1
|
Gunes S, Mahmutoglu AM, Hekim N. Epigenetics of nonobstructive azoospermia. Asian J Androl 2025; 27:311-321. [PMID: 39225008 DOI: 10.4103/aja202463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Nonobstructive azoospermia (NOA) is a severe and heterogeneous form of male factor infertility caused by dysfunction of spermatogenesis. Although various factors are well defined in the disruption of spermatogenesis, not all aspects due to the heterogeneity of the disorder have been determined yet. In this review, we focus on the recent findings and summarize the current data on epigenetic mechanisms such as DNA methylation and different metabolites produced during methylation and demethylation and various types of small noncoding RNAs involved in the pathogenesis of different groups of NOA.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| | - Asli Metin Mahmutoglu
- Department of Medical Biology, Medical Faculty, Yozgat Bozok University, Yozgat 66100, Türkiye
| | - Neslihan Hekim
- Department of Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun 55139, Türkiye
| |
Collapse
|
2
|
Chhetri KB. Insights on the binding mechanisms and structural dynamics of protamine-DNA interaction. Biophys Rev 2025. [DOI: 10.1007/s12551-025-01316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/09/2025] [Indexed: 05/04/2025] Open
|
3
|
Veselinović A, Zeković M, Paunović M, Šorak M, Ristić-Medić D, Vučić V. Zinc as a Modulator of Male Fertility: Interplay Between Lipid Metabolism, Oxidative Stress, and Sperm Function. Biol Trace Elem Res 2025:10.1007/s12011-025-04615-z. [PMID: 40237945 DOI: 10.1007/s12011-025-04615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Infertility is a multifaceted and pressing global health challenge, with male reproductive impairment playing a significant role in its overall burden. Zinc (Zn), a biologically indispensable trace element, is fundamental to spermatogenesis and overall male reproductive function. This narrative review explores the following aspects: (1) the mechanistic function of Zn in spermatogenesis, (2) the impact of oxidative stress on Zn status and male infertility, (3) the interplay between Zn and lipid metabolism in male reproductive physiology, (4) the relationship between Zn concentrations and semen parameters, and (5) the effects of Zn supplementation on sperm quality, alongside relevant institutional recommendations. The molecular pathways underlying Zn deficiency-induced enzymatic dysfunction, oxidative stress, and lipid homeostasis disruption remain partially elucidated, warranting further investigation into their interdependent effects on male infertility. While accumulating evidence suggests that Zn supplementation may have therapeutic potential in male infertility management, guidelines for its clinical application vary considerably across institutions and regions. To establish a clear and evidence-based framework for the function of Zn in male reproductive health, future research should prioritize determining of optimal Zn levels, the mechanistic links between Zn and lipid metabolism, and the long-term clinical outcomes of Zn supplementation in infertile populations.
Collapse
Affiliation(s)
- Aleksandra Veselinović
- Cognitive Neuroscience Department, Research and Development Institute "Life Activities Advancement Institute", Belgrade, Serbia.
- Department of Speech, Language and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, Belgrade, Serbia.
| | - Milica Zeković
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Marija Paunović
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Šorak
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center for Biomedically Assisted Reproduction, Clinic for Gynecology and Obstetrics, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Danijela Ristić-Medić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Vučić
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Chhetri KB. DNA compaction and chromatin dynamics: The role of cationic polyamines and proteins. Biochem Biophys Res Commun 2025; 756:151538. [PMID: 40058308 DOI: 10.1016/j.bbrc.2025.151538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
DNA compaction by polyaminic cations and proteins involves reversible condensation mechanisms. Polyamines, metal cations, and histone proteins are utilized to compact lengthy DNA chains. Chromatin organization begins with nucleosomal arrays, further compacted by linker histones. Various factors such as DNA methylation, histone modifications, and non-histone proteins influence chromatin structure. Posttranslational modifications like acetylation and methylation alter nucleosome shape. Polyamines induce significant phase transitions, while cationic surfactants drive conformational changes in DNA. In sperm cells, protamines replace histones, leading to dense DNA packing. Despite advances, unresolved aspects persist in understanding the dynamic regulation of chromatin structure, highlighting avenues for future research. An overview of current knowledge and cutting-edge discoveries in the field of reversible DNA compaction induced by charged polyamines and histone proteins is presented in this work, highlighting emerging mechanisms of chromatin compaction and their relevance to cellular function, disease, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal.
| |
Collapse
|
5
|
Corsini C, Pozzi E, Salonia A. Genetics of male infertility. Curr Opin Urol 2025:00042307-990000000-00239. [PMID: 40181750 DOI: 10.1097/mou.0000000000001287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW The aim of this study was to outline the role of genetic abnormalities, including chromosomal anomalies, single-gene mutations, epigenetic changes, and mitochondrial DNA (mtDNA) defects, in male factor infertility. RECENT FINDINGS Recent advances in genetic research have brought incredible new perspectives to understanding male infertility, thanks in large part to next-generation sequencing. Chromosomal abnormalities like Klinefelter syndrome and Y chromosome microdeletions remain key contributors, with new insights into their variable presentations and impact on sperm retrieval. Advanced discoveries in genes such as CFTR and ADGRG2 have reframed our approach to conditions like CBAVD, while epigenetic disruptions and mitochondrial DNA mutations are revealing previously unrecognized mechanisms behind impaired spermatogenesis and sperm motility. Rare copy number variations and genetic syndromes like Kallmann and Noonan further underscore the complex interplay between systemic disorders and male fertility. SUMMARY The field of genetic infertility is rapidly evolving, offering new insights into the molecular mechanisms behind impaired spermatogenesis and fertility. These findings highlight the importance of integrating genetic testing into infertility evaluations to guide personalized management strategies.
Collapse
Affiliation(s)
- Christian Corsini
- University Vita-Salute San Raffaele
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Edoardo Pozzi
- University Vita-Salute San Raffaele
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Salonia
- University Vita-Salute San Raffaele
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Firouzabadi AM, Henkel R, Tofighi Niaki M, Fesahat F. Adverse Effects of Nicotine on Human Sperm Nuclear Proteins. World J Mens Health 2025; 43:291-303. [PMID: 39028130 PMCID: PMC11937351 DOI: 10.5534/wjmh.240072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 07/20/2024] Open
Abstract
The effects of smoking on human health have long been documented. However, only a few studies have highlighted the direct effects of nicotine on sperm function. Nicotine, as a chemical compound found in tobacco, has been shown to modulate different aspects of spermatogenesis and sperm functions. Nicotine can lead to a reduction in the number of sperm, their motility and functionality. It can change the molecular expressions involved in sperm function, including genes encoding sperm nuclear proteins. The most important nuclear proteins that play a critical role in sperm function are known as H2B histone family, member W, testis-specific (H2BFWT), transition protein 1 (TNP1), transition protein 2 (TNP2), protamine-1 (PRM1), and protamine-2 (PRM2). These proteins are involved in sperm chromatin condensation, which in turn affects fertilization and embryonic development. Any alteration in the expression of these genes due to nicotine exposure/usage may lead to adverse implications in couples' fertility and the health of future generations. Since research in this area is still relatively new, it underscores the importance of understanding the potential side effects of environmental factors such as nicotine on reproductive health.
Collapse
Affiliation(s)
- Amir Masoud Firouzabadi
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma Ltd., Berkshire, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Maryam Tofighi Niaki
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
7
|
Restrepo JC, Giraldo A, Zapata K, Rojas M, Restrepo G, Usuga A. Relationship of Breed and Seminal Quality With Protamination and DNA Integrity of Bovine Spermatozoa. Reprod Domest Anim 2025; 60:e70066. [PMID: 40277013 DOI: 10.1111/rda.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
During spermatogenesis, most histones are replaced by protamines in the process known as protamination. Protamine deficiency is one of the factors that contribute to DNA instability and damage, which can affect the fertility of bulls. The objective of this study was to evaluate the relationship of breed and seminal quality with the protamination and DNA integrity of bovine sperm. A total of 30 semen samples from five Guzerat bulls and five Blanco Orejinegro (BON) bulls were used. Motility and kinematics were evaluated with a CASA system, morphology by eosin-nigrosin staining and membrane integrity with the HOST test. DNA integrity, viability and protamination deficiency were assessed by flow cytometry (IP/CMA3). Linear models, correlation analysis and comparison of means by Tukey test were performed. The proportion of viable protaminated sperm (CMA3-negative) for BON and Guzerat was 78.9% ± 1.4% and 73.8% ± 3.1%, respectively (p < 0.05). DNA fragmentation was 0.60% ± 0.06% for BON and 0.34% ± 0.04% for Guzerat (p < 0.05) and was negatively correlated with protamination (-0.18, p < 0.01). Positive correlations of protaminated viable spermatozoa with total motility (0.68), progressive motility (0.66), membrane integrity (0.52), rapid sperm (0.71), average path velocity (0.44), linear (0.34) and curvilinear (0.54) velocities were found (p < 0.001). Protamination of bovine sperm correlates with semen quality and is influenced by bull breed.
Collapse
Affiliation(s)
- Juan Camilo Restrepo
- Faculty of Veterinary Medicine and Animal Sciences, Universidad de CES, Medellín, Colombia
| | - Alfredo Giraldo
- Faculty of Veterinary Medicine and Animal Sciences, Universidad de CES, Medellín, Colombia
| | - Kelly Zapata
- Faculty of Sciences, Universidad Nacional de Colombia, Medellín, Colombia
| | - Mauricio Rojas
- Cellular Immunology and Immunogenetics Group, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
- Flow Cytometry Unit, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Giovanni Restrepo
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellín, Colombia
| | - Alexandra Usuga
- Faculty of Veterinary Medicine and Animal Sciences, Universidad de CES, Medellín, Colombia
- Biogenesis Research Group, Faculty of Agricultural Sciences, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
8
|
Zhang Y, Song JY, Sun ZG. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol 2025; 132:108832. [PMID: 39778664 DOI: 10.1016/j.reprotox.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities. Among these factors, we have discussed heavy metals (including Zinc, Cadmium, Arsenic, Copper), phthalates, electromagnetic radiation, and temperature in detail. Notably, aberrations in DNA methylation are closely associated with various symptoms of male infertility, and histone modifications and chromatin remodeling are essential for sperm maturation and function. By synthesizing existing literature and experimental data, this narrative review investigates how environmental factors influence male reproductive health through epigenetic mechanisms, thus providing new theoretical foundations and practical guidelines for the early diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Yi Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing-Yan Song
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhen-Gao Sun
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
9
|
Juárez J, Gutiérrez A, Anchiraico L, Evangelista-Vargas S, Ugarelli A, Morrell JM, Santiani A. Cryopreservation-Induced Changes in Protamine Levels and DNA Fragmentation in Alpaca Spermatozoa. Reprod Domest Anim 2025; 60:e70031. [PMID: 40040334 DOI: 10.1111/rda.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/28/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
Cryopreservation is known to destabilise spermatozoa and is associated with deficiencies in protamine levels and increased DNA fragmentation, which can reduce fertility in various species. The objective of this study was to evaluate the impact of cryopreservation on protamine levels and DNA fragmentation in alpaca spermatozoa. A total of 108 testicles/epididymides were collected from a slaughterhouse and sperm were recovered from the cauda epididymis. Only samples meeting the criteria of > 10 g in weight, > 3 cm in length, > 30% motility, and > 50 million spermatozoa/mL were processed. Sixty samples (n = 60) were suitable for cryopreservation: 30 were used to assess protamine levels, and 30 to evaluate DNA fragmentation. Assessments were conducted both before and after cryopreservation using imaging flow cytometry. Protamine levels were assessed with chromomycin A3 (CMA3, 0.25 mg/mL), where fluorescence inversely correlates with protamination levels. The TUNEL assay was used to analyse DNA fragmentation, following fixation with 0.4% formaldehyde and permeabilisation with 0.8% Triton X-100. Results showed a significant decrease in CMA3 mean fluorescence after cryopreservation (288.19 ± 145.53 mFL vs. 68.54 ± 51.25 mFL, p < 0.05) and an increase in DNA fragmentation (2.98 ± 2.39 vs. 9.45 ± 15.43, p < 0.05). In conclusion, cryopreservation decreases CMA3 fluorescence, related to a possible increase in protamination, and increases DNA fragmentation in alpaca spermatozoa.
