1
|
Brezak M, Sumbalova Koledova Z. Defective Mammary Epithelial Outgrowth in Transgenic EKAREV-NLS Mice: Correction via Estrogen Supplementation and Genetic Background Modification. J Mammary Gland Biol Neoplasia 2025; 30:1. [PMID: 39826008 PMCID: PMC11742856 DOI: 10.1007/s10911-025-09574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs. In this study, we report a significant defect in mammary epithelial development in EKAREV-NLS C57BL/6J female mice. Our findings reveal that these mice exhibit severely impaired mammary epithelial outgrowth, linked to systemic defects including disrupted estrous cycling, impaired ovarian follicle maturation, anovulation, and reduced reproductive fitness. Notably, estrogen supplementation was sufficient to enhance mammary epithelial growth in the EKAREV-NLS C57BL/6J females. Furthermore, outcrossing to the ICR genetic background fully restored normal mammary epithelial outgrowth, indicating that the observed phenotype is dependent on genetic background. We also confirmed the functional performance of the biosensor in hormone-supplemented and outcrossed tissues through time-lapse imaging of primary mammary epithelial cells. Our results underscore the critical need for thorough characterization of biosensor-carrying models before their application in specific research contexts. Additionally, this work highlights the influence of hormonal and genetic factors on mammary gland development and emphasizes the importance of careful consideration when selecting biosensor strains for mammary studies.
Collapse
Affiliation(s)
- Matea Brezak
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Sumbalova Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Yang C, Zheng H, Amin A, Faheem MS, Duan A, Li L, Xiao P, Li M, Shang J. Follicular Atresia in Buffalo: Cocaine- and Amphetamine-Regulated Transcript (CART) and the Underlying Mechanisms. Animals (Basel) 2024; 14:2138. [PMID: 39123664 PMCID: PMC11311020 DOI: 10.3390/ani14152138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Atresia is a process in ovarian follicles that is regulated by hormone-induced apoptosis. During atresia, granulosa cell (GC) apoptosis is a key mechanism orchestrated through diverse signaling pathways. Cocaine- and amphetamine-regulated transcript (CART) signaling within ovarian GCs has been demonstrated to play a key role in the regulation of follicular atresia in cattle, pigs, and sheep. The present work aimed to investigate the potential local regulatory role of CART in GC apoptosis-induced follicular atresia in buffalo, focusing on the modulation of the AKT/GSK3β/β-catenin signaling pathways, which are the intracellular signaling pathways involved in cell viability. Our findings revealed increased expression of CARTPT and BAX and decreased levels of AKT, β-catenin, and CYP19A1 genes in atretic follicles compared to healthy follicles. Subsequently, CART treatment in the presence of FSH inhibited the FSH-induced increase in GC viability by reducing estradiol production and increasing apoptosis. This change was accompanied by an increase in the gene expression levels of both CARTPT and BAX. At the protein level, treatment with CART in the presence of FSH negatively affected the activity of AKT, β-catenin, and LEF1, while the activity of GSK3β was enhanced. In conclusion, our study shows how CART negatively influences buffalo GC viability, underlying the modulation of the AKT/GSK3β/β-catenin pathway and promoting apoptosis-a key factor in follicular atresia.
Collapse
Affiliation(s)
- Chunyan Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Haiying Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Ahmed Amin
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Marwa S. Faheem
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Anqin Duan
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Lingyu Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
| | - Peng Xiao
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Mengqi Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| | - Jianghua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (H.Z.); (A.A.); (A.D.); (L.L.); (P.X.); (M.L.)
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
| |
Collapse
|
3
|
Wang Y, Wang J, Li Q, Xuan R, Guo Y, He P, Duan Q, Du S, Chao T. Transcriptomic and metabolomic data of goat ovarian and uterine tissues during sexual maturation. Sci Data 2024; 11:777. [PMID: 39003290 PMCID: PMC11246480 DOI: 10.1038/s41597-024-03565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 07/15/2024] Open
Abstract
The ovaries and uterus are crucial reproductive organs in mammals, and their coordinated development ensures the normal development of sexual maturity and reproductive capacity. This study aimed to comprehensively capture the different physiological stages of the goat's sexual maturation by selecting four specific time points. We collected samples of ovarian and uterine tissues from five female Jining Gray goats at each time point: after birth (D1), 2-month-old (M2), 4-month-old (M4), and 6-month-old (M6). By combining transcriptomic sequencing of 40 samples (including rRNA-depleted RNA-seq libraries with 3607.8 million reads and miRNA-seq libraries with 444.0 million reads) and metabolomics analysis, we investigated the transcriptomic mechanisms involved in reproductive regulation in the ovary and uterus during sexual maturation, as well as the changes in metabolites and their functional potential. Additionally, we analyzed blood hormone indices and uterine tissue sections to examine temporal changes. These datasets will provide a valuable reference for the reproductive regulation of the ovary and uterus, as well as the regulation of metabolites during sexual maturation in goats.
