2, NO2, PM10, PM2.5, CO and O3). Stratification analysis based on age (<30, ≥30 years), university degree (yes, no), years of exposure (2013-2016, 2017-2019) and duration of infertility (<2, 2-5, >5 years) along with two pollutants model were employed to further illustrate the association. We found every 10 μg/m3 increase in SO2 concentration level during the entire development stage of antral follicle was associated with a -0.01 change in AFC (95% confidence interval: -0.016, -0.002) adjusting for the confounders including age, BMI, parity and infertility diagnosis factors. The significant association of increased SO2 level with decreased AFC was particularly observed during the early transition from primary follicle to preantral follicle stage by 10 μg/m3 increase in SO2 exposure level with a -0.01 change (95% CI: -0.015, -0.002) in AFC. The negative association was pronounced among women aged ≥30 years old, and also significant in two pollutants model after adjusting the confounders. No significant associations between other air pollutants and AFC were observed. Our finding suggests that long-term exposure to air pollutant SO2 is associated with lower AFC, raising our concern that atmospheric SO2 exposure may have potential adverse impact on women ovarian reserve.
Collapse
Affiliation(s)
- Xiaoqin Feng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China; Department of Reproductive Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Jinhong Luo
- Shanxi Academy for Environmental Planning, Taiyuan, Shanxi, 030002, China
| | - Xiaocheng Wang
- Department of Medical Record and Statistics, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Wolong Xie
- Shanxi Academy for Environmental Planning, Taiyuan, Shanxi, 030002, China
| | - Jiao Jiao
- Shanxi Academy for Environmental Planning, Taiyuan, Shanxi, 030002, China
| | - Xiaohui Wu
- Shanxi Dadi Environment Investment Holdings Company, Ltd, Taiyuan, Shanxi, 030000, China
| | - Lingling Fan
- Department of Reproductive Medicine, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
48
|
Dai W, Shi H, Bu Z, Yu Y, Sun Z, Hu L, Sun YP. Ambient air pollutant exposure and in vitro fertilization treatment outcomes in Zhengzhou, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112060. [PMID: 33676052 DOI: 10.1016/j.ecoenv.2021.112060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To study the association between ambient air pollutant exposure during the follicular phase and in vitro fertilization (IVF) outcomes. DESIGN A single-center retrospective analysis. SETTING Henan Province, China. PATIENTS Patients (n = 6659) living in Zhengzhou, Henan Province in central China who underwent their first IVF cycle at the First Affiliated Hospital of Zhengzhou University between 2013 and 2019 were included for analysis. INTERVENTION None. MAIN OUTCOME MEASURE The relationships between PM2.5, PM10, and AQI (Air Quality Index) with IVF outcomes during the follicular phase (period I, 85 days before oocyte retrieval; period II, gonadotrophin start to oocyte retrieval). RESULTS Compared with the bottom tertile, exposure to the top PM2.5 and PM10 tertiles during period I was associated with decreased clinical pregnancy (PM2.5: adjusted odds ratio [OR], 0.838%, and 95% confidence interval [CI], 0.723 and 0.971; PM10: adjusted OR, 0.818%, and 95% CI, 0.705 and 0.950), and decreased live birth rate (PM2.5: adjusted odds ratio [OR], 0.852%, and 95% confidence interval [CI], 0.736 and 0.987; PM10: adjusted OR, 0.850%, and 95% CI, 0.733 and 0.986), and exposure to the top PM2.5 tertile during period II adversely affected clinical pregnancy and the live birth rate (adjusted OR, 0.824%, and 95% CI, 0.711 and 0.955; adjusted OR, 0.817%, and 95% CI, 0.706 and 0.945). Compared with the bottom PM10 tertile, exposure to the middle PM10 tertile in period II showed decreased clinical pregnancies and live births (adjusted OR, 0.844; 95% CI, 0.729 and 0.978, adjusted OR, 0.846; 95% CI, 0.731 and 0.979). The PM10 level during period II of the follicular phase tend to adversely affect live birth rate, but the tendency did not reach significance (P = 0.051). CONCLUSION Exposure to PM2.5 and PM10 before oocyte retrieval has an adverse effect on IVF outcomes. CAPSULE Exposure to PM2.5 and PM10 before oocyte retrieval has an adverse effect on IVF outcomes.
Collapse
Affiliation(s)
- Wei Dai
- Reproductive Medical Center, Henan Province Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China.
| | - Hao Shi
- Reproductive Medical Center, Henan Province Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China.
| | - Zhiqin Bu
- Reproductive Medical Center, Henan Province Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China.
| | - Yiping Yu
- Reproductive Medical Center, Henan Province Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China.
| | - Zhimin Sun
- Reproductive Medical Center, Henan Province Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China.
| | - Linli Hu
- Reproductive Medical Center, Henan Province Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China.
| | - Ying-Pu Sun
- Reproductive Medical Center, Henan Province Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan, China.