Collapse
Affiliation(s)
- Javier Juárez
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Universidad Nacional Mayor de san Marcos (UNMSM), Lima, Peru
| | - Alfredo Gutiérrez
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Universidad Nacional Mayor de san Marcos (UNMSM), Lima, Peru
| | - Luis Anchiraico
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Universidad Nacional Mayor de san Marcos (UNMSM), Lima, Peru
| | | | | | - Jane M Morrell
- Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alexei Santiani
- Laboratory of Animal Reproduction, Faculty of Veterinary Medicine, Universidad Nacional Mayor de san Marcos (UNMSM), Lima, Peru
| |
Collapse
|
10
|
Falero C, Huanca W, Barrios-Arpi L, Lira-Mejía B, Ramos-Coaguila O, Torres E, Ramos E, Romero A, Ramos-Gonzalez M. Oxidative and Molecular-Structural Alterations of Spermatozoa in Swine and Ram Exposed to the Triazole Ipconazole. TOXICS 2025; 13:176. [PMID: 40137503 PMCID: PMC11945538 DOI: 10.3390/toxics13030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Triazole pesticides are widely used throughout the world, but their abuse causes toxic effects in non-targeted organisms. In the present study, the cytotoxic effect of the triazole ipconazole was evaluated in porcine and ram spermatozoa. Ipconazole significantly reduced sperm viability, increased ROS levels, altered catalase and SOD enzyme activity, and caused alterations in the molecular mRNA expression of structural biomarkers (PRM1, ODF2, AKAP4, THEG, SPACA3 and CLGN) related to fertility in males, as well as the overexpression of BAX (cell death) and ROMO1 (oxidative stress) mRNA. Our results indicate that the fungicide triazole is involved in cellular, enzymatic and molecular alteration of porcine and ram spermatozoa, and is possibly a factor in the development of infertility in male mammals.
Collapse
Affiliation(s)
- Cristian Falero
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru; (C.F.); (O.R.-C.)
| | - Wilfredo Huanca
- Reproduction Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru;
| | - Luis Barrios-Arpi
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru; (L.B.-A.); (B.L.-M.)
| | - Boris Lira-Mejía
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru; (L.B.-A.); (B.L.-M.)
| | - Olger Ramos-Coaguila
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru; (C.F.); (O.R.-C.)
| | - Edith Torres
- Reproduction Laboratory, School of Veterinary and Zootecnic Medicine, Jorge Basadre Grohmann University, Tacna 23001, Peru;
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain; (E.R.); (A.R.)
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain; (E.R.); (A.R.)
| | - Mariella Ramos-Gonzalez
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru; (C.F.); (O.R.-C.)
| |
Collapse
|
11
|
Gao X, He H, Zheng Q, Chen S, Wei Y, Zhang T, Wang Y, Wang B, Huang D, Zhang S, Zhang S, Zhai J. Protective effect of trehalose on sperm chromatin condensation failure and semen quality decline in BDE-209-exposed mice. Food Chem Toxicol 2025; 196:115168. [PMID: 39657870 DOI: 10.1016/j.fct.2024.115168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
BDE-209 exposure induced male reproductive toxicity with sperm quality decline. However, the role of autophagy in this was unclear. The purpose was to evaluate the protective effect and its potential mechanism of trehalose (Tre, autophagy inducer) on reproductive damage during spermiogenesis induced by BDE-209. We used 2% w/v Tre and 75 mg/kg/d BDE-209 cotreated mice for 42 days. GC-2 spd cells were cotreated with Tre, chloroquine (CQ, inhibition of autophagic flux), compound C (CC, AMPK inhibitor), and BDE-209. Tre intake significantly recovered decrease in sexual organ ratio and poor sperm quality in BDE-209-exposed mice. Supplementation with Tre rescued sperm head malformation by improving aberrant histone-protamine exchange in BDE-209-exposed mice. However, Tre intake couldn't restore the acrosome biogenesis. In addition, Tre supplementation improved testicular damage induced by BDE-209. BDE-209 blocked autophagic flux with increased P62 and LC3BⅡ/Ⅰ levels. Mechanistically, CQ treatment aggravated elevation of P62 and LC3BⅡ/Ⅰ levels induced by BDE-209, otherwise, CC and Tre treatments inhibited the rise in p-AMPK, p-ULK1, P62 and LC3BⅡ/Ⅰ levels induced by BDE-209. Tre supplementation improved reproductive injury in BDE-209-exposed mice by regulating autophagic flow via AMPK-ULK1 signaling pathways, which providing a new theoretical basis and possible therapeutic targets for male reproductive toxicity.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China; Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, 266033, China
| | - Qi Zheng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Siju Chen
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yi Wang
- Department of Biological Engineering, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Bo Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Dake Huang
- Department of Microbiology and Parasitology, School of Basic Medicine, Anhui Medical University, 230032, Hefei, China
| | - Shengquan Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Sumei Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
12
|
Kruse A, Schneider S, Merges GE, Fröbius AC, Forné I, Imhof A, Schorle H, Steger K. An aberrant protamine ratio is associated with decreased H4ac levels in murine and human sperm. Mol Hum Reprod 2025; 31:gaaf003. [PMID: 39999014 DOI: 10.1093/molehr/gaaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Protamine 2 (Prm2/PRM2), together with Protamine 1 (Prm1/PRM1), constitute the two protamines found in both murine and human sperm. During spermiogenesis in haploid male germ cells, chromatin undergoes significant condensation, a phase in which most histones are replaced by a species-specific ratio of these two protamines. Altered PRM1/PRM2 ratios are associated with subfertility and infertility in both male mice and men. Notably, during histone-to-protamine exchange, a small fraction of histones remains (ranging from 1% to 15%) bound to DNA. The regulatory roles of these residual histones, governed by post-translational modifications (PTMs), play a pivotal role in spermatogenesis, particularly in chromatin remodelling and epigenetic regulation of genes during sperm differentiation or even in early embryogenesis. In this study, utilizing a Prm2-deficient mouse model and conducting an analysis of sperm samples from men exhibiting either normozoospermia or atypical spermiograms, we observed alterations in the methylation and acetylation profiles of histones H3 and H4. Subsequent in-depth analysis revealed that discrepancies in protamine ratios do not significantly influence the PTMs of histones in testicular sperm. In murine epididymal sperm, altered protamine ratios are associated with reduced acetylation of histone H4 (H4ac), a phenomenon similarly observed in ejaculated sperm from men. In particular, H4K5ac and H4K12ac were identified as the two modifications that appear to decrease as a result of reduced Prm2/PRM2 levels. Our findings reveal that Protamine 2 is necessary for the maintenance of specific histone PTMs, such as acetylation, which is essential for proper spermatogenesis and particularly for chromatin remodelling.
Collapse
Affiliation(s)
- Alexander Kruse
- Department of Urology, Paediatric Urology and Andrology, Section Molecular Andrology, Biomedical Research Centre of the Justus-Liebig University Giessen, Giessen, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
- Bonn Technology Campus, Core Facility 'Gene-Editing', University Hospital Bonn, Bonn, Germany
| | - Gina Esther Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Andreas Christian Fröbius
- Department of Urology, Paediatric Urology and Andrology, Section Molecular Andrology, Biomedical Research Centre of the Justus-Liebig University Giessen, Giessen, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Centre (BMC), Ludwig-Maximilians-University, Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Centre (BMC), Ludwig-Maximilians-University, Martinsried, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Klaus Steger
- Department of Urology, Paediatric Urology and Andrology, Section Molecular Andrology, Biomedical Research Centre of the Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
13
|
Ozsait-Selcuk B, Bulgurcuoglu-Kuran S, Sever-Kaya D, Coban N, Aktan G, Kadioglu A. Sperm RNA quantity and PRM1, PRM2 , and TH2B transcript levels reflect sperm characteristics and early embryonic development. Asian J Androl 2025; 27:76-83. [PMID: 39187928 PMCID: PMC11784947 DOI: 10.4103/aja202452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 08/28/2024] Open
Abstract
ABSTRACT Spermatozoa have a highly complex RNA profile. Several of these transcripts are suggested as biomarkers for male infertility and contribute to early development. To analyze the differences between sperm RNA quantity and expression of protamine ( PRM1 and PRM2 ) and testis-specific histone 2B ( TH2B ) genes, spermatozoa from 33 patients who enrolled in assisted reproduction treatment (ART) program were analyzed. Sperm RNA of teratozoospermic (T), oligoteratozoospermic (OT), and normozoospermic (N) samples was extracted, and the differences in transcript levels among the study groups were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The correlations of total RNA per spermatozoon and the expression of the transcripts were evaluated in relation to sperm characteristics and preimplantation embryo development. The mean (±standard deviation) RNA amount per spermatozoon was 28.48 (±23.03) femtogram in the overall group and was significantly higher in the OT group than that in N and T groups. Total sperm RNA and gene expression of PRM1 and PRM2 genes were related to preimplantation embryo development and developmental arrest. Specific sperm characteristics were correlated with the expressions of PRM1 , PRM2 , or TH2B genes. We conclude that the sperm RNA amount and composition are important factors and might influence early embryonic development and also differ in different cases of male infertility.
Collapse
Affiliation(s)
- Bilge Ozsait-Selcuk
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Sibel Bulgurcuoglu-Kuran
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Dilek Sever-Kaya
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye
- Clinical Nutrition and Microbiota Research Laboratory, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Neslihan Coban
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Gulsen Aktan
- Division of Andrology, Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| | - Ates Kadioglu
- Division of Andrology, Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Türkiye
| |
Collapse
|
14
|
Martínez-Pastor F, Gómez-Giménez B, Soriano-Úbeda C. Disulfide Bridges Assessment in the Sperm Chromatin by Flow Cytometry. Methods Mol Biol 2025; 2897:497-506. [PMID: 40202655 DOI: 10.1007/978-1-0716-4406-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The evaluation of the status of sperm chromatin is essential to deepen the male fertility study, but, despite its proven impact on fertility and the embryo, it is not routinely analyzed in andrology labs. One of the factors related to sperm functionality is the stability that disulfide bonds (DB) provide to the chromatin, which can be indirectly studied by analyzing the reduction of DB to free thiols. Monobromobimane (mBBr) is a fluorescent dye specific for the study of DB. It is a rapid and highly specific technique, easy to perform, and repeatable, and the total DB can be calculated from the direct fluorescent signal of free thiols. This chapter summarizes how to perform the mBBr technique in spermatozoa of multiple mammal species.
Collapse
Affiliation(s)
- Felipe Martínez-Pastor
- Department of Molecular Biology (Cell Biology), University of León, León, Spain
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, León, Spain
| | - Belén Gómez-Giménez
- Department of Molecular Biology (Cell Biology), University of León, León, Spain
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, León, Spain
| | - Cristina Soriano-Úbeda
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, León, Spain.
- Department of Veterinary Medicine, Surgery, and Anatomy, University of León, León, Spain.
| |
Collapse
|
15
|
Chai S, Kang J, Wu T, Zheng Y, Zhou X, Xu S, Ren W, Yang G. Coevolution and Adaptation of Transition Nuclear Proteins and Protamines in Naturally Ascrotal Mammals Support the Black Queen Hypothesis. Genome Biol Evol 2024; 16:evae260. [PMID: 39688669 DOI: 10.1093/gbe/evae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Protamines (PRMs) and transition nuclear proteins (TNPs) are two key classes of sperm nuclear basic proteins that regulate chromatin reorganization and condensation in the spermatozoon head, playing crucial roles in mammalian spermatogenesis. In scrotal mammals, such as humans, cryptorchidism, the failure of the testes to descend into the scrotal sac is generally associated with higher rates of defective spermatozoon quality and function. However, ascrotal mammals, such as cetaceans, with naturally undescended testes, produce normal spermatozoa similar to their scrotal counterparts. This study investigates the evolutionary pattern and functional changes in PRMs and TNPs to explore the potential molecular mechanisms underlying spermatogenesis in naturally ascrotal mammals. Although we found a conserved genomic arrangement for PRM and TNP genes across mammals, the coevolutionary loss of intact PRM2 and TNP2 was observed in several species, correlating significantly with diverse testicular positions. Notably, in cetaceans, which lack intact PRM2 and TNP2, we detected enhanced thermostability and DNA binding in PRM1, along with superior DNA repair capability in TNP1. These findings suggest that gene loss of PRM2 and TNP2, combined with functional enhancements in PRM1 and TNP1 proteins, evolved in response to physiological challenges posed by natural cryptorchidism in most ascrotal lineages. This evolutionary strategy enhances chromatin condensation efficiency and promotes DNA repair during spermatogenesis in natural cryptorchid mammals, supporting the Black Queen Hypothesis.