Collapse
Affiliation(s)
- Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qingling Duan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shanfeng Du
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
4
|
Li Y, Huang J, Ge C, Zhu S, Wang H, Zhang Y. The effects of prenatal azithromycin exposure on offspring ovarian development at different stages, doses, and courses. Biomed Pharmacother 2024; 172:116246. [PMID: 38359487 DOI: 10.1016/j.biopha.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Azithromycin, a commonly used macrolide antibiotic for treating chlamydial infections during pregnancy, has sparked investigations into its potential effects on offspring development. Despite these inquiries, there remains uncertainty about the specific impact of prenatal azithromycin exposure (PAzE) on offspring ovarian development and the precise "effect window". Pregnant mice, following clinical guidelines for azithromycin dosing, were orally administered azithromycin at different gestational stages [(gestational day, GD) 10-12 or GD 15-17], doses (50, 100, or 200 mg/kg·d), and courses (single or multiple). On GD 18, we collected offspring blood and ovaries to examine changes in fetal serum estradiol (E2) levels, fetal ovarian morphology, pre-granulosa cell function, and oocyte development. Multiple courses of PAzE resulted in abnormal fetal ovarian morphological development, disorganized germ cell nests, enhanced ovarian cell proliferation, and reduced apoptosis. Simultaneously, multiple courses of PAzE significantly increased fetal serum E2 levels, elevated ovarian steroidogenic function (indicated by Star, 3β-hsd, and Cyp19 expression), disrupted oocyte development (indicated by Figlα and Nobox expression), and led to alterations in the MAPK signal pathway in fetal ovaries, particularly in the high-dose treatment group. In contrast, a single course of PAzE reduced fetal ovarian cell proliferation, decreased steroidogenic function, and inhibited oocyte development, particularly through the downregulation of Mek2 expression in the MAPK signal pathway. These findings suggest that PAzE can influence various aspects of fetal mouse ovarian cell development. Multiple courses enhance pre-granulosa cell estrogen synthesis function and advance germ cell development, while a single terminal gestation dose inhibits germ cell development. These differential effects may be associated with changes in the MAPK signal pathway.
Collapse
Affiliation(s)
- Yating Li
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Sen Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
5
|
King TL, Underwood KB, Hansen KK, Kinter MT, Schneider A, Masternak MM, Mason JB. Chronological and reproductive aging-associated changes in resistance to oxidative stress in post-reproductive female mice. GeroScience 2024; 46:1159-1173. [PMID: 37454002 PMCID: PMC10828445 DOI: 10.1007/s11357-023-00865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/01/2023] [Indexed: 07/18/2023] Open
Abstract
Effort toward reproduction is often thought to negatively influence health and survival. Reproduction has been shown to influence metabolism, but the pathways and mechanisms have yet to be thoroughly elucidated. In the current experiments, our aim was to dissect the role of young and old ovarian tissues in the response to oxidative stress, through changes in liver oxidative stress response proteins. Liver proteins were analyzed in control mice at 4, 13, and 27 months of age and compared to 23-month-old mice which received young ovarian tissue transplants (intact or follicle-depleted) at 13 months of age. In control mice, of the 29 oxidative stress response proteins measured, 31% of the proteins decreased, 52% increased, and 17% were unchanged from 13 to 27 months. The greatest changes were seen during the period of reproductive failure, from 4 to 13 months of age. In transplanted mice, far more proteins were decreased from 13 to 23 months (93% in follicle-containing young ovary recipients; 62% in follicle-depleted young ovary recipients). Neither transplant group reflected changes seen in control mice between 13 and 27 months. Estradiol levels in transplant recipient mice were not increased compared with age-matched control mice. The current results suggest the presence of a germ cell- and estradiol-independent ovarian influence on aging-associated changes in the response to oxidative stress, which is manifest differently in reproductive-aged adults and post-reproductive-aged mice. The results presented here separate chronological and ovarian aging and the influence of estradiol in the response to aging-associated oxidative stress and support a novel, estradiol-independent role for the ovary in female health and survival.
Collapse
Affiliation(s)
- Tristin L King
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, 84322, USA
| | - Kaden B Underwood
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, 84322, USA
| | - Kindra K Hansen
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, 84322, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas-RS, Brazil
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Jeffrey B Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, 84322, USA.
| |
Collapse
|
6
|
Yan J, Wu T, Zhang J, Gao Y, Wu JM, Wang S. Revolutionizing the female reproductive system research using microfluidic chip platform. J Nanobiotechnology 2023; 21:490. [PMID: 38111049 PMCID: PMC10729361 DOI: 10.1186/s12951-023-02258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Comprehensively understanding the female reproductive system is crucial for safeguarding fertility and preventing diseases concerning women's health. With the capacity to simulate the intricate physio- and patho-conditions, and provide diagnostic platforms, microfluidic chips have fundamentally transformed the knowledge and management of female reproductive health, which will ultimately promote the development of more effective assisted reproductive technologies, treatments, and drug screening approaches. This review elucidates diverse microfluidic systems in mimicking the ovary, fallopian tube, uterus, placenta and cervix, and we delve into the culture of follicles and oocytes, gametes' manipulation, cryopreservation, and permeability especially. We investigate the role of microfluidics in endometriosis and hysteromyoma, and explore their applications in ovarian cancer, endometrial cancer and cervical cancer. At last, the current status of assisted reproductive technology and integrated microfluidic devices are introduced briefly. Through delineating the multifarious advantages and challenges of the microfluidic technology, we chart a definitive course for future research in the woman health field. As the microfluidic technology continues to evolve and advance, it holds great promise for revolutionizing the diagnosis and treatment of female reproductive health issues, thus propelling us into a future where we can ultimately optimize the overall wellbeing and health of women everywhere.