| |
Collapse
|
49
|
La Marca A, Spaggiari G, Domenici D, Grassi R, Casonati A, Baraldi E, Trenti T, Simoni M, Santi D. Elevated levels of nitrous dioxide are associated with lower AMH levels: a real-world analysis. Hum Reprod 2021; 35:2589-2597. [PMID: 32951044 DOI: 10.1093/humrep/deaa214] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Are there any associations between environmental pollutants and ovarian reserve, expressed by anti-Mullerian hormone (AMH) serum levels? SUMMARY ANSWER In this first real-world approach to demonstrate the relationship between air pollutants and serum AMH levels, adverse associations were observed for nitrogen dioxide (NO2) but not with particulate matter. WHAT IS KNOWN ALREADY In recent years, air pollution has emerged as a potential disrupter to the homeostasis of physiological hormones, possibly affecting human reproduction. Although the influence of age and smoking on AMH levels is largely accepted, the relationship between AMH and the environment has not currently been established. STUDY DESIGN, SIZE, DURATION A longitudinal, observational, retrospective, real-world study was carried out, including all AMH measurements performed in a single laboratory from January 2007 to October 2017. PARTICIPANTS/MATERIALS, SETTING, METHODS Serum AMH data were connected to patients' age and residential address, to include air pollution data after geo-localisation. The air pollution considered daily particulate matter (PM) and NO2 values. MAIN RESULTS AND THE ROLE OF CHANCE A total of 1463 AMH measurements were collected (mean 1.94 ng/ml, median 0.90 ng/ml). AMH was inversely related to patients' age in women older than 25 years (adjusted R-squared 0.120, P < 0.001), but not in those younger than 25 years (adjusted R-squared 0.068, P = 0.055). AMH levels were inversely related to environmental pollutants, such as PM10 (Rho = -0.088, P = 0.001), PM2.5 (Rho = -0.062, P = 0.021) and NO2 (Rho = -0.111, P < 0.001). After subdividing the dataset into quartiles for PM10 and PM2.5, the influence of age on AMH serum levels was found to be a stronger influence than that exerted by PM (P = 0.833 and P = 0.370, respectively). On the contrary, considering NO2 quartiles, higher AMH levels were observed in third quartile compared to fourth quartile, even after adjustment for age (P = 0.028), indicating a stronger influence of NO2 exposure on AMH serum levels. Considering an AMH cut-off of 0.3 ng/ml, a significant higher frequency of women with severe ovarian reserve reduction in the fourth quartile was shown only for NO2 (P = 0.010). LIMITATIONS, REASONS FOR CAUTION Several limitations should be underlined, such as the lack of information about work and life habits of each patient and the retrospective nature of the analysis performed on real-world data. WIDER IMPLICATIONS OF THE FINDINGS Although the genetic component is highly predictive for defining the ovarian reserve at birth, potentially modifiable environmental factors could influence the rate of decline in AMH and ovarian reserve during adulthood. STUDY FUNDINGCOMPETING INTEREST(S) Authors have neither funding nor competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Antonio La Marca
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Giorgia Spaggiari
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy
| | - Daniela Domenici
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Enrica Baraldi
- Department of Laboratory Medicine and Anatomy Pathology, Azienda USL of Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Anatomy Pathology, Azienda USL of Modena, Modena, Italy
| | - Manuela Simoni
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, Ospedale Civile of Baggiovara, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
50
|
Winter Air Pollution from Domestic Coal Fired Heating in Ulaanbaatar, Mongolia, Is Strongly Associated with a Major Seasonal Cyclic Decrease in Successful Fecundity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052750. [PMID: 33803108 PMCID: PMC7967474 DOI: 10.3390/ijerph18052750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
Pollution of the environment is increasing and threatens the health and wellbeing of adults and children around the globe. The impact of air pollution on pulmonary and cardiovascular disease has been well documented, but it also has a deleterious effect on reproductive health. Ulaanbaatar, the capital city of Mongolia, has one of the highest levels of air pollution in the world. During the extreme winters when temperatures routinely fall below -20 °C the level of air pollution can reach 80 times the WHO recommended safe levels. Heating mainly comes from coal, which is burned both in power stations, and in stoves in the traditional Ger housing. We studied the impact of air pollution on conception rates and birth outcomes in Ulaanbaatar using a retrospective analysis of health data collected from the Urguu Maternity hospital in Ulaanbaatar, Mongolia. Daily levels of SO2, NO2, PM10, and PM2.5 were collected from the government Air Quality Monitoring Stations in Ulaanbaatar for the same period as the study. In January, the month of highest pollution, there is a 3.2-fold decrease in conceptions that lead to the successfully delivered infants compared to October. The seasonal variations in conceptions resulting in live births in this study in Ulaanbaatar are shown to be 2.03 ± 0.20 (10-sigma) times greater than those in the Denmark/North America study of Wesselink et al., 2020. The two obvious differences between Ulaanbaatar and Europe/North America are pollution and temperature both of which are extreme in Ulaanbaatar. The extreme low temperature is mitigated by burning coal, which is the main source of domestic heat especially in the ger districts. This drives the level of pollution so the two are inextricably linked. Infants conceived in the months of June-October had the greatest cumulative PM2.5 pollution exposure over total gestation, yet these were also the pregnancies with the lowest PM2.5 exposure for the month of conception and three months prior to conception. The delivered-infant conception rate shows a markedly negative association with exposure to PM2.5 prior to and during the first month of pregnancy. This overall reduction in fecundity of the population of Ulaanbaatar is therefore a preventable health risk. It is of great consequence that the air pollution in Ulaanbaatar affects health over an entire lifespan including reproductive health. This could be remedied with a clean source of heating.
Collapse
|