Collapse
Affiliation(s)
- Simin Chai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Jieqiong Kang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Tianzhen Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yu Zheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xu Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Ansari Z, Maleki MH, Roohy F, Ebrahimi Z, Shams M, Mokaram P, Zamanzadeh Z, Hosseinzadeh Z, Koohpeyma F, Dastghaib S. "Protective effects of artichoke extract and Bifidobacterium longum on male infertility in diabetic rats". Biochem Biophys Rep 2024; 40:101834. [PMID: 39386078 PMCID: PMC11462217 DOI: 10.1016/j.bbrep.2024.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Diabetes is a major global health concern and plays a significant role in male infertility and hormonal abnormalities by altering the tissue structure of spermatogenic tubes and decreasing the number of spermatogonia. This study investigated the effect of artichoke (Cynara scolymus L) hydroalcoholic extract and Bifidobacterium longum probiotic on sexual hormones, oxidative stress, apoptosis pathway, and histopathological changes in testicular tissues of diabetic rats to find an adjuvant therapy to manage the infertility complications of diabetes. Methods In this experiment, 96 male-rats were randomly selected from eight groups. Control, Sham (normal saline), DM group (IP injected with 60 mg/kg STZ), Cynara (400 mg/kg hydroalcoholic extract of Cynara scolymus L), BBL (received 1 × 109 CFU/ml/day Bifidobacterium longum), DM + Cynara, DM + BBL, and DM + Cynara + BBL groups. After 48 days of orally gavage, serum level of FBS (fasting blood sugar), Malondi-aldehyde (MDA), Total-Anti-Oxidant Capacity (TAC), FSH (Follicle-stimulating hormone), LH (Luteinizing hormone), Testosterone, Testis mRNA-expressions of Protamin (prm1), BCL2, and Caspase-9 genes, as well as stereological changes were measured. Results In comparison to the diabetic group, the hydroalcoholic extract of Cynara scolymus L combined with the probiotic Bifidobacterium longum resulted in a substantial decrease in FBS (p < 0.001) and MDA(p < 0.05) concentrations, and the expression of the Caspase-9 gene (1.33-fold change). In addition, serum levels of TAC, LH, FSH, Testosterone were significantly increased (p < 0.05). mRNA expression of protamine (p = 0.016) and BCL2 (0.72-fold change) were detected. Furthermore, in comparison with diabetic rats, the Cynara scolymus L-and Bifidobacterium longum-treated groups showed a significant increase in the number of sexual lineage cells, total weight, sperm count, motility, normal morphology, volume of the testis, and volume and length of seminiferous tubules (p < 0.05). Conclusion The findings demonstrated that Cynara scolymus L extract and Bifidobacterium longum supplement had great therapeutic potential, including antioxidant, anti-apoptotic, anti-diabetic, fertility index improvement, and sex hormone modulators.
Collapse
Affiliation(s)
- Zahra Ansari
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| | - Mohammad Hasan Maleki
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Roohy
- Department of Genetics, Islamic Azad University, Kazerun, Iran
| | - Zahra Ebrahimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Pooneh Mokaram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| | - Zahra Hosseinzadeh
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| |
Collapse
|
17
|
Blagojević J, Stanimirović Z, Glavinić U, Vakanjac S, Radukić Ž, Mirilović M, Maletić M. Impact of Supplemented Nutrition on Semen Quality, Epigenetic-Related Gene Expression, and Oxidative Status in Boars. Animals (Basel) 2024; 14:3297. [PMID: 39595349 PMCID: PMC11591274 DOI: 10.3390/ani14223297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates the impact of nutritional supplementation on semen quality, epigenetic-related gene expression, and oxidative status in boars. Thirty boars were divided into a control group and a treatment group receiving Espermaplus (a supplement containing various vitamins, amino acids, omega-3 fatty acids, and trace elements with antioxidant properties). The experiment was performed for 12 weeks. Semen samples were collected at four moments: before starting the supplementation and after 3 weeks, 8 weeks, and 12 weeks. Spermatozoa concentration, motility, and kinematics were assessed using the CASA system. The measured parameters included curvilinear velocity-VCL; straight-line velocity-VSL; average path velocity-VAP; curvilinear distance-DCL; straight line distance-DSL; distance of average path-DAP; amplitude of lateral head displacement-ALH; beat-cross frequency-BCF; and head activity-HAC. Moreover, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in seminal plasma, as well as the concentration of thiobarbituric acid reactive substances (TBARS), were measured to assess oxidative stress levels in boar's seminal plasma. The expression of epigenetic-related genes such as Protamine 1 (Prm1), Protamine 2 (Prm2), and DNA-methyltransferase 3 alpha (Dnmt3a) were evaluated using real-time PCR. The treated group showed a significant increase in spermatozoa concentration (p = 0.003), total motility (p = 0.001), and progressive motility (p = 0.002) after 12 weeks compared to the control group. Kinematic parameters such as VCL, VSL, and VAP were also significantly higher (p < 0.001; p = 0.028; p < 0.001, respectively) in the treated group by the end of the experiment. SOD and GPx activities were consistently higher (p < 0.01; p < 0.001, respectively) in the treated group, indicating enhanced antioxidative capacity. TBARS levels as an indicator of lipid peroxidation and oxidative damage were significantly lower (p < 0.01) in the treated group by the end of the study. Significant changes were observed in the expression of epigenetic-related genes. The supplementation of boar diets with Espermaplus significantly improved semen quality, reduced oxidative stress, and had an impact on the expression levels of certain epigenetic-related genes, suggesting that dietary antioxidants and bioactive compounds can enhance boar semen.
Collapse
Affiliation(s)
- Jovan Blagojević
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.B.)
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.B.)
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.B.)
| | - Slobodanka Vakanjac
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia (M.M.)
| | - Željko Radukić
- Animal Husbandry and Veterinary Centre “Velika Plana”, 11320 Velika Plana, Serbia
| | - Milorad Mirilović
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Maletić
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia (M.M.)
| |
Collapse
|
18
|
Dodd AR, Luense LJ. Contribution of the paternal histone epigenome to the preimplantation embryo. Front Cell Dev Biol 2024; 12:1476312. [PMID: 39600339 PMCID: PMC11588740 DOI: 10.3389/fcell.2024.1476312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The paternal germline contains a plethora of information that extends beyond DNA. Packaged within the sperm cell is a wealth of epigenetic information, including DNA methylation, small RNAs, and chromatin associated histone proteins and their covalently attached post-translational modifications. Paternal chromatin is particularly unique, as during the process of spermatogenesis, nearly all histones are evicted from the genome with only a small percentage retained in the mature sperm cell. This paternal epigenetic information is encoded into chromatin during spermatogenesis and is delivered to the oocyte upon fertilization. The exact role of these paternally contributed histones to the embryo remains to be fully understood, however recent studies support the hypothesis that retained sperm histones act as a mechanism to poise genes for early embryonic gene activation. Evidence from multiple mammalian species suggests sperm histones are present at loci that are important for preimplantation embryo chromatin dynamics and transcriptional regulation. Furthermore, abnormal sperm histone epigenomes result in infertility, poor embryogenesis, and offspring development. This mini-review describes recent advances in the field of paternal histone epigenetics and their potential roles in preimplantation embryo development.
Collapse
Affiliation(s)
- Ashton R. Dodd
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Lacey J. Luense
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Genetics and Genomics Interdisciplinary Program, Texas A&M University, College Station, TX, United States
| |
Collapse
|
19
|
Sengul M, Hekim N, Asci R, Gunes S. The impact of antioxidants on antioxidant capacity, DNA fragmentation, and chromatin quality in subfertile men: a randomized clinical trial study. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240211. [PMID: 39536246 PMCID: PMC11554325 DOI: 10.1590/1806-9282.20240211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/24/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This randomized clinical trial study aims to investigate the effects of antioxidant food supplementation on the total antioxidant capacity of seminal plasma, sperm DNA fragmentation, sperm chromatin quality, and semen parameters. METHODS In this study, a total of 48 subfertile men with moderate physical activity were included. Group 1 was recommended to use the antioxidant supplements, while antioxidant food supplements were not given to Group 2. Total antioxidant capacity, sperm DNA fragmentation, sperm chromatin structure, hormone levels, physical activities, and semen parameters were evaluated before and after treatment. Total antioxidant capacity, sperm DNA fragmentation, and sperm chromatin structure were assessed using ELISA, transferase dUTP nick end labeling, and aniline blue staining, respectively. RESULTS Sperm DNA fragmentation (p=0.003) and histone/protamine ratio (p<0.001) were significantly decreased in the patients receiving antioxidant treatment. There was no statistical difference in the total antioxidant capacity values of the post-treatment groups. CONCLUSION Antioxidant therapy seems to improve sperm DNA fragmentation and histone/protamine ratios in subfertile patients. CLINICAL TRIAL REGISTRATION NUMBER NCT06042738.
Collapse
Affiliation(s)
- Mesut Sengul
- Ondokuz Mayıs University, Faculty of Medicine, Department of Urology – Samsun, Turkey
| | - Neslihan Hekim
- Ondokuz Mayıs University, Faculty of Medicine, Department of Medical Biology – Samsun, Turkey
- Ondokuz Mayıs University, Graduate Institute, Department of Molecular Medicine – Samsun, Turkey
| | - Ramazan Asci
- Ondokuz Mayıs University, Faculty of Medicine, Department of Urology – Samsun, Turkey
- Ondokuz Mayıs University, Graduate Institute, Department of Molecular Medicine – Samsun, Turkey
| | - Sezgin Gunes
- Ondokuz Mayıs University, Faculty of Medicine, Department of Medical Biology – Samsun, Turkey
- Ondokuz Mayıs University, Graduate Institute, Department of Molecular Medicine – Samsun, Turkey
| |
Collapse
|
20
|
Dutta S, Sengupta P, Mottola F, Das S, Hussain A, Ashour A, Rocco L, Govindasamy K, Rosas IM, Roychoudhury S. Crosstalk Between Oxidative Stress and Epigenetics: Unveiling New Biomarkers in Human Infertility. Cells 2024; 13:1846. [PMID: 39594595 PMCID: PMC11593296 DOI: 10.3390/cells13221846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The correlation between epigenetic alterations and the pathophysiology of human infertility is progressively being elucidated with the discovery of an increasing number of target genes that exhibit altered expression patterns linked to reproductive abnormalities. Several genes and molecules are emerging as important for the future management of human infertility. In men, microRNAs (miRNAs) like miR-34c, miR-34b, and miR-122 regulate apoptosis, sperm production, and germ cell survival, while other factors, such as miR-449 and sirtuin 1 (SIRT1), influence testicular health, oxidative stress, and mitochondrial function. In women, miR-100-5p, miR-483-5p, and miR-486-5p are linked to ovarian reserve, PCOS, and conditions like endometriosis. Mechanisms such as DNA methylation, histone modification, chromatin restructuring, and the influence of these non-coding RNA (ncRNA) molecules have been identified as potential perturbators of normal spermatogenesis and oogenesis processes. In fact, alteration of these key regulators of epigenetic processes can lead to reproductive disorders such as defective spermatogenesis, failure of oocyte maturation and embryonic development alteration. One of the primary factors contributing to changes in the key epigenetic regulators appear to be oxidative stress, which arises from environmental exposure to toxic substances or unhealthy lifestyle choices. This evidence-based study, retracing the major epigenetic processes, aims to identify and discuss the main epigenetic biomarkers of male and female fertility associated with an oxidative imbalance, providing future perspectives in the diagnosis and management of infertile couples.
Collapse
Affiliation(s)
- Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Sandipan Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Ahmed Ashour
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Kadirvel Govindasamy
- ICAR-Agricultural Technology Application Research Institute, Guwahati 781017, India
| | | | | |
Collapse
|
21
|
Sanovec O, Frolikova M, Kraus V, Vondrakova J, Qasemi M, Spevakova D, Simonik O, Moritz L, Caswell DL, Liska F, Ded L, Cerny J, Avidor-Reiss T, Hammoud SS, Schorle H, Postlerova P, Steger K, Komrskova K. Protamine 2 deficiency results in Septin 12 abnormalities. Front Cell Dev Biol 2024; 12:1447630. [PMID: 39524225 PMCID: PMC11543461 DOI: 10.3389/fcell.2024.1447630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
There is a well-established link between abnormal sperm chromatin states and poor motility, however, how these two processes are interdependent is unknown. Here, we identified a possible mechanistic insight by showing that Protamine 2, a nuclear DNA packaging protein in sperm, directly interacts with cytoskeletal protein Septin 12, which is associated with sperm motility. Septin 12 has several isoforms, and we show, that in the Prm2 -/- sperm, the short one (Mw 36 kDa) is mis-localized, while two long isoforms (Mw 40 and 41 kDa) are unexpectedly lost in Prm2 -/- sperm chromatin-bound protein fractions. Septin 12 co-immunoprecipitated with Protamine 2 in the testicular cell lysate of WT mice and with Lamin B1/2/3 in co-transfected HEK cells despite we did not observe changes in Lamin B2/B3 proteins or SUN4 expression in Prm2 -/- testes. Furthermore, the Prm2 -/- sperm have on average a smaller sperm nucleus and aberrant acrosome biogenesis. In humans, patients with low sperm motility (asthenozoospermia) have imbalanced histone-protamine 1/2 ratio, modified levels of cytoskeletal proteins and we detected retained Septin 12 isoforms (Mw 40 and 41 kDa) in the sperm membrane, chromatin-bound and tubulin/mitochondria protein fractions. In conclusion, our findings present potential interaction between Septin 12 and Protamine 2 or Lamin B2/3 and describe a new connection between their expression and localization, contributing likely to low sperm motility and morphological abnormalities.