Collapse
Affiliation(s)
- Jinfeng Yan
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Yueyue Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jia-Min Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
7
|
Park EY, Park JH, Mai NTQ, Moon BS, Choi JK. Control of the growth and development of murine preantral follicles in a biomimetic ovary using a decellularized porcine scaffold. Mater Today Bio 2023; 23:100824. [PMID: 37868950 PMCID: PMC10587716 DOI: 10.1016/j.mtbio.2023.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
This study aimed to derive mature oocytes from murine preantral follicles cultured in a biomimetic ovary with a porcine scaffold using decellularization technology. We evaluated the DNA content and the presence of cell and extracellular matrix (ECM) components, including collagen, elastin, and glycosaminoglycans (GAGs), in decellularized (decell) porcine ovaries. The DNA content inthe decell ovarian tissues was approximately 94 % less than that in native tissues (66 ± 9.8 ng/mg vs. 1139 ± 269 ng/mg). Furthermore, the ECM component integrity was maintained in the decell ovarian tissue. The soluble collagen concentration of native ovarian tissue (native) was 195.34 ± 15.13 μg/mg (dry wt.), which was less than 878.6 ± 8.24 μg/mg for the decell ovarian tissue due to the loss of cellular mass. Hydrogels derived from decell porcine ovaries were prepared to develop an in vitro biomimetic ovary with appropriate ECM concentration (2-6 mg/mL). Scanning electron microscope (SEM) imagining revealed that the complex fiber network and porous structure were maintained in all groups treated with varying ECM concentration (2-6 mg/mL). Furthermore, rheometer analysis indicated that mechanical strength increased with ECM concentration in a dose-dependently. The preantral follicles cultured with 4 mg/mL ECM showed high rates of antral follicle (66 %) and mature oocyte (metaphase II) development (47 %). The preantral follicles cultured in a biomimetic ovary with a decell porcine scaffold showed a higher rate of antral follicle and mature oocytes than those cultured in other biomaterials such as collagen and Matrigel. In mature oocytes derived from antral follicles, meiotic spindles and nuclei were stained using a tubulin antibody and Hoechst, respectively. Two-cell embryos were developed from MII oocytes following parthenogenetic activation. Preantral follicles were cultured in a biomimetic ovary derived from the ECM of a decell porcine ovary, and embryos were generated from MII oocytes. This biomimetic ovary could contribute to restoring fertility in infertile women with reduced ovarian function, benefit mating efforts for endangered species, and maintain animals with valuable genetic traits.
Collapse
Affiliation(s)
- Eun young Park
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jin hee Park
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Nhu Thi Quynh Mai
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Byoung-San Moon
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Jung Kyu Choi
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, 38541, South Korea
| |
Collapse
|
8
|
Lu X, Mao T, Dai Y, Zhu L, Li X, Ao Y, Wang H. Azithromycin exposure during pregnancy disturbs the fetal development and its characteristic of multi-organ toxicity. Life Sci 2023; 329:121985. [PMID: 37516432 DOI: 10.1016/j.lfs.2023.121985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
AIMS Azithromycin is widely used in clinical practice for treating maternal infections during pregnancy. Meanwhile, azithromycin, as an "emerging pollutant", is increasingly polluting the environment due to the rapidly increasing usage (especially after the COVID-19). Previous studies have suggested a possible teratogenic risk of prenatal azithromycin exposure (PAzE), but its effects on fetal multi-organ development are still unclear. This study aimed to explore the potential impacts of PAzE. MATERIALS AND METHODS We focused on pregnancy outcomes, maternal/fetal serum phenotypes, and fetal multiple organ development in mice at different doses (50/200 mg/kg·d) during late pregnancy or at 200 mg/kg·d during different stages (mid-/late-pregnancy) and courses (single-/multi-course). KEY FINDINGS The results showed PAzE increased the rate of the absorbed fetus during mid-pregnancy and increased the intrauterine growth retardation rate (IUGR) during late pregnancy. PAzE caused multiple blood phenotypic changes in maternal and fetal mice, among which the number and degree of changes in fetal blood indicators were more significant. Moreover, PAzE inhibited long bone/cartilage development and adrenal steroid synthesis, promoting hepatic lipid production and ovarian steroid synthesis in varying degrees. The order of severity might be bone/cartilage > liver > gonads > other organs. PAzE-induced multi-organ alterations differed in stages, courses doses and fetal sex. The most apparent changes might be in high-dose, mid-pregnancy, multi-course, and female, while there was no typical rule for a dose-response relationship. SIGNIFICANCE This study confirmed PAzE could cause fetal developmental abnormalities and multi-organ functional alterations, which deepens the comprehensive understanding of azithromycin's fetal developmental toxicity.
Collapse
Affiliation(s)
- Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaomin Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ying Ao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
9
|
Miao X, Guo R, Williams A, Lee C, Ma J, Wang PJ, Cui W. Replication Protein A1 is essential for DNA damage repair during mammalian oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547725. [PMID: 37461444 PMCID: PMC10349974 DOI: 10.1101/2023.07.04.547725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Persistence of unrepaired DNA damage in oocytes is detrimental and may cause genetic aberrations, miscarriage, and infertility. RPA, an ssDNA-binding complex, is essential for various DNA-related processes. Here we report that RPA plays a novel role in DNA damage repair during postnatal oocyte development after meiotic recombination. To investigate the role of RPA during oogenesis, we inactivated RPA1 (replication protein A1), the largest subunit of the heterotrimeric RPA complex, specifically in oocytes using two germline-specific Cre drivers (Ddx4-Cre and Zp3-Cre). We find that depletion of RPA1 leads to the disassembly of the RPA complex, as evidenced by the absence of RPA2 and RPA3 in RPA1-deficient oocytes. Strikingly, severe DNA damage occurs in RPA1-deficient GV-stage oocytes. Loss of RPA in oocytes triggered the canonical DNA damage response mechanisms and pathways, such as activation of ATM, ATR, DNA-PK, and p53. In addition, the RPA deficiency causes chromosome misalignment at metaphase I and metaphase II stages of oocytes, which is consistent with altered transcript levels of genes involved in cytoskeleton organization in RPA1-deficient oocytes. Absence of the RPA complex in oocytes severely impairs folliculogenesis and leads to a significant reduction in oocyte number and female infertility. Our results demonstrate that RPA plays an unexpected role in DNA damage repair during mammalian folliculogenesis.
Collapse
Affiliation(s)
- Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Rui Guo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Andrea Williams
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Catherine Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jun Ma
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
10
|
Zhang L, Zou J, Wang Z, Li L. A Subpathway and Target Gene Cluster-Based Approach Uncovers lncRNAs Associated with Human Primordial Follicle Activation. Int J Mol Sci 2023; 24:10525. [PMID: 37445702 DOI: 10.3390/ijms241310525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as a critical regulator in controlling the expression level of genes involved in cell differentiation and development. Primordial follicle activation (PFA) is the first step for follicle maturation, and excessive PFA results in premature ovarian insufficiency (POI). However, the correlation between lncRNA and cell differentiation was largely unknown, especially during PFA. In this study, we observed the expression level of lncRNA was more specific than protein-coding genes in both follicles and granulosa cells, suggesting lncRNA might play a crucial role in follicle development. Hence, a systematical framework was needed to infer the functions of lncRNAs during PFA. Additionally, an increasing number of studies indicate that the subpathway is more precise in reflecting biological processes than the entire pathway. Given the complex expression patterns of lncRNA target genes, target genes were further clustered based on their expression similarity and classification performance to reveal the activated/inhibited gene modules, which intuitively illustrated the diversity of lncRNA regulation. Moreover, the knockdown of SBF2-AS1 in the A549 cell line and ZFAS1 in the SK-Hep1 cell line further validated the function of SBF2-AS1 in regulating the Hippo signaling subpathway and ZFAS1 in the cell cycle subpathway. Overall, our findings demonstrated the importance of subpathway analysis in uncovering the functions of lncRNAs during PFA, and paved new avenues for future lncRNA-associated research.
Collapse
Affiliation(s)
- Li Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiyuan Zou
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhihao Wang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Wu GMJ, Chen ACH, Yeung WSB, Lee YL. Current progress on in vitro differentiation of ovarian follicles from pluripotent stem cells. Front Cell Dev Biol 2023; 11:1166351. [PMID: 37325555 PMCID: PMC10267358 DOI: 10.3389/fcell.2023.1166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian female reproduction requires a functional ovary. Competence of the ovary is determined by the quality of its basic unit-ovarian follicles. A normal follicle consists of an oocyte enclosed within ovarian follicular cells. In humans and mice, the ovarian follicles are formed at the foetal and the early neonatal stage respectively, and their renewal at the adult stage is controversial. Extensive research emerges recently to produce ovarian follicles in-vitro from different species. Previous reports demonstrated the differentiation of mouse and human pluripotent stem cells into germline cells, termed primordial germ cell-like cells (PGCLCs). The germ cell-specific gene expressions and epigenetic features including global DNA demethylation and histone modifications of the pluripotent stem cells-derived PGCLCs were extensively characterized. The PGCLCs hold potential for forming ovarian follicles or organoids upon cocultured with ovarian somatic cells. Intriguingly, the oocytes isolated from the organoids could be fertilized in-vitro. Based on the knowledge of in-vivo derived pre-granulosa cells, the generation of these cells from pluripotent stem cells termed foetal ovarian somatic cell-like cells was also reported recently. Despite successful in-vitro folliculogenesis from pluripotent stem cells, the efficiency remains low, mainly due to the lack of information on the interaction between PGCLCs and pre-granulosa cells. The establishment of in-vitro pluripotent stem cell-based models paves the way for understanding the critical signalling pathways and molecules during folliculogenesis. This article aims to review the developmental events during in-vivo follicular development and discuss the current progress of generation of PGCLCs, pre-granulosa and theca cells in-vitro.
Collapse
Affiliation(s)
- Genie Min Ju Wu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
12
|
Rodriguez-Wallberg KA, Jiang Y, Lekberg T, Nilsson HP. The Late Effects of Cancer Treatment on Female Fertility and the Current Status of Fertility Preservation-A Narrative Review. Life (Basel) 2023; 13:1195. [PMID: 37240840 PMCID: PMC10224240 DOI: 10.3390/life13051195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Fertility counseling should be offered to all individuals of young reproductive age early in the patient's trajectory following a cancer diagnosis. Systemic cancer treatment and radiotherapy often have an inherent gonadotoxic effect with the potential to induce permanent infertility and premature ovarian failure. For the best chances to preserve a patient's fertility potential and to improve future quality of life, fertility preservation methods should be applied before cancer treatment initiation, thus multidisciplinary team-work and timely referral to reproductive medicine centers specialized in fertility preservation is recommended. We aim to review the current clinical possibilities for fertility preservation and summarize how infertility, as a late effect of gonadotoxic treatment, affects the growing population of young female cancer survivors.