Collapse
Affiliation(s)
- Ondrej Sanovec
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Veronika Kraus
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Jana Vondrakova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Maryam Qasemi
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Daniela Spevakova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Lindsay Moritz
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Drew Lewis Caswell
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, United States
| | - Frantisek Liska
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Lukas Ded
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Jiri Cerny
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH, United States
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Klaus Steger
- Clinic of Urology, Paediatric Urology and Andrology, Molecular Andrology, Justus Liebig University of Giessen, Giessen, Germany
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Czechia
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
22
|
Kaya C, Esin B, Akar M, Can C, Çevik M. Investigation of the efficacy of different cryoprotectants in the freezing of testicular tissue and epididymal sperm: Spermatological parameters, tissue viability and PARP-1 gene expression. Cryobiology 2024; 117:104982. [PMID: 39427698 DOI: 10.1016/j.cryobiol.2024.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The presented study covers testicular tissue and epididymal spermatozoa cryopreservation processes in bulls and aims to investigate the effects of these applications on spermatological parameters, cell viability in testicular tissue, and the expression of the PARP-1 gene, a DNA repair enzyme. Testes of 20 bulls over 2 years old, slaughtered in a slaughterhouse, were used in the study. After spermatological evaluations, the semen obtained from the cauda epididymis was frozen in liquid nitrogen vapor according to the straw method and stored in liquid nitrogen (-196 °C). Testicular tissue pieces obtained from the testicles were frozen by the slow freezing method in cryotubes in diluents containing Dimethylsulfoxide (DMSO) and Ethylene Glycol (EG) cryoprotectants and stored in liquid nitrogen (-196 °C). The total motility (TM) (85.89 ± 12.83 %), progressive motility (PM) (54.02 ± 15.77 %), and kinematic parameter values of fresh sperm were significantly higher compared to the TM (57.62 ± 13.13 %), PM (29.60 ± 10.76 %), and kinematic parameter values after thawing (P < 0.05). Significant decreases in plasma membrane integrity (PMI) and viability and an increase in chromatin condensation and morphological disorders in the head, middle part, and tail regions were observed in post-thaw semen samples (P < 0.05). When the effects of DMSO and EG on cell viability after thaw in frozen testicular tissue were evaluated, it was observed that the cell viability values of testicular tissues frozen with EG (45.70 ± 10.00) were statistically significantly lower than those frozen with DMSO (51.20 ± 7.70) (P < 0.05). When the effects of both cryoprotectants on gene expression in tissue and semen samples were examined, it was determined that gene expression increased on average 0.19 ± 0.27 times in the tissue samples in the DMSO group compared to fresh tissue samples and 0.17 ± 0.19 times in the tissue samples in the EG group. It was determined that gene expression levels increased by an average of 1.20 ± 1.08 times in post-thaw epididymal spermatozoa samples compared to fresh semen samples. The results show that cryopreservation can activate cellular repair mechanisms by stimulating PARP-1 gene expression and affect gene expression by activating specific pathways in tissues and cells.
Collapse
Affiliation(s)
- Cumali Kaya
- University of Ondokuz Mayis, Department of Animal Reproduction and Artificial Insemination, Samsun, 55200, Turkey.
| | - Burcu Esin
- University of Ondokuz Mayis, Department of Animal Reproduction and Artificial Insemination, Samsun, 55200, Turkey.
| | - Melih Akar
- University of Helsinki, Department of Production Animal Medicine, Faculty of Veterinary Medicine, Helsinki Saarentaus, 00014, Finland.
| | - Cansu Can
- University of Ondokuz Mayis, Department of Medical Biology, Faculty of Medicine, Samsun, 55200, Turkey.
| | - Mesut Çevik
- University of Ondokuz Mayis, Department of Animal Reproduction and Artificial Insemination, Samsun, 55200, Turkey.
| |
Collapse
|
23
|
Priyadarshi A, Saikia SB, Swaminathan R. Monitoring Binding of Protamine with DNA Using Protein Charge Transfer Spectra. J Phys Chem B 2024; 128:9656-9668. [PMID: 39352208 DOI: 10.1021/acs.jpcb.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
In this work, novel intrinsic electronic absorption (250-400 nm) with a molar extinction coefficient of 752 M-1cm-1 at 250 nm, arising from photoinduced electron transfer involving charged amino acid side chains and the polypeptide backbone, along with luminescence (300-500 nm) with quantum yield of 0.011 from subsequent charge recombination, was observed in salmon sperm Protamine (PRM). The absorption of PRM was attributed to the previously identified Peptide Backbone-to-Side chain Charge Transfer (PBS-CT) from the polypeptide backbone to the abundant cationic headgroups of Arginine in PRM, while the luminescence was believed to originate from charge recombination within the charge-separated excited states of PRM. Remarkably, since Arg is the only charged residue in the PRM sequence, the PRM Protein Charge Transfer Spectra (ProCharTS) is both totally and uniquely Arg specific. Interestingly, the peak of PRM luminescence emission spectrum was independent of the excitation wavelength, unlike other proteins such as human serum albumin, displaying unconventional luminescence. Aggregation-induced effects on PRM absorbance and luminescence were ruled out, as both PRM absorbance and luminescence increase maintained linearity with increasing concentration in the 25-150 μM range. Nucleoprotamine complex formation, resulting from the binding of PRM with calf-thymus genomic DNA (gDNA), was monitored through increased scattering by the nucleoprotamine complex, a decrease in gDNA/PRM absorbance, a decrease in gDNA/PRM ellipticity, and shifts of nucleoprotamine complex band upon agarose gel electrophoresis. Upon binding with gDNA (700 μM base pair concentration), PRM ProCharTS absorbance at 260 nm decreased by 72%. This decrease was attributed to the formation and subsequent precipitation of nucleoprotamine complex upon PRM-gDNA binding. The application of ProCharTS absorbance to indirectly monitor DNA-protein binding in a label-free approach was thus demonstrated.
Collapse
Affiliation(s)
- Anurag Priyadarshi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
| | - Simangka Bor Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
| | - Rajaram Swaminathan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039, India
| |
Collapse
|
24
|
Kaur H, Chitkara M, Mathai E, Gurao A, Vasisth R, Dige MS, Mukesh M, Sriranga KR, Singh P, Kataria RS. Polymorphism detection and characterization of sperm cells chromatin remodeling associated genes in Murrah buffalo. Trop Anim Health Prod 2024; 56:318. [PMID: 39356339 DOI: 10.1007/s11250-024-04158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
Seasonal variations significantly impact buffalo bull semen production and quality, particularly during the summer months. Understanding the genetic basis of these changes is important for managing bull fertility and improving sperm quality. The present study focused on characterizing and identifying polymorphisms in chromatin remodeling genes, protamines (PRMs) and Transition Nuclear Proteins (TNPs) in Murrah buffalo bulls with varying semen quality due to seasonal effects. Our findings revealed none of the coding region variation in PRM1, PRM2, TNP1, and TNP2, these genes are highly conserved in buffalo. Two intronic variants were identified, including G16C in PRM1 intron 1 and intronic SNP in PRM2 intron 1 (G96A). The complete CDS of consensus sequence of bubaline PRM1 was 86.3% identical and 94.1% similar to the bovine PRM1. Whereas the complete CDS of consensus sequence of bubaline TNP2 was 78.2% identical and 91.0% similar to bovine TNP2. Further, no statistically significant differences in the fold change of TNP1, TNP2, PRM1, and PRM2 levels between the hot summer SNA and SA groups and the winter SNA and SA groups This study represents the first comprehensive report on the characterization of bubaline PRM1 (complete CDS), PRM2 (partial CDS), TNP1 (partial CDS), and TNP2 (complete CDS) genes in buffalo sperm cells. Results of the study, clearly indicate that the genes associated with protamine (PRM1 and TNP2) are highly conserved in Bubalus bubalis. Understanding these genetic underpinnings can have implications for improving buffalo bull fertility and semen quality.
Collapse
Affiliation(s)
- Harsimran Kaur
- ICAR- National Bureau of Animal Genetic Resources, Karnal (Haryana), India
- ICAR- National Dairy Research Institute, Karnal (Haryana), India
| | - Meenakshi Chitkara
- ICAR- National Bureau of Animal Genetic Resources, Karnal (Haryana), India
- ICAR- National Dairy Research Institute, Karnal (Haryana), India
| | - Eldho Mathai
- ICAR- National Bureau of Animal Genetic Resources, Karnal (Haryana), India
- ICAR- National Dairy Research Institute, Karnal (Haryana), India
| | - Ankita Gurao
- ICAR- National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Rashi Vasisth
- ICAR- National Bureau of Animal Genetic Resources, Karnal (Haryana), India
- ICAR- National Dairy Research Institute, Karnal (Haryana), India
| | | | - Manishi Mukesh
- ICAR- National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | | | - Pawan Singh
- ICAR- National Dairy Research Institute, Karnal (Haryana), India
| | | |
Collapse
|
25
|
Farias JG, Herrera-Belén L, Jimenez L, Beltrán JF. PROTA: A Robust Tool for Protamine Prediction Using a Hybrid Approach of Machine Learning and Deep Learning. Int J Mol Sci 2024; 25:10267. [PMID: 39408595 PMCID: PMC11476296 DOI: 10.3390/ijms251910267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Protamines play a critical role in DNA compaction and stabilization in sperm cells, significantly influencing male fertility and various biotechnological applications. Traditionally, identifying these proteins is a challenging and time-consuming process due to their species-specific variability and complexity. Leveraging advancements in computational biology, we present PROTA, a novel tool that combines machine learning (ML) and deep learning (DL) techniques to predict protamines with high accuracy. For the first time, we integrate Generative Adversarial Networks (GANs) with supervised learning methods to enhance the accuracy and generalizability of protamine prediction. Our methodology evaluated multiple ML models, including Light Gradient-Boosting Machine (LIGHTGBM), Multilayer Perceptron (MLP), Random Forest (RF), eXtreme Gradient Boosting (XGBOOST), k-Nearest Neighbors (KNN), Logistic Regression (LR), Naive Bayes (NB), and Radial Basis Function-Support Vector Machine (RBF-SVM). During ten-fold cross-validation on our training dataset, the MLP model with GAN-augmented data demonstrated superior performance metrics: 0.997 accuracy, 0.997 F1 score, 0.998 precision, 0.997 sensitivity, and 1.0 AUC. In the independent testing phase, this model achieved 0.999 accuracy, 0.999 F1 score, 1.0 precision, 0.999 sensitivity, and 1.0 AUC. These results establish PROTA, accessible via a user-friendly web application. We anticipate that PROTA will be a crucial resource for researchers, enabling the rapid and reliable prediction of protamines, thereby advancing our understanding of their roles in reproductive biology, biotechnology, and medicine.
Collapse
Affiliation(s)
- Jorge G. Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile;
| | - Luis Jimenez
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| |
Collapse
|
26
|
Maghraby H, Elsuity MA, Adel N, Magdi Y, Abdelbadie AS, Rashwan MM, Ahmed OY, Elmahdy M, Khan KS, Fawzy M. Quantifying the association of sperm DNA fragmentation with assisted reproductive technology outcomes: An umbrella review. BJOG 2024; 131:1181-1196. [PMID: 38450853 DOI: 10.1111/1471-0528.17796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Systematic reviews and meta-analyses are instrumental in shaping clinical practice. However, their findings can sometimes be marred by discrepancies and potential biases, thereby diluting the strength of the evidence presented. Umbrella reviews serve to comprehensively assess and synthesise these reviews, offering a clearer insight into the quality of the evidence presented. In the context of the relationship between sperm DNA fragmentation (SDF) and assisted conception outcomes, there is a divergence in the literature. Some reviews suggest a clear cause-and-effect linkage, whereas others present conflicting or inconclusive results. OBJECTIVES In this umbrella review we aimed to synthesise the evidence collated in systematic reviews and meta-analyses summarising the association of SDF with assisted reproductive technology (ART) outcomes. SEARCH STRATEGY After preregistration (https://doi.org/10.17605/OSF.IO/6JHDP), we performed a comprehensive search of the PubMed, Scopus, Cochrane Library, Web of Science and Embase databases. We conducted a search for systematic reviews on the association between SDF and ART without any restrictions on language or publication date. SELECTION CRITERIA Systematic reviews and meta-analyses assessing the association between SDF and ART outcomes were eligible. DATA COLLECTION AND ANALYSIS We assessed the quality of the included reviews using AMSTAR 2 and ROBIS, and determined the degree of overlap of primary studies between reviews estimating the corrected covered area (CCA), adjusted for structural missingness. We evaluated the most recent reviews assessing the association of SDF with live birth, pregnancy, miscarriage, implantation, blastulation and fertilisation. The synthesis of evidence was harmonised across all included quantitative syntheses, re-estimating the odds ratio (eOR) in random-effects meta-analyses with 95% confidence intervals (95% CIs) and 95% prediction intervals (95% PIs). We categorised the evidence strength into convincing, highly suggestive, suggestive, weak or nonsignificant, according to the meta-analysis re-estimated P-value, total sample size, I2 statistic for heterogeneity, small study effect, excess significance bias and the largest study significance. MAIN RESULTS We initially captured and screened 49 332 records. After excluding duplicate and ineligible articles, 22 systematic reviews, 15 of which were meta-analyses, were selected. The 22 reviews showed a moderate degree of overlap (adjusted CCA 9.2%) in their included studies (overall n = 428, with 180 unique studies). The 15 meta-analyses exhibited a high degree of overlap (adjusted CCA = 13.6%) in their included studies (overall n = 274, with 118 unique studies). AMSTAR 2 categorised the quality of evidence in 18 reviews as critically low and the quality of evidence in four reviews as low. ROBIS categorised all the reviews as having a high risk of bias. The re-estimated results showed that the association of SDF with live birth was weak in one and nonsignificant in four meta-analyses. Similarly, the association of SDF with pregnancy, miscarriage, implantation, blastulation and fertilisation was also weak or nonsignificant. The association of high SDF with different ART outcomes was also weak or nonsignificant for different interventions (IVF, ICSI and IUI) and tests. CONCLUSIONS This umbrella review did not find convincing or suggestive evidence linking SDF with ART outcomes. Caution should be exercised in making any claims, policies or recommendations concerning SDF.
Collapse
Affiliation(s)
- Hassan Maghraby
- Obstetrics and Gynaecology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Egyptian Foundation for Reproductive Medicine and Embryology (EFRE), Alexandria, Egypt
| | - Mohamad AlaaEldein Elsuity
- Egyptian Foundation for Reproductive Medicine and Embryology (EFRE), Alexandria, Egypt
- Dermatology, Venereology and Andrology Department, Sohag University, Sohag, Egypt
- Ibnsina, Ajyal, Qena, Amshag IVF Facilities, Sohag and Assiut, Egypt
| | - Nehal Adel
- Egyptian Foundation for Reproductive Medicine and Embryology (EFRE), Alexandria, Egypt
- Madina Fertility Centre, Madina Women's Hospital, Alexandria, Egypt
| | - Yasmin Magdi
- Egyptian Foundation for Reproductive Medicine and Embryology (EFRE), Alexandria, Egypt
- Al-Yasmeen Fertility and Gynaecology Centre, Benha, Qalubyia, Egypt
| | - Amr S Abdelbadie
- Egyptian Foundation for Reproductive Medicine and Embryology (EFRE), Alexandria, Egypt
- Department of Obstetrics and Gynaecology, Aswan University, Aswan, Egypt
| | - Mosab M Rashwan
- Ibnsina, Ajyal, Qena, Amshag IVF Facilities, Sohag and Assiut, Egypt
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ola Youssef Ahmed
- Obstetrics and Gynaecology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Egyptian Foundation for Reproductive Medicine and Embryology (EFRE), Alexandria, Egypt
| | - Mohamed Elmahdy
- Obstetrics and Gynaecology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Egyptian Foundation for Reproductive Medicine and Embryology (EFRE), Alexandria, Egypt
| | - Khalid S Khan
- Centre for Biomedical Research in Epidemiology and Public Health Network (CIBERESP), University of Granada, Granada, Spain
| | - Mohamed Fawzy
- Egyptian Foundation for Reproductive Medicine and Embryology (EFRE), Alexandria, Egypt
- Ibnsina, Ajyal, Qena, Amshag IVF Facilities, Sohag and Assiut, Egypt
| |
Collapse
|
27
|
Hallam J, Burton P, Sanders K. Poor Sperm Chromatin Condensation Is Associated with Cryopreservation-Induced DNA Fragmentation and Cell Death in Human Spermatozoa. J Clin Med 2024; 13:4156. [PMID: 39064196 PMCID: PMC11277714 DOI: 10.3390/jcm13144156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Semen cryopreservation is routinely performed in fertility clinics for a variety of reasons, including fertility preservation and storage of donor sperm, yet the freeze-thaw process leads to cellular damage via ice crystal formation, osmotic shock, and supraphysiological levels of oxidative stress. Sperm resistance to damage during the freeze-thaw process varies widely, yet the intrinsic factors associated with sperm cryotolerance are largely unknown. The study aimed to investigate whether poor chromatin condensation renders sperm vulnerable to DNA fragmentation and cell death induced by the freeze-thaw process. Methods: Participants (n = 51) from the general community who met the inclusion criteria collected a semen sample after 3-8 days of abstinence. Neat semen samples underwent traditional semen analysis, aniline blue (AB)-eosin staining for chromatin condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay for DNA fragmentation, and the Annexin V assay for apoptosis/necrosis, prior to being cryopreserved using the liquid nitrogen vapour method and stored at -196 °C. Stored samples were later thawed at room temperature and processed using density gradient centrifugation. Motile sperm concentration, DNA fragmentation and apoptosis/necrosis were analysed in post-thaw samples. Results: As indicated by a significant interaction effect in linear mixed models, an increased proportion of AB-positive sperm in the pre-freeze sample exacerbated the adverse effect of freezing on sperm DNA fragmentation (p = 0.004), late apoptosis (p = 0.007), and necrosis (p = 0.007). AB-staining was positively correlated with all three parameters in the post-thaw sample (all rs ≥ 0.424, all p < 0.01) and remained significant after adjusting for neat sperm concentration (all partial rs ≥ 0.493, all p < 0.01). Similarly, AB-staining was significantly correlated with the percentage point change in sperm DNA fragmentation (rs = 0.366, p = 0.014) and necrosis (rs = 0.403, p = 0.009), both of which remained significant after adjusting for neat sperm concentration (both partial rs ≥ 0.404, both p < 0.01), and borderline significantly correlated with percentage point change in late apoptosis (rs = 0.307, p = 0.051). Conclusions: Sperm with poorly condensed chromatin may be more susceptible to cellular damage during the freeze-thaw process, independent of pre-freeze sperm concentration. These findings may help to explain the intrinsic variation in sperm resistance to cryodamage within and between individuals that is poorly understood.
Collapse
Affiliation(s)
- Jade Hallam
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Peter Burton
- Concept Fertility Centre, Subiaco, WA 6008, Australia;
| | - Katherine Sanders
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| |
Collapse
|
28
|
Amor H, Juhasz-Böss I, Bibi R, Hammadeh ME, Jankowski PM. H2BFWT Variations in Sperm DNA and Its Correlation to Pregnancy. Int J Mol Sci 2024; 25:6048. [PMID: 38892236 PMCID: PMC11172515 DOI: 10.3390/ijms25116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Abnormalities in sperm nuclei and chromatin can interfere with normal fertilization, embryonic development, implantation, and pregnancy. We aimed to study the impact of H2BFWT gene variants in sperm DNA on ICSI outcomes in couples undergoing ART treatment. One hundred and nineteen partners were divided into pregnant (G1) and non-pregnant (G2) groups. After semen analysis, complete DNA was extracted from purified sperm samples. The sequence of the H2BFWT gene was amplified by PCR and then subjected to Sanger sequencing. The results showed that there are three mutations in this gene: rs7885967, rs553509, and rs578953. Significant differences were shown in the distribution of alternative and reference alleles between G1 and G2 (p = 0.0004 and p = 0.0020, respectively) for rs553509 and rs578953. However, there was no association between these SNPs and the studied parameters. This study is the first to shed light on the connection between H2BFWT gene variants in sperm DNA and pregnancy after ICSI therapy. This is a pilot study, so further investigations about these gene variants at the transcriptional and translational levels will help to determine its functional consequences and to clarify the mechanism of how pregnancy can be affected by sperm DNA.
Collapse
Affiliation(s)
- Houda Amor
- Departement of Obstetrics and Gynecology, IVF Laboratory, Saarland University Clinic, 66421 Homburg, Germany; (M.E.H.)
- Departement of Obstertics and Gynecology, IVF Laboratory, Freiburg University Clinic, 79106 Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Departement of Obstertics and Gynecology, IVF Laboratory, Freiburg University Clinic, 79106 Freiburg, Germany
| | - Riffat Bibi
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad 45320, Pakistan
| | - Mohamad Eid Hammadeh
- Departement of Obstetrics and Gynecology, IVF Laboratory, Saarland University Clinic, 66421 Homburg, Germany; (M.E.H.)
- Departement of Obstertics and Gynecology, IVF Laboratory, Freiburg University Clinic, 79106 Freiburg, Germany
| | - Peter Michael Jankowski
- Departement of Obstetrics and Gynecology, IVF Laboratory, Saarland University Clinic, 66421 Homburg, Germany; (M.E.H.)
| |
Collapse
|
29
|
Sanyal D, Arya D, Nishi K, Balasinor N, Singh D. Clinical Utility of Sperm Function Tests in Predicting Male Fertility: A Systematic Review. Reprod Sci 2024; 31:863-882. [PMID: 38012524 DOI: 10.1007/s43032-023-01405-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Routine semen analysis provides considerable information regarding sperm parameters; however, it is not solely adequate to predict male fertility potential. In the past two decades, several advance sperm function tests have been developed. The present systematic review intends to assess the clinical utility of available advance sperm function tests in predicting the male fertility potential. A systematic literature search was conducted as per PRISMA guidelines using PubMed, MEDLINE, Google Scholar, and Cochrane Library. Different keywords either singly or in combination were used to retrieve the relevant articles related to sperm function tests, male fertility, and pregnancy outcomes. A total of 5169 articles were obtained, out of which 110 meeting the selection criteria were included in this review. The majorly investigated sperm function tests are hypo-osmotic swelling test, acrosome reaction test, sperm capacitation test, hemizona binding assay, sperm DNA fragmentation test, seminal reactive oxygen species test, mitochondrial dysfunction tests, antisperm antibody test, nuclear chromatin de-condensation (NCD) test, etc. The different advance sperm function tests analyse different aspects of sperm function. Hence, any one test may not be helpful to appropriately predict the male fertility potential. Currently, the unavailability of high-quality clinical data, robust thresholds, complex protocols, high cost, etc., are the limiting factors and prohibiting current sperm function tests to reach the clinics. Further multi-centric research efforts are required to fulfil the existing lacunas and pave the way for these tests to be introduced into the clinics.
Collapse
Affiliation(s)
- Debarati Sanyal
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Deepshikha Arya
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Kumari Nishi
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India.
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Parel, Mumbai, 400012, India.
| |
Collapse
|
30
|
Bhattacharya I, Sharma SS, Majumdar SS. Etiology of Male Infertility: an Update. Reprod Sci 2024; 31:942-965. [PMID: 38036863 DOI: 10.1007/s43032-023-01401-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Spermatogenesis is a complex process of germ cell division and differentiation that involves extensive cross-talk between the developing germ cells and the somatic testicular cells. Defective endocrine signaling and/or intrinsic defects within the testes can adversely affect spermatogenic progression, leading to subfertility/infertility. In recent years, male infertility has been recognized as a global public health concern, and research over the last few decades has elucidated the complex etiology of male infertility. Congenital reproductive abnormalities, genetic mutations, and endocrine/metabolic dysfunction have been demonstrated to be involved in infertility/subfertility in males. Furthermore, acquired factors like exposure to environmental toxicants and lifestyle-related disorders such as illicit use of psychoactive drugs have been shown to adversely affect spermatogenesis. Despite the large body of available scientific literature on the etiology of male infertility, a substantial proportion of infertility cases are idiopathic in nature, with no known cause. The inability to treat such idiopathic cases stems from poor knowledge about the complex regulation of spermatogenesis. Emerging scientific evidence indicates that defective functioning of testicular Sertoli cells (Sc) may be an underlying cause of infertility/subfertility in males. Sc plays an indispensable role in regulating spermatogenesis, and impaired functional maturation of Sc has been shown to affect fertility in animal models as well as humans, suggesting abnormal Sc as a potential underlying cause of reproductive insufficiency/failure in such cases of unexplained infertility. This review summarizes the major causes of infertility/subfertility in males, with an emphasis on infertility due to dysregulated Sc function.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, Central University of Kerala, Periye Campus, Kasaragod, 671320, Kerala, India.
| | - Souvik Sen Sharma
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India
| | - Subeer S Majumdar
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India.
- Gujarat Biotechnology University, Gandhinagar, GIFT City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
31
|
Jiang H, Huang CJ. Aberrant protamination in sperm correlates to anomalous nuclear and cytoplasmic architectures in infertile males with sperm dysmorphology. Asian J Androl 2024; 26:183-188. [PMID: 37921517 PMCID: PMC10919428 DOI: 10.4103/aja202360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
Aberrant sperm protamination is linked to sperm dysmorphology and nuclear chromatin condensation. Yet, its effects on sperm cytoplasmic maturation remain largely unexplored. The relationships of protamines, sperm morphology, DNA damage, and cytoplasmic remodeling were illustrated in this study to provide fresh perspectives on the mechanisms of male infertility. A total of 205 infertile males were allocated into 5 groups according to the percentage of spermatozoa exhibiting abnormal morphology within their samples. Sperm concentration, motility, abnormal sperm morphology, cytoplasmic droplets (CDs), and excess residual cytoplasm (ERC) were analyzed according to the World Health Organization manual (2010). Sperm nuclear vacuoles (NVs) were determined by propidium iodide (PI) staining. Sperm protamine expressions (P1 and P2) were detected by western blot. DNA damage was measured by acridine orange test (AOT) to calculate the proportion of sperm with single-strand DNA breaks (SSBs). Our data showed that sperm concentration and motility in infertile males significantly decreased with the severity of abnormal sperm morphology (both P < 0.01). P1 level, P1/P2 ratio, and SSB rate increased with the severity of sperm dysmorphology, whilst the P2 level decreased (all P < 0.01). NVs, CDs, and ERC were more common in males with sperm dysmorphology and positively correlated with the SSB rate (all P < 0.01). The relationships between the SSB rate and the P1/P2 ratio were also significant ( P < 0.01). Aberrant protamination may cause sperm dysmorphology and compromise male fertility by impairing sperm's nucleus and cytoplasm maturation, with the P1/P2 ratio potentially serving as a valuable indicator of sperm quality and male fertility.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Reproductive Endocrinology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Chu-Jie Huang
- Institute of Reproductive Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
32
|
Fang Y, Li X. Protein lysine four-carbon acylations in health and disease. J Cell Physiol 2024; 239:e30981. [PMID: 36815448 PMCID: PMC10704440 DOI: 10.1002/jcp.30981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
Lysine acylation, a type of posttranslational protein modification sensitive to cellular metabolic states, influences the functions of target proteins involved in diverse cellular processes. Particularly, lysine butyrylation, crotonylation, β-hydroxybutyrylation, and 2-hydroxyisobutyrylation, four types of four-carbon acylations, are modulated by intracellular concentrations of their respective acyl-CoAs and sensitive to alterations of nutrient metabolism induced by cellular and/or environmental signals. In this review, we discussed the metabolic pathways producing these four-carbon acyl-CoAs, the regulation of lysine acylation and deacylation, and the functions of individual lysine acylation.