Collapse
Affiliation(s)
- Kenny A. Rodriguez-Wallberg
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Yanyu Jiang
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
| | - Tobias Lekberg
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
- Breast, Endocrine tumors and Sarcoma Cancer Theme, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Hanna P. Nilsson
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
| |
Collapse
|
13
|
Huang J, Wu T, Li Y, Zhang Y, Yu X, Xu D, Wang H. Toxic effect window of ovarian development in female offspring mice induced by prenatal prednisone exposure with different doses and time. J Ovarian Res 2023; 16:71. [PMID: 37038227 PMCID: PMC10088227 DOI: 10.1186/s13048-023-01148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Prednisone is one of the most used synthetic glucocorticoids during pregnancy. Epidemiological investigations suggested that prenatal prednisone therapy could affect fetal development, but systematic studies on its effects on ovarian development and the "toxic effect window" remained scarce. METHODS In this study, by simulating clinical application characteristics, Kunming mice were given prednisone by oral gavage with different doses (0.25 or 1.0 mg/kg·d) or at different time gestational days (GD) (GD0-9, GD10-18, or GD0-18). Blood and ovaries of fetal mice were collected on GD18, and the serum estradiol level and the related function indexes of ovarian granulosa cells and oocytes were detected. RESULTS Compared with the control group, prenatal prednisone exposure (PPE) induced pathological injury and enhanced cell proliferation in fetal mice ovary. Furthermore, the expression of steroid synthesis functional genes in pre-granulosa cells, the oocyte function markers, and developmentally related genes was enhanced with different doses or at different time of PPE. The Hippo signaling was activated in the fetal ovary of PPE groups. The above changes were most significant in the low or high-dose and full-term PPE groups. CONCLUSION PPE caused various cell developmental toxicity in the fetal ovary, especially in the low or high-dose, full-term exposure groups. The potential mechanism might be related to the activation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Jing Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Tiancheng Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yating Li
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Xu
- Department of Pharmacy, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
14
|
Ludwig CLM, Bohleber S, Lapp R, Rebl A, Wirth EK, Langhammer M, Schweizer U, Weitzel JM, Michaelis M. Alterations in gonadotropin, apoptotic and metabolic pathways in granulosa cells warrant superior fertility of the Dummerstorf high fertility mouse line 1. J Ovarian Res 2023; 16:32. [PMID: 36739419 PMCID: PMC9898973 DOI: 10.1186/s13048-023-01113-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/29/2023] [Indexed: 02/06/2023] Open
Abstract
The development and maturation of ovarian follicles is a complex and highly regulated process, which is essential for successful ovulation. During recent decades, several mouse models provided insights into the regulation of folliculogenesis. In contrast to the commonly used transgenic or knockout mouse models, the Dummerstorf high-fertility mouse line 1 (FL1) is a worldwide unique selection experiment for increased female reproductive performance and extraordinary high fertility. Interactions of cycle-related alterations of parameters of the hypothalamic pituitary gonadal axis and molecular factors in the ovary lead to improved follicular development and therefore increased ovulation rates in FL1 mice. FL1 females almost doubled the number of ovulated oocytes compared to the unselected control mouse line. To gain insights into the cellular mechanisms leading to the high fertility phenotype we used granulosa cells isolated from antral follicles for mRNA sequencing. Based on the results of the transcriptome analysis we additionally measured hormones and growth factors associated with follicular development to complement the picture of how the signaling pathways are regulated. While IGF1 levels are decreased in FL1 mice in estrus, we found no differences in insulin, prolactin and oxytocin levels in FL1 mice compared to the control line. The results of the mRNA sequencing approach revealed that the actions of insulin, prolactin and oxytocin are restricted local to the granulosa cells, since hormonal receptor expression is differentially regulated in FL1 mice. Additionally, numerous genes, which are involved in important gonadotropin, apoptotic and metabolic signaling pathways in granulosa cells, are differentially regulated in granulosa cells of FL1 mice.We showed that an overlap of different signaling pathways reflects the crosstalk between gonadotropin and growth factor signaling pathways, follicular atresia in FL1 mice is decreased due to improved granulosa cell survival and by improving the efficiency of intracellular signaling, glucose metabolism and signal transduction, FL1 mice have several advantages in reproductive performance and therefore increased the ovulation rate. Therefore, this worldwide unique high fertility model can provide new insights into different factors leading to improved follicular development and has the potential to improve our understanding of high fertility.
Collapse
Affiliation(s)
| | - Simon Bohleber
- grid.10388.320000 0001 2240 3300Institut für Biochemie und Molekularbiologie (IBMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Rebecca Lapp
- grid.418188.c0000 0000 9049 5051Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Alexander Rebl
- grid.418188.c0000 0000 9049 5051Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eva Katrin Wirth
- grid.6363.00000 0001 2218 4662Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Martina Langhammer
- grid.418188.c0000 0000 9049 5051Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ulrich Schweizer
- grid.10388.320000 0001 2240 3300Institut für Biochemie und Molekularbiologie (IBMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Joachim M. Weitzel
- grid.418188.c0000 0000 9049 5051Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marten Michaelis
- grid.418188.c0000 0000 9049 5051Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
15
|
Overland MR, Li Y, Derpinghaus A, Aksel S, Cao M, Ladwig N, Cunha GR, Himelreich-Perić M, Baskin LS. Development of the human ovary: Fetal through pubertal ovarian morphology, folliculogenesis and expression of cellular differentiation markers. Differentiation 2023; 129:37-59. [PMID: 36347737 DOI: 10.1016/j.diff.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 01/28/2023]
Abstract
A definition of normal human fetal and early postnatal ovarian development is critical to the ability to accurately diagnose the presence or absence of functional ovarian tissue in clinical specimens. Through assembling an extensive histologic and immunohistochemical developmental ontogeny of human ovarian specimens from 8 weeks of gestation through 16 years of postnatal, we present a comprehensive immunohistochemical mapping of normal protein expression patterns in the early fetal through post-pubertal human ovary and detail a specific expression-based definition of the early stages of follicular development. Normal fetal and postnatal ovarian tissue is defined by the presence of follicular structures and characteristic immunohistochemical staining patterns, including granulosa cells expressing Forkhead Box Protein L2 (FOXL2). However, the current standard array of immunohistochemical markers poorly defines ovarian stromal tissue, and additional work is needed to identify new markers to advance our ability to accurately identify ovarian stromal components in gonadal specimens from patients with disorders of sexual differentiation.
Collapse
Affiliation(s)
- Maya R Overland
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Yi Li
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Sena Aksel
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Nicholas Ladwig
- Department of Pathology, University of California, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Marta Himelreich-Perić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
16
|
Serum Scavenging Capacity and Folliculogenesis Impact following Flaxseed Consumption in the First-Generation Mice Pups. J Toxicol 2022; 2022:5342131. [PMID: 35677062 PMCID: PMC9170434 DOI: 10.1155/2022/5342131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Flaxseed is a source of antioxidants utilized for female infertility treatment in traditional medicine. This study investigated the effects of flax hydroalcoholic extract and flaxseeds during prenatal and postnatal (PND) periods on folliculogenesis and serum total antioxidant capacity (TAC). Pregnant NMRI mice received 500 and 1000 mg/kg of flax extract (LE) and the same doses of flaxseed (LS). Female pups received the same regimen for 56 days. The body, ovarian morphometry, follicle development, and TAC levels were evaluated. The ovarian weight significantly increased in the LE1000 group compared to the LS500 group. The LE500 group had a considerably lower number of primary and antral follicles compared to the CTL and LS1000 groups. The number of antral follicles significantly increased in the LE1000 group compared to the LS500 and LE500 groups. The number of preovulatory follicles was higher in the LE1000 group. A significant increase in the TAC levels was detected in the LS500, LS1000, and LE1000 groups. LE showed a dose-dependent protective effect on the folliculogenesis in F1, which is more evident with the dosage of 1000 mg/kg. This could be related to the strongest antioxidant property of LE1000, as shown by the highest levels of TAC.