Collapse
Affiliation(s)
- Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
33
|
Takeuchi Y, Sato S, Nagasato C, Motomura T, Okuda S, Kasahara M, Takahashi F, Yoshikawa S. Sperm-specific histone H1 in highly condensed sperm nucleus of Sargassum horneri. Sci Rep 2024; 14:3387. [PMID: 38336896 PMCID: PMC10858212 DOI: 10.1038/s41598-024-53729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Spermatogenesis is one of the most dramatic changes in cell differentiation. Remarkable chromatin condensation of the nucleus is observed in animal, plant, and algal sperm. Sperm nuclear basic proteins (SNBPs), such as protamine and sperm-specific histone, are involved in chromatin condensation of the sperm nucleus. Among brown algae, sperm of the oogamous Fucales algae have a condensed nucleus. However, the existence of sperm-specific SNBPs in Fucales algae was unclear. Here, we identified linker histone (histone H1) proteins in the sperm and analyzed changes in their gene expression pattern during spermatogenesis in Sargassum horneri. A search of transcriptomic data for histone H1 genes in showed six histone H1 genes, which we named ShH1.1a, ShH1b, ShH1.2, ShH1.3, ShH1.4, and ShH1.5. Analysis of SNBPs using SDS-PAGE and LC-MS/MS showed that sperm nuclei contain histone ShH1.2, ShH1.3, and ShH1.4 in addition to core histones. Both ShH1.2 and ShH1.3 genes were expressed in the vegetative thallus and the male and female receptacles (the organs producing antheridium or oogonium). Meanwhile, the ShH1.4 gene was expressed in the male receptacle but not in the vegetative thallus and female receptacles. From these results, ShH1.4 may be a sperm-specific histone H1 of S. horneri.
Collapse
Affiliation(s)
- Yu Takeuchi
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Chikako Nagasato
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi, Chuoku, Niigata, Niigata, 951-8501, Japan
| | - Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Shinya Yoshikawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan.
| |
Collapse
|
34
|
Lacalle E, Fernández-Alegre E, Gómez-Giménez B, Álvarez-Rodríguez M, Martín-Fernández B, Soriano-Úbeda C, Martínez-Pastor F. Application of Flow Cytometry Using Advanced Chromatin Analyses for Assessing Changes in Sperm Structure and DNA Integrity in a Porcine Model. Int J Mol Sci 2024; 25:1953. [PMID: 38396632 PMCID: PMC10888687 DOI: 10.3390/ijms25041953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Chromatin status is critical for sperm fertility and reflects spermatogenic success. We tested a multivariate approach for studying pig sperm chromatin structure to capture its complexity with a set of quick and simple techniques, going beyond the usual assessment of DNA damage. Sperm doses from 36 boars (3 ejaculates/boar) were stored at 17 °C and analyzed on days 0 and 11. Analyses were: CASA (motility) and flow cytometry to assess sperm functionality and chromatin structure by SCSA (%DFI, DNA fragmentation; %HDS, chromatin maturity), monobromobimane (mBBr, tiol status/disulfide bridges between protamines), chromomycin A3 (CMA3, protamination), and 8-hydroxy-2'-deoxyguanosine (8-oxo-dG, DNA oxidative damage). Data were analyzed using linear models for the effects of boar and storage, correlations, and multivariate analysis as hierarchical clustering and principal component analysis (PCA). Storage reduced sperm quality parameters, mainly motility, with no critical oxidative stress increases, while chromatin status worsened slightly (%DFI and 8-oxo-dG increased while mBBr MFI-median fluorescence intensity-and disulfide bridge levels decreased). Boar significantly affected most chromatin variables except CMA3; storage also affected most variables except %HDS. At day 0, sperm chromatin variables clustered closely, except for CMA3, and %HDS and 8-oxo-dG correlated with many variables (notably, mBBr). After storage, the relation between %HDS and 8-oxo-dG remained, but correlations among other variables disappeared, and mBBr variables clustered separately. The PCA suggested a considerable influence of mBBr on sample variance, especially regarding storage, with SCSA and 8-oxo-dG affecting between-sample variability. Overall, CMA3 was the least informative, in contrast with results in other species. The combination of DNA fragmentation, DNA oxidation, chromatin compaction, and tiol status seems a good candidate for obtaining a complete picture of pig sperm nucleus status. It raises many questions for future molecular studies and deserves further research to establish its usefulness as a fertility predictor in multivariate models. The usefulness of CMA3 should be clarified.
Collapse
Affiliation(s)
- Estíbaliz Lacalle
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, 24071 León, Spain; (E.L.); (B.M.-F.)
- Bianor Biotech SL, 24071 León, Spain
| | | | - Belén Gómez-Giménez
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, 24071 León, Spain; (E.L.); (B.M.-F.)
| | - Manuel Álvarez-Rodríguez
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish Scientific Research Council (INIA-CSIC), 28040 Madrid, Spain;
| | - Beatriz Martín-Fernández
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, 24071 León, Spain; (E.L.); (B.M.-F.)
- Department of Molecular Biology (Cell Biology), University of León, 24071 León, Spain
| | - Cristina Soriano-Úbeda
- Department of Medicine, Surgery and Veterinary Anatomy (Animal Medicine and Surgery), University of León, 24071 León, Spain;
| | - Felipe Martínez-Pastor
- Institute of Animal Health and Cattle Development (INDEGSAL), University of León, 24071 León, Spain; (E.L.); (B.M.-F.)
- Department of Molecular Biology (Cell Biology), University of León, 24071 León, Spain
| |
Collapse
|
35
|
Pardede BP, Karja NWK, Said S, Kaiin EM, Agil M, Sumantri C, Purwantara B, Supriatna I. Bovine nucleoprotein transitions genes and protein abundance as valuable markers of sperm motility and the correlation with fertility. Theriogenology 2024; 215:86-94. [PMID: 38016305 DOI: 10.1016/j.theriogenology.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Bovine nucleoprotein transitions (TNPs), specifically TNP1 and TNP2, are essential molecules in sperm nucleus rich in arginine and lysine. These molecules act in the phase between histone expulsion and before incorporation of protamine in the spermatid nucleus. Therefore, this study aimed to analyze genes and protein abundance of TNP1 and TNP2 in sperm to determine the potential as motility markers and correlation with fertility in the field. An objective evaluation method, CASA-Sperm Vision, was used to separate 22 bulls into two groups (mg-A and mg-B) based on their increasing motility. Sperm quality parameters were also examined including velocity, mitochondrial membrane potential (MMP) by the JC-1 method, head defects using William staining, and DNA fragmentation by Halomax. TNPs genes abundance was performed using the RT-qPCR method, and the protein abundance was examined with the EIA approach. The fertility rate was also analyzed based on the conception rate generated from each bull in the field, with the data obtained from iSIKHNAS. The results showed that TNPs genes and protein abundance were significantly higher (P < 0.05) in mg-A compared to mg-B, followed by various sperm quality parameters and fertility rates (P < 0.05). Positive correlations were found in TNPs genes and protein abundance with motility, velocity, MMP, and fertility (P < 0.01). Meanwhile, a negative correlation (P < 0.01) was found between head defects and DNA fragmentation. These results showed the potential of TNPs as sperm motility markers and bull fertility.
Collapse
Affiliation(s)
- Berlin Pandapotan Pardede
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia; Research Center for Applied Zoology, National Research, and Innovation Agency (BRIN), Bogor, West Java, Indonesia.
| | - Ni Wayan Kurniani Karja
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Syahruddin Said
- Research Center for Applied Zoology, National Research, and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Ekayanti Mulyawati Kaiin
- Research Center for Applied Zoology, National Research, and Innovation Agency (BRIN), Bogor, West Java, Indonesia
| | - Muhammad Agil
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia.
| | - Cece Sumantri
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Indonesia
| | - Bambang Purwantara
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Iman Supriatna
- Division of Reproduction and Obstetrics, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
36
|
Gupta MN, Uversky VN. Biological importance of arginine: A comprehensive review of the roles in structure, disorder, and functionality of peptides and proteins. Int J Biol Macromol 2024; 257:128646. [PMID: 38061507 DOI: 10.1016/j.ijbiomac.2023.128646] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Arginine shows Jekyll and Hyde behavior in several respects. It participates in protein folding via ionic and H-bonds and cation-pi interactions; the charge and hydrophobicity of its side chain make it a disorder-promoting amino acid. Its methylation in histones; RNA binding proteins; chaperones regulates several cellular processes. The arginine-centric modifications are important in oncogenesis and as biomarkers in several cardiovascular diseases. The cross-links involving arginine in collagen and cornea are involved in pathogenesis of tissues but have also been useful in tissue engineering and wound-dressing materials. Arginine is a part of active site of several enzymes such as GTPases, peroxidases, and sulfotransferases. Its metabolic importance is obvious as it is involved in production of urea, NO, ornithine and citrulline. It can form unusual functional structures such as molecular tweezers in vitro and sprockets which engage DNA chains as part of histones in vivo. It has been used in design of cell-penetrating peptides as drugs. Arginine has been used as an excipient in both solid and injectable drug formulations; its role in suppressing opalescence due to liquid-liquid phase separation is particularly very promising. It has been known as a suppressor of protein aggregation during protein refolding. It has proved its usefulness in protein bioseparation processes like ion-exchange, hydrophobic and affinity chromatographies. Arginine is an amino acid, whose importance in biological sciences and biotechnology continues to grow in diverse ways.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
37
|
Ferrero G, Festa R, Follia L, Lettieri G, Tarallo S, Notari T, Giarra A, Marinaro C, Pardini B, Marano A, Piaggeschi G, Di Battista C, Trifuoggi M, Piscopo M, Montano L, Naccarati A. Small noncoding RNAs and sperm nuclear basic proteins reflect the environmental impact on germ cells. Mol Med 2024; 30:12. [PMID: 38243211 PMCID: PMC10799426 DOI: 10.1186/s10020-023-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Molecular techniques can complement conventional spermiogram analyses to provide new information on the fertilizing potential of spermatozoa and to identify early alterations due to environmental pollution. METHODS Here, we present a multilevel molecular profiling by small RNA sequencing and sperm nuclear basic protein analysis of male germ cells from 33 healthy young subjects residing in low and high-polluted areas. RESULTS Although sperm motility and sperm concentration were comparable between samples from the two sites, those from the high-pollution area had a higher concentration of immature/immune cells, a lower protamine/histone ratio, a reduced ability of sperm nuclear basic proteins to protect DNA from oxidative damage, and an altered copper/zinc ratio in sperm. Sperm levels of 32 microRNAs involved in intraflagellar transport, oxidative stress response, and spermatogenesis were different between the two areas. In parallel, a decrease of Piwi-interacting RNA levels was observed in samples from the high-polluted area. CONCLUSIONS This comprehensive analysis provides new insights into pollution-driven epigenetic alterations in sperm not detectable by spermiogram.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
- Department of Computer Science, University of Turin, Corso Svizzera, 185, 10149, Turin, Italy
| | - Rosaria Festa
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Laura Follia
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Tiziana Notari
- Check-Up PolyDiagnostic and Research Laboratory, Andrology Unit, Viale Andrea De Luca 5, 84131, Salerno, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Carla Di Battista
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, 84020, Oliveto Citra, Salerno, Italy.