Collapse
|
17
|
Habermehl TL, Underwood KB, Welch KD, Gawrys SP, Parkinson KC, Schneider A, Masternak MM, Mason JB. Aging-associated changes in motor function are ovarian somatic tissue-dependent, but germ cell and estradiol independent in post-reproductive female mice exposed to young ovarian tissue. GeroScience 2022; 44:2157-2169. [PMID: 35349034 PMCID: PMC8962938 DOI: 10.1007/s11357-022-00549-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/17/2022] [Indexed: 11/04/2022] Open
Abstract
A critical mediator of evolution is natural selection, which operates by the divergent reproductive success of individuals and results in conformity of an organism with its environment. Reproductive function has evolved to support germline transmission. In mammalian ovaries, this requires healthy, active gonad function, and follicle development. However, healthy follicles do not contribute to germline transmission in a dead animal. Therefore, support of the health and survival of the organism, in addition to fertility, must be considered as an integral part of reproductive function. Reproductive and chronological aging both impose a burden on health and increase disease rates. Tremors are a common movement disorder and are often correlated with increasing age. Muscle quality is diminished with age and these declines are gender-specific and are influenced by menopause. In the current experiments, we evaluated aging-associated and reproduction-influenced changes in motor function, utilizing changes in tremor amplitude and grip strength. Tremor amplitude was increased with aging in normal female mice. This increase in tremor amplitude was prevented in aged female mice that received ovarian tissue transplants, both in mice that received germ cell-containing or germ cell-depleted ovarian tissue. Grip strength was decreased with aging in normal female mice. This decrease in grip strength was prevented in aged female mice that received either germ cell-containing or germ cell-depleted tissue transplants. As expected, estradiol levels decreased with aging in normal female mice. Estradiol levels did not change with exposure to young ovarian tissues/cells. Surprisingly, estradiol levels were not increased in aged females that received ovaries from actively cycling, young donors. Overall, tremor amplitude and grip strength were negatively influenced by aging and positively influenced by exposure to young ovarian tissues/cells in aged female mice, and this positive influence was independent of ovarian germ cells and estradiol levels. These findings provide a strong incentive for further investigation of the influence of ovarian somatic tissue on health. In addition, changes in tremor amplitude may serve as an additional marker of biological age.
Collapse
|
18
|
Ding Z, Duan H, Ge W, Lv J, Zeng J, Wang W, Niu T, Hu J, Zhang Y, Zhao X. Regulation of progesterone during follicular development by FSH and LH in sheep. Anim Reprod 2022; 19:e20220027. [PMID: 35847559 PMCID: PMC9276014 DOI: 10.1590/1984-3143-ar2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022] Open
Abstract
Progesterone (P4) can participate in the development of female mammalian antral follicles through nuclear receptor (PGR). In this experiment, the differences of P4 synthesis and PGR expression in different developmental stages of sheep antral follicles (large > 5mm, medium 2-5mm, small < 2mm) were detected by enzyme-linked immunosorbent assay, immunohistochemistry, qRT-PCR and Western blotting. Secondly, sheep follicular granulosa cells were cultured in vitro. The effects of different concentrations of FSH and LH on P4 synthesis and PGR expression were studied. The results showed that acute steroid regulatory protein (StAR), cholesterol side chain lyase (P450scc) and 3β Hydroxysteroid dehydrogenase (3β-HSD) and PGR were expressed in antral follicles, and with the development of antral follicles in sheep, StAR, P450scc and the expression of 3β-HSD and PGR increased significantly. In vitro experiments showed that FSH and LH alone or together treatment could regulate P4 secretion and PGR expression in sheep follicular granulosa cells to varying degrees, hint P4 and PGR by FSH and LH, and LH was the main factor. Our results supplement the effects of FSH and LH on the regulation of P4 synthesis during follicular development, which provides new data for further study of steroid synthesis and function in follicular development.
Collapse
Affiliation(s)
- Ziqiang Ding
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Hongwei Duan
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Wenbo Ge
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, China
| | - Jianshu Lv
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Jianlin Zeng
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Wenjuan Wang
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Tian Niu
- Gansu Agricultural University, China
| | - Junjie Hu
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Yong Zhang
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| | - Xingxu Zhao
- Gansu Agricultural University, China; Gansu Key Laboratory of Animal Generational Physiology, China
| |
Collapse
|
19
|
Kehoe S, Jewgenow K, Johnston PR, Braun BC. Early preantral follicles of the domestic cat express gonadotropin and sex steroid signalling potential. Biol Reprod 2021; 106:95-107. [PMID: 34672344 DOI: 10.1093/biolre/ioab192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Key biomolecular processes which regulate primordial ovarian follicle dormancy and early folliculogenesis in mammalian ovaries are not fully understood. The domestic cat is a useful model to study ovarian folliculogenesis and is the most relevant for developing in vitro growth methods to be implemented in wild felid conservation breeding programs. Previously, RNA-sequencing of primordial, primary, and secondary follicle samples from domestic cat implicated ovarian steroidogenesis and steroid reception during follicle development. Here we aimed to identify which sex steroid biosynthesis and metabolism enzymes, gonadotropin receptors, and sex steroid receptors are present and may be potential regulators. Differential gene expression, functional annotation, and enrichment analyses were employed and protein localisation was studied too. Gene transcripts for PGR, PGRMC1, AR (steroid receptors), CYP11A1, CYP17A1, HSD17B1 and HSD17B17 (steroidogenic enzymes), and STS (steroid metabolising enzyme) were significantly differentially expressed (Q values of ≤0.05). Differential gene expression increased in all transcripts during follicle transitions apart from AR which decreased by the secondary stage. Immunohistochemistry localised FSHR and LHCGR to oocytes at each stage. PGRMC1 immunostaining was strongest in granulosa cells whereas AR was strongest in oocytes throughout each stage. Protein signals for steroidogenic enzymes were only detectable in secondary follicles. Products of these significantly differentially expressed genes may regulate domestic cat preantral folliculogenesis. In vitro growth could be optimised as all early follicles express gonadotropin and steroid receptors meaning hormone interaction and response may be possible. Protein expression analyses of early secondary follicles supported its potential for producing sex steroids.