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| |
Collapse
|
38
|
Dhillon VS, Shahid M, Deo P, Fenech M. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. Int J Mol Sci 2024; 25:718. [PMID: 38255792 PMCID: PMC10815409 DOI: 10.3390/ijms25020718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Infertility affects millions of couples worldwide and has a profound impact not only on their families, but also on communities. Telomere attrition has been associated with infertility, DNA damage and fragmentation. Oxidative stress has been shown to affect sperm DNA integrity and telomere length. Sirtuins such as SIRT1 and SIRT3 are involved in aging and oxidative stress response. The aim of the present study is to determine the role of SIRT1 and SIRT3 in regulating oxidative stress, telomere shortening, and their association with oligospermia. Therefore, we assessed the protein levels of SIRT1 and SIRT3, total antioxidant capacity (TAC), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase activity (CAT) in the seminal plasma of 272 patients with oligospermia and 251 fertile men. We also measured sperm telomere length (STL) and leukocyte telomere length (LTL) using a standard real-time quantitative PCR assay. Sperm chromatin and protamine deficiency were also measured as per standard methods. Our results for oligospermic patients demonstrate significant reductions in semen parameters, shorter STL and LTL, lower levels of SOD, TAC, CAT, SIRT1 and SIRT3 levels, and also significant protamine deficiency and higher levels of MDA and DNA fragmentation. We conclude that a shorter TL in sperms and leukocytes is associated with increased oxidative stress that also accounts for high levels of DNA fragmentation in sperms. Our results support the hypothesis that various sperm parameters in the state of oligospermia are associated with or caused by reduced levels of SIRT1 and SIRT3 proteins.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| |
Collapse
|
39
|
Yoshiakwa‐Terada K, Takeuchi H, Tachibana R, Takayama E, Kondo E, Ikeda T. Age, sexual abstinence duration, sperm morphology, and motility are predictors of sperm DNA fragmentation. Reprod Med Biol 2024; 23:e12585. [PMID: 38807753 PMCID: PMC11131573 DOI: 10.1002/rmb2.12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Purpose Sperm DNA fragmentation (SDF) has recently received attention as a cause of male infertility. However, SDF cannot be fully assessed using conventional semen parameter evaluations alone. Therefore, the authors aimed to elucidate the relationship between SDF and sperm parameters via computer-assisted sperm analysis (CASA) to improve treatment strategies in reproductive medicine. Methods This retrospective observational study analyzed the relationship between sperm parameters assessed by CASA and SDF values determined by the TUNEL assay in 359 patients who visited the Mie University Hospital for infertility treatment. The methodology involved semen analyses covering concentration, motility, and morphology, followed by SDF quantification using the flow cytometry. Results Statistical analysis revealed significant correlations between SDF and various factors, including age, sexual abstinence period, and specific CASA-measured parameters. Notably, lower sperm motility rates and abnormal head dimensions were associated with higher SDF values, indicating that these parameters were predictive of SDF. Conclusions This study highlights the importance of sperm motility and head morphology as indicators of SDF, suggesting their usefulness in assessing male fertility. These findings demonstrate the efficacy of detailed sperm analysis, potentially increasing the success rate of assisted reproductive technologies by improving sperm selection criteria.
Collapse
Affiliation(s)
- Kento Yoshiakwa‐Terada
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
- Center of Advanced Reproductive MedicineMie University HospitalTsuJapan
| | - Hiroki Takeuchi
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
- Center of Advanced Reproductive MedicineMie University HospitalTsuJapan
| | - Ryota Tachibana
- Center of Advanced Reproductive MedicineMie University HospitalTsuJapan
| | - Erina Takayama
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
- Center of Advanced Reproductive MedicineMie University HospitalTsuJapan
- Obstetrics and GynecologyMie University HospitalTsuJapan
| | - Eiji Kondo
- Department of Obstetrics and Gynecology, Graduate School of MedicineMie UniversityTsuJapan
- Center of Advanced Reproductive MedicineMie University HospitalTsuJapan
- Obstetrics and GynecologyMie University HospitalTsuJapan
| | - Tomoaki Ikeda
- Center of Advanced Reproductive MedicineMie University HospitalTsuJapan
| |
Collapse
|
40
|
Marinaro C, Lettieri G, Chianese T, Bianchi AR, Zarrelli A, Palatucci D, Scudiero R, Rosati L, De Maio A, Piscopo M. Exploring the molecular and toxicological mechanism associated with interactions between heavy metals and the reproductive system of Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109778. [PMID: 37866452 DOI: 10.1016/j.cbpc.2023.109778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
A large number of heavy metals resulted toxic to the reproductive system, but invertebrate infertility has been poorly explored, and above all, there are limited molecular, cellular and toxicological studies. In the present work, we exposed Mytilus galloprovincialis to three individual metal chlorides (CuCl2 15 μM, CdCl2 1.5 μM, NiCl2 15 μM) and their mixture for 24 h, to evaluate the effects on the protamine-like proteins (PLs), sperm DNA and on their interaction in the formation of sperm chromatin. Under all exposure conditions, but particularly after exposure to the metals mix, relevant changes in the electrophoretic pattern, by AU-PAGE and SDS-PAGE, and in fluorescence spectroscopy measurements of PLs were shown. In addition, alterations in DNA binding of these proteins were observed by Electrophoretic Mobility Shift Assay (EMSA) and through their release from sperm nuclei. Moreover, there was evidence of increased accessibility of micrococcal nuclease to sperm chromatin, which was also confirmed by toluidine blue staining. Furthermore, morphological analyses indicated severe gonadal impairments which was also corroborated by increased PARP expression, by Western blotting, and sperm DNA fragmentation, by comet assay. Finally, we investigated the expression of stress genes, gst, hsp70 and mt10, in gonadal tissue. The latter investigations also showed that exposure to this metals mix was more harmful than exposure to the individual metals tested. The present results suggest that these metals and in particular their mixture could have a negative impact on the reproductive fitness of M. galloprovincialis. Based on these evidences, we propose a molecular mechanism.
Collapse
Affiliation(s)
- Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Teresa Chianese
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Domenico Palatucci
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy.
| |
Collapse
|
41
|
Castillo J, de la Iglesia A, Leiva M, Jodar M, Oliva R. Proteomics of human spermatozoa. Hum Reprod 2023; 38:2312-2320. [PMID: 37632247 DOI: 10.1093/humrep/dead170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Proteomic methodologies offer a robust approach to identify and quantify thousands of proteins from semen components in both fertile donors and infertile patients. These strategies provide an unprecedented discovery potential, which many research teams are currently exploiting. However, it is essential to follow a suitable experimental design to generate robust data, including proper purification of samples, appropriate technical procedures to increase identification throughput, and data analysis following quality criteria. More than 6000 proteins have been described so far through proteomic analyses in the mature sperm cell, increasing our knowledge on processes involved in sperm function, intercommunication between spermatozoa and seminal fluid, and the transcriptional origin of the proteins. These data have been complemented with comparative studies to ascertain the potential role of the identified proteins on sperm maturation and functionality, and its impact on infertility. By comparing sperm protein profiles, many proteins involved in the acquisition of fertilizing ability have been identified. Furthermore, altered abundance of specific protein groups has been observed in a wide range of infertile phenotypes, including asthenozoospermia, oligozoospermia, and normozoospermia with unsuccessful assisted reproductive techniques outcomes, leading to the identification of potential clinically useful protein biomarkers. Finally, proteomics has been used to evaluate alterations derived from semen sample processing, which might have an impact on fertility treatments. However, the intrinsic heterogeneity and inter-individual variability of the semen samples have resulted in a relatively low overlap among proteomic reports, highlighting the relevance of combining strategies for data validation and applying strict criteria for proteomic data analysis to obtain reliable results. This mini-review provides an overview of the most critical steps to conduct robust sperm proteomic studies, the most relevant results obtained so far, and potential next steps to increase the impact of sperm proteomic data.
Collapse
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marina Leiva
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona (UB), Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Chhetri KB, Jang YH, Lansac Y, Maiti PK. DNA groove preference shift upon phosphorylation of a protamine-like cationic peptide. Phys Chem Chem Phys 2023; 25:31335-31345. [PMID: 37960891 DOI: 10.1039/d3cp03803c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Protamines, arginine-rich DNA-binding proteins, are responsible for chromatin compaction in sperm cells, but their DNA groove preference, major or minor, is not clearly identified. We herein study the DNA groove preference of a short protamine-like cationic peptide before and after phosphorylation, using all-atom molecular dynamics and umbrella sampling simulations. According to various thermodynamic and structural analyses, a peptide in its non-phosphorylated native state prefers the minor groove over the major groove, but phosphorylation of the peptide bound to the minor groove not only reduces its binding affinity but also brings a serious deformation of the minor groove, eliminating the minor-groove preference. As protamines are heavily phosphorylated before binding to DNA, we expect that the structurally disordered phosphorylated protamines would prefer major grooves to enter into DNA during spermatogenesis.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Saclay, 91405 Orsay, France
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris Saclay, 91405 Orsay, France
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
43
|
Viñolas-Vergés E, Ribas-Maynou J, Barranco I, Peres Rubio C, Bonet S, Roca J, Yeste M. Chromatin condensation but not DNA integrity of pig sperm is greater in the sperm-rich fraction. J Anim Sci Biotechnol 2023; 14:139. [PMID: 37926841 PMCID: PMC10626759 DOI: 10.1186/s40104-023-00938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/10/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development. In some mammals, like pigs, ejaculates are emitted in three separate fractions: pre-sperm, sperm-rich (SRF) and post sperm-rich (PSRF). These fractions are known to vary in volume, sperm concentration and quality, as well as in the origin and composition of seminal plasma (SP), with differences being also observed within the SRF one. Yet, whether disparities in the DNA integrity and chromatin condensation and protamination of their sperm exist has not been interrogated. RESULTS This study determined chromatin protamination (Chromomycin A3 test, CMA3), condensation (Dibromobimane test, DBB), and DNA integrity (Comet assay) in the pig sperm contained in the first 10 mL of the SRF (SRF-P1), the remaining portion of the sperm-rich fraction (SRF-P2), and the post sperm-rich fraction (PSRF). While chromatin protamination was found to be similar between the different ejaculate fractions (P > 0.05), chromatin condensation was seen to be greater in SRF-P1 and SRF-P2 than in the PSRF (P = 0.018 and P = 0.004, respectively). Regarding DNA integrity, no differences between fractions were observed (P > 0.05). As the SRF-P1 has the highest sperm concentration and ejaculate fractions are known to differ in antioxidant composition, the oxidative stress index (OSi) in SP, calculated as total oxidant activity divided by total antioxidant capacity, was tested and confirmed to be higher in the SRF-P1 than in SRF-P2 and PSRF (0.42 ± 0.06 vs. 0.23 ± 0.09 and 0.08 ± 0.00, respectively; P < 0.01); this index, in addition, was observed to be correlated to the sperm concentration of each fraction (Rs = 0.973; P < 0.001). CONCLUSION While sperm DNA integrity was not found to differ between ejaculate fractions, SRF-P1 and SRF-P2 were observed to exhibit greater chromatin condensation than the PSRF. This could be related to the OSi of each fraction.
Collapse
Affiliation(s)
- Estel Viñolas-Vergés
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Camila Peres Rubio
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Sergi Bonet
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), S08010, Barcelona, Spain
| |
Collapse
|
44
|
Agudo-Rios C, Sanchez-Rodriguez A, Idrovo IID, Laborda-Gomariz JÁ, Soler AJ, Teves ME, Roldan ERS. Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems. Int J Mol Sci 2023; 24:15954. [PMID: 37958937 PMCID: PMC10648696 DOI: 10.3390/ijms242115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Sperm DNA integrity and chromatin status serve as pivotal indicators of sperm quality, given their intricate link to sperm function, embryo development, and overall fertility. Defects in chromatin compaction, which are often associated with compromised protamine content, can lead to damaged DNA strands. In this study, the chromatin status and possible correlation with DNA damage was assessed in males of three mouse species: Mus musculus, M. spretus, and M. spicilegus. We employed various staining methods, including aniline blue, methylene blue (Diff-Quik), toluidine blue, and chromomycin A3, to assess chromatin compaction in cauda epididymal sperm. Samples were also analyzed by the sperm chromatin structure assay (SCSA) to estimate DNA fragmentation (%tDFI, %HDS). Analyses were carried out on freshly collected sperm and cells incubated for 3 h in a HEPES-buffered modified Tyrode's medium simulating conditions of the female reproductive tract. Notably, the analysis of chromatin status yielded minimal abnormal values across all three species employing diverse methodologies. SCSA analyses revealed distinct variations in %tDFI between species. Following sperm incubation, the percentages of sperm stained with methylene blue exhibited differences among the species and were significantly correlated to the DNA fragmentation index. HDS demonstrated correlations with the percentages of sperm stained by aniline blue, methylene blue, and chromomycin A3. Overall, chromatin compaction was high across all species, with limited differences among them. The relationship between chromatin status and DNA integrity appeared to be related to levels of sperm competition among species.