Collapse
Affiliation(s)
- S Kehoe
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - K Jewgenow
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - P R Johnston
- Berlin Center for Genomics in Biodiversity Research BeGenDiv; Leibniz-Institute of Freshwater Ecology and Inland Fisheries; and Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | - B C Braun
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
20
|
Lee S, Kang HG, Ryou C, Cheon YP. Spatiotemporal expression of aquaporin 9 is critical for the antral growth of mouse ovarian follicles†. Biol Reprod 2021; 103:828-839. [PMID: 32577722 DOI: 10.1093/biolre/ioaa108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/21/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Although a few aquaporins (AQPs) expressed in granulosa cells have been postulated to mediate fluid passage into the antrum, the specific expression of AQPs in different follicle cell types and stages and their roles have not been evaluated extensively. The spatiotemporal expression of aquaporin (Aqp) 7, 8, and 9 and the functional roles of Aqp9 in antral growth and ovulation were examined using a superovulation model and 3-dimensional follicle culture. Aqp9 was expressed at a high level in the rapid growth phase (24-48 h post equine chorionic gonadotropin (eCG) for superovulation induction) compared to Aqp7 (after human chorionic gonadotropin (hCG)) and Aqp8 (8-24 h post eCG and 24 h post hCG). A dramatic increase in the expression and localization of Aqp9 mRNA in theca cells was observed, as evaluated using quantitative reverse transcription-polymerase (RT-PCR) coupled with laser capture microdissection and immunohistochemistry. AQP9 was located primarily on the theca cells of the tertiary and preovulatory follicles but not on the ovulated follicles. In phloretin-treated mice, the diameter of the preovulatory follicles and the number of ovulated oocytes decreased. Consistent with these findings, knocking down Aqp9 expression with an Aqp9 siRNA inhibited follicle growth (0.28:1 = siRNA:control) and decreased the number of ovulated follicles (0.36:1 = siRNA:control) during in vitro growth and ovulation induction. Based on these results, the expression of AQPs is under the control of the physiological status, and AQP9 expression in theca during folliculogenesis is required for antral growth and ovulation in a tissue-specific and stage-dependent manner.
Collapse
Affiliation(s)
- Sungeun Lee
- Department of Biotechnology, Sungshin University, Seoul, Korea
| | - Hee-Gyoo Kang
- Department of Biomedical Engineering and Institute of Pharmaceutical Science and Technology, Eulji University, Seongnam-Si, Gyeonggi-Do, Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Yong-Pil Cheon
- Department of Biotechnology, Sungshin University, Seoul, Korea
| |
Collapse
|
21
|
Telomere associated gene expression as well as TERT protein level and telomerase activity are altered in the ovarian follicles of aged mice. Sci Rep 2021; 11:15569. [PMID: 34330985 PMCID: PMC8324818 DOI: 10.1038/s41598-021-95239-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/05/2021] [Indexed: 01/23/2023] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes to maintain genomic stability and integrity during an organism’s lifespan. The length of telomeres inevitably shortens due to DNA replication, genotoxic agents, and biological aging. A limited number of cell types, e.g., stem cells, germline cells, and early embryos can elongate shortened telomeres via the enzymatic action of telomerase, which is composed of telomerase reverse transcriptase (TERT) and telomerase RNA component (Terc). Additionally, telomere-associated proteins including telomeric repeat binding factor 1 (TRF1) and 2 (TRF2), as well as protection of telomeres 1a (POT1a), bind to telomeres to maintain their structural integrity and length. During ovarian aging in mammals, telomeres progressively shorten, accompanied by fertility loss; however, the molecular mechanism underlying this attrition during follicle development remains unclear. In this study, the primary, secondary, preantral, and antral follicles were obtained either from 6-week-old adult (n = 19) or 52-week-old aged (n = 12) mice. We revealed that the Tert, Terc, Trf1, Trf2, and Pot1a gene expression (P < 0.001) and TERT protein (P < 0.01) levels significantly decreased in certain ovarian follicles of the aged group when compared to those of the adult group. Also, telomerase activity exhibited remarkable changes in the follicles of both groups. Consequently, altered telomere-associated gene expression and reduced TERT protein levels in the follicles of aged mice may be a determinant of telomere shortening during ovarian aging, and infertility appearing in the later decades of reproductive lifespan. Further investigations are required to determine the molecular mechanisms underlying these alterations in the follicles during ovarian aging.