Collapse
Affiliation(s)
- Clara Agudo-Rios
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ingrid I. D. Idrovo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | | | - Ana J. Soler
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, 02071 Albacete, Spain
| | - Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| |
Collapse
|
45
|
Viñolas-Vergés E, Yeste M, Garriga F, Bonet S, Mateo-Otero Y, Ribas-Maynou J. An intracellular, non-oxidative factor activates in vitro chromatin fragmentation in pig sperm. Biol Res 2023; 56:53. [PMID: 37876007 PMCID: PMC10594720 DOI: 10.1186/s40659-023-00467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND In vitro incubation of epididymal and vas deferens sperm with Mn2+ induces Sperm Chromatin Fragmentation (SCF), a mechanism that causes double-stranded breaks in toroid-linker regions (TLRs). Whether this mechanism, thought to require the participation of topoisomerases and/or DNAses and thus far only described in epididymal mouse sperm, can be triggered in ejaculated sperm is yet to be elucidated. The current study aimed to determine if exposure of pig ejaculated sperm to divalent ions (Mn2+ and Mg2+) activates SCF, and whether this has any impact on sperm function and survival. For this purpose, sperm DNA integrity was evaluated through the Comet assay and Pulsed Field Gel Electrophoresis (PFGE); sperm motility and agglutination were assessed with computer assisted sperm analysis (CASA); and sperm viability and levels of total reactive oxygen species (ROS) and superoxides were determined through flow cytometry. RESULTS Incubation with Mn2+/Ca2+ activated SCF in a dose-dependent (P < 0.05) albeit not time-dependent manner (P > 0.05); in contrast, Mg2+/Ca2+ only triggered SCF at high concentrations (50 mM). The PFGE revealed that, when activated by Mn2+/Ca2+ or Mg2+/Ca2+, SCF generated DNA fragments of 33-194 Kb, compatible with the size of one or multiple toroids. Besides, Mn2+/Ca2+ affected sperm motility in a dose-dependent manner (P < 0.05), whereas Mg2+/Ca2+ only impaired this variable at high concentrations (P < 0.05). While this effect on motility was concomitant with an increase of agglutination, neither viability nor ROS levels were affected by Mn2+/Ca2+ or Mg2+/Ca2+ treatments. CONCLUSION Mn2+/Ca2+ and Mn2+/Ca2+ were observed to induce SCF in ejaculated sperm, resulting in DNA cleavage at TLRs. The activation of this mechanism by an intracellular, non-oxidative factor sheds light on the events taking place during sperm cell death.
Collapse
Affiliation(s)
- Estel Viñolas-Vergés
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), S08010, Barcelona, Spain.
| | - Ferran Garriga
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, S17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, S17003, Girona, Spain
| |
Collapse
|
46
|
Zhu Z, Li D, Jia Z, Zhang W, Chen Y, Zhao R, Zhang Y, Zhang W, Deng H, Li Y, Li W, Guang S, Ou G. Global histone H2B degradation regulates insulin/IGF signaling-mediated nutrient stress. EMBO J 2023; 42:e113328. [PMID: 37641865 PMCID: PMC10548168 DOI: 10.15252/embj.2022113328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Eukaryotic organisms adapt to environmental fluctuations by altering their epigenomic landscapes and transcriptional programs. Nucleosomal histones carry vital epigenetic information and regulate gene expression, yet the mechanisms underlying chromatin-bound histone exchange remain elusive. Here, we found that histone H2Bs are globally degraded in Caenorhabditis elegans during starvation. Our genetic screens identified mutations in ubiquitin and ubiquitin-related enzymes that block H2B degradation in starved animals, identifying lysine 31 as the crucial residue for chromatin-bound H2B ubiquitination and elimination. Retention of aberrant nucleosomal H2B increased the association of the FOXO transcription factor DAF-16 with chromatin, generating an ectopic gene expression profile detrimental to animal viability when insulin/IGF signaling was reduced in well-fed animals. Furthermore, we show that the ubiquitin-proteasome system regulates chromosomal histone turnover in human cells. During larval development, C. elegans epidermal cells undergo H2B turnover after fusing with the epithelial syncytium. Thus, histone degradation may be a widespread mechanism governing dynamic changes of the epigenome.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijingChina
- Beijing Frontier Research Center for Biological StructureTsinghua UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijingChina
- School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory for Protein ScienceTsinghua UniversityBeijingChina
| | - Dongdong Li
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijingChina
- Beijing Frontier Research Center for Biological StructureTsinghua UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijingChina
- School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory for Protein ScienceTsinghua UniversityBeijingChina
| | - Zeran Jia
- IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijingChina
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| | - Wenhao Zhang
- School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory for BioinformaticsTsinghua UniversityBeijingChina
| | - Yuling Chen
- School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory for BioinformaticsTsinghua UniversityBeijingChina
| | - Ruixue Zhao
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijingChina
- Beijing Frontier Research Center for Biological StructureTsinghua UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijingChina
- School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory for Protein ScienceTsinghua UniversityBeijingChina
| | | | | | - Haiteng Deng
- School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory for BioinformaticsTsinghua UniversityBeijingChina
| | - Yinqing Li
- IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijingChina
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
- MOE Key Laboratory for BioinformaticsTsinghua UniversityBeijingChina
| | - Wei Li
- School of MedicineTsinghua UniversityBeijingChina
| | - Shouhong Guang
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Guangshuo Ou
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijingChina
- Beijing Frontier Research Center for Biological StructureTsinghua UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchTsinghua UniversityBeijingChina
- School of Life SciencesTsinghua UniversityBeijingChina
- MOE Key Laboratory for Protein ScienceTsinghua UniversityBeijingChina
| |
Collapse
|
47
|
Amjadian T, Yaghmaei P, Nasim HR, Yari K. Impact of DNA methylation of the human mesoderm-specific transcript ( MEST) on male infertility. Heliyon 2023; 9:e21099. [PMID: 37928396 PMCID: PMC10622617 DOI: 10.1016/j.heliyon.2023.e21099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Male infertility accounts for nearly 40%-50% of all infertile cases. One of the most prevalent disorders detected in infertile men is errors in the MEST differentially methylated region (DMR), which has been correlated with poor sperm indexes. The aim of our study was to characterize the methylation pattern of the MEST gene, along with assessing seminal factors and chromatin condensation in sperm samples from both infertile patients and fertile cases, all of whom were candidates for intracytoplasmic sperm injection. We collected forty-five semen specimens from men undergoing routine spermiogram analysis at the Infertility Treatment Center. The specimens consisted of 15 samples of normospermia as the control group, 15 individuals of asthenospermia, and 15 individuals of oligoasthenoteratospermia as the cases group. Standard semen analysis and the chromatin quality and sperm maturity tests using aniline blue staining were performed. The DNA from spermatozoa was extracted and treated with a sodium bisulfite-based procedure. The methylation measure was done quantitatively at the DMRs of the MEST gene by quantitative methylation-specific polymerase chain reaction (qMSP). The mean percentages of total motility, progression, and morphology in normospermia were significantly higher than oligoasthenoteratospermia and asthenospermia, and they were substantially higher in asthenospermia compared to oligoasthenoteratospermia (P ≤ 0.05). The mean percentages of histone transition abnormality and MEST methylation in oligoasthenoteratospermia were significantly higher than asthenospermia and normospermia (P ≤ 0.05). A negative correlation existed between the histone transition abnormality and MEST methylation with sperm parameters. In conclusion, chromatin integrity, sperm maturity, and MEST methylation may be considered important predictors for addressing male factor infertility. Therefore, we suggest that male infertility may be linked to methylation of the imprinted genes.
Collapse
Affiliation(s)
- Tayebeh Amjadian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hayati Roodbari Nasim
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kheirollah Yari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
48
|
Agudo-Rios C, Rogers A, King I, Bhagat V, Nguyen LMT, Córdova-Fletes C, Krapf D, Strauss JF, Arévalo L, Merges GE, Schorle H, Roldan ERS, Teves ME. SPAG17 mediates nuclear translocation of protamines during spermiogenesis. Front Cell Dev Biol 2023; 11:1125096. [PMID: 37766963 PMCID: PMC10520709 DOI: 10.3389/fcell.2023.1125096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Protamines (PRM1 and PRM2) are small, arginine-rich, nuclear proteins that replace histones in the final stages of spermiogenesis, ensuring chromatin compaction and nuclear remodeling. Defects in protamination lead to increased DNA fragmentation and reduced male fertility. Since efficient sperm production requires the translocation of protamines from the cytoplasm to the nucleus, we investigated whether SPAG17, a protein crucial for intracellular protein trafficking during spermiogenesis, participates in protamine transport. Initially, we assessed the protein-protein interaction between SPAG17 and protamines using proximity ligation assays, revealing a significant interaction originating in the cytoplasm and persisting within the nucleus. Subsequently, immunoprecipitation and mass spectrometry (IP/MS) assays validated this initial observation. Sperm and spermatids from Spag17 knockout mice exhibited abnormal protamination, as revealed by chromomycin A3 staining, suggesting defects in protamine content. However, no differences were observed in the expression of Prm1 and Prm2 mRNA or in protein levels between testes of wild-type and Spag17 knockout mice. Conversely, immunofluorescence studies conducted on isolated mouse spermatids unveiled reduced nuclear/cytoplasm ratios of protamines in Spag17 knockout spermatids compared to wild-type controls, implying transport defects of protamines into the spermatid nucleus. In alignment with these findings, in vitro experiments involving somatic cells, including mouse embryonic fibroblasts, exhibited compromised nuclear translocation of PRM1 and PRM2 in the absence of SPAG17. Collectively, our results present compelling evidence that SPAG17 facilitates the transport of protamines from the cytoplasm to the nucleus.
Collapse
Affiliation(s)
- Clara Agudo-Rios
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Amber Rogers
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Isaiah King
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Virali Bhagat
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Le My Tu Nguyen
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Gina Esther Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
49
|
Garrido N, Boitrelle F, Saleh R, Durairajanayagam D, Colpi G, Agarwal A. Sperm epigenetics landscape: correlation with embryo quality, reproductive outcomes and offspring's health. Panminerva Med 2023; 65:166-178. [PMID: 37335245 DOI: 10.23736/s0031-0808.23.04871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Epigenetics refers to how gene expression and function are modulated without modifying the DNA sequence but through subtle molecular changes or interactions with it. As spermatogenesis progresses, male germ cells suffer plenty of epigenetic modifications, resulting in the definitive epigenome of spermatozoa conditioning its functionality, and this process can be altered by several internal and external factors. The paternal epigenome is crucial for sperm function, fertilization, embryo development, and offspring's health, and altered epigenetic states are associated with male infertility with or without altered semen parameters, embryo quality impairment, and worse ART outcomes together with the future offspring's health risks mainly through intergenerational transmission of epigenetic marks. Identifying epigenetic biomarkers may improve male factor diagnosis and the development of targeted therapies, not only to improve fertility but also to allow an early detection of risk and disease prevention in the progeny. While still there is much research to be done, hopefully in the near future, improvements in high-throughput technologies applied to epigenomes will permit our understanding of the underlying epigenetic mechanisms and the development of diagnostics and therapies leading to improved reproductive outcomes. In this review, we discuss the mechanisms of epigenetics in sperm and how epigenetics behave during spermatogenesis. Additionally, we elaborate on the relationship of sperm epigenetics with sperm parameters and male infertility, and highlight the impact of sperm epigenetic alterations on sperm parameters, embryo quality, ART outcomes, miscarriage rates and offspring's health. Furthermore, we provide insights into the future research of epigenetic alterations in male infertility.
Collapse
Affiliation(s)
- Nicolás Garrido
- Global Andrology Forum, Moreland Hills, OH, USA
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Florence Boitrelle
- Global Andrology Forum, Moreland Hills, OH, USA
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Ramadan Saleh
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Damayanthi Durairajanayagam
- Global Andrology Forum, Moreland Hills, OH, USA
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Giovanni Colpi
- Global Andrology Forum, Moreland Hills, OH, USA
- Next Fertility Procrea, Lugano, Switzerland
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA -
- American Center for Reproductive Medicine, Cleveland, OH, USA
| |
Collapse
|
50
|
Zhang X, Peng J, Wu M, Sun A, Wu X, Zheng J, Shi W, Gao G. Broad phosphorylation mediated by testis-specific serine/threonine kinases contributes to spermiogenesis and male fertility. Nat Commun 2023; 14:2629. [PMID: 37149634 PMCID: PMC10164148 DOI: 10.1038/s41467-023-38357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023] Open
Abstract
Genetic studies elucidate a link between testis-specific serine/threonine kinases (TSSKs) and male infertility in mammals, but the underlying mechanisms are unclear. Here, we identify a TSSK homolog in Drosophila, CG14305 (termed dTSSK), whose mutation impairs the histone-to-protamine transition during spermiogenesis and causes multiple phenotypic defects in nuclear shaping, DNA condensation, and flagellar organization in spermatids. Genetic analysis demonstrates that kinase catalytic activity of dTSSK, which is functionally conserved with human TSSKs, is essential for male fertility. Phosphoproteomics identify 828 phosphopeptides/449 proteins as potential substrates of dTSSK enriched primarily in microtubule-based processes, flagellar organization and mobility, and spermatid differentiation and development, suggesting that dTSSK phosphorylates various proteins to orchestrate postmeiotic spermiogenesis. Among them, the two substrates, protamine-like protein Mst77F/Ser9 and transition protein Mst33A/Ser237, are biochemically validated to be phosphorylated by dTSSK in vitro, and are genetically demonstrated to be involved in spermiogenesis in vivo. Collectively, our findings demonstrate that broad phosphorylation mediated by TSSKs plays an indispensable role in spermiogenesis.
Collapse
Affiliation(s)
- Xuedi Zhang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ju Peng
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Menghua Wu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Angyang Sun
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiangyu Wu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jie Zheng
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wangfei Shi
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|