Collapse
|
22
|
Cacciottola L, Donnez J, Dolmans MM. Ovarian tissue damage after grafting: systematic review of strategies to improve follicle outcomes. Reprod Biomed Online 2021; 43:351-369. [PMID: 34384692 DOI: 10.1016/j.rbmo.2021.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Frozen-thawed human ovarian tissue endures large-scale follicle loss in the early post-grafting period, characterized by hypoxia lasting around 7 days. Tissue revascularization occurs progressively through new vessel invasion from the host and neoangiogenesis from the graft. Such reoxygenation kinetics lead to further potential damage caused by oxidative stress. The aim of the present manuscript is to provide a systematic review of proangiogenic growth factors, hormones and various antioxidants administered in the event of ovarian tissue transplantation to protect the follicle pool from depletion by boosting revascularization or decreasing oxidative stress. Although almost all investigated studies revealed an advantage in terms of revascularization and reduction in oxidative stress, far fewer demonstrated a positive impact on follicle survival. As the cascade of events driven by ischaemia after transplantation is a complex process involving numerous players, it appears that acting on specific molecular mechanisms, such as concentrations of proangiogenic growth factors, is not enough to significantly mitigate tissue damage. Strategies exploiting the activated tissue response to ischaemia for tissue healing and remodelling purposes, such as the use of antiapoptotic drugs and adult stem cells, are also discussed in the present review, since they yielded promising results in terms of follicle pool protection.
Collapse
Affiliation(s)
- Luciana Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Prof. Emeritus, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
23
|
Li Y, Xu X, Deng M, Zou X, Zhao Z, Huang S, Liu D, Liu G. Identification and Comparative Analysis of Long Non-coding RNAs in High- and Low-Fecundity Goat Ovaries During Estrus. Front Genet 2021; 12:648158. [PMID: 34249080 PMCID: PMC8267794 DOI: 10.3389/fgene.2021.648158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
The ovary is the most important reproductive organ in goats and directly affects the fecundity. Long non-coding RNAs (lncRNAs) are involved in the biological process of oocyte maturation. However, in the context of reproduction in goats, few studies have explored the regulation of lncRNAs. Therefore, we herein used the ovaries of high and low fecundity Leizhou black goats to identify differentially expressed lncRNAs (DElncRNAs) by high-throughput RNA sequencing; moreover, we analyzed the target genes of lncRNAs by functional annotation to explore the role of DElncRNAs in ovarian development. Twenty DElncRNAs were identified, of which six were significantly upregulated and 14 were significantly downregulated in high fecundity goats. Gene Ontology analyses suggested that MSTRG.3782 positively influences the expression of the corresponding gene API5, exerting regulative effects on the development of follicles, through which litter size might show variations. The target gene KRR1 of ENSCHIT00000001883 is significantly enriched in cell components, and ENSCHIT00000001883 may regulate cell growth and thus affect follicular development. Further, as per Kyoto Encyclopedia of Genes and Genomes pathway analyses, MSTRG.2938 was found to be significantly enriched, and we speculate that MSTRG.2938 could regulate ribosomal biogenesis in the pre-snoRNP complex as well as cell transformation in eukaryotes. Quantitative real-time PCR results were consistent with sequencing data. To conclude, our research results indicate that some lncRNAs play a key role in regulating follicle development and cell growth during goat’ s ovarian development.
Collapse
Affiliation(s)
- Yaokun Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiangping Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhifeng Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sixiu Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
24
|
Effects of Notch2 on proliferation, apoptosis and steroidogenesis in bovine luteinized granulosa cells. Theriogenology 2021; 171:55-63. [PMID: 34023619 DOI: 10.1016/j.theriogenology.2021.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/02/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
Notch signaling pathway plays an important regulatory role in the development of mammalian follicles. This study aimed to explore the effect of Notch2 on the function of bovine follicles luteinized granulosa cells (LGCs). We detected that the coding sequence (CDS) of bovine Notch2 gene is 7416 bp, encoding 2471 amino acids (AA). The homology of Notch2 AA sequence between bovine and other species is 86.04%-98.75%, indicating high conservatism. Immunohistochemistry found that Notch2 receptor and its ligand Jagged2 localize in granulosa cells (GCs) and theca cells in bovine antral follicles. And immunofluorescence found that positive signals of Notch2 and Jagged2 overlap in bovine LGCs, speculating that Notch2 receptor may react with Jagged2 ligand to activate Notch signaling pathway and play an important role in bovine LGCs. To further investigate the function of Notch2, Notch2 gene was silenced by short hairpin RNA (shRNA) and CCK-8 analysis showed that the proliferation rate of LGCs was downregulated significantly (P < 0.01). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that the mRNA expression of apoptosis related gene Bcl-2/Bax decreased (P < 0.01) and Caspase3 increased (P < 0.05), cell cycle related gene CyclinD2/CDK4 complex decreased (P < 0.01) and P21 increased (P < 0.05), steroidogenesis gene STAR and 3β-HSD decreased (P < 0.01) while CYP19A1 and CYP11A1 had no significant difference (P > 0.05). In addition, Enzyme-linked immunosorbent assay (ELISA) showed that there was no difference in estradiol (E2) secretion (P > 0.05) while the progesterone (P4) secretion decreased (P < 0.01). In conclusion, Notch2 plays an important role in regulating bovine LGCs development.
Collapse
|
25
|
Chen L, Zhang W, Huang R, Miao X, Li J, Yu D, Li Y, Hsu W, Qiu M, Zhang Z, Li F. The function of Wls in ovarian development. Mol Cell Endocrinol 2021; 522:111142. [PMID: 33359762 DOI: 10.1016/j.mce.2020.111142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 11/26/2022]
Abstract
WNT ligand transporter Wls is essential for the WNT dependent developmental and pathogenic processes. The spatiotemporal expression pattern of Wls was investigated in this study. Immature female mice (21-22 days old) were treated with 5 IU, pregnant mare's serum gonadotrophin (PMSG) to stimulate follicular development, followed 48 h later by injection with 5 IU, human chorionic gonadotrophin (hCG) to induce ovulation. The expression of Wls was stimulated in granulosa cells and the forming corpus luteum after hCG administration. To study the function of Wls, the Amhr2tm3(cre)Bhr strain was used to target deletion of Wls in granulosa cells. The deletion of Wls caused a significant decrease in the fertility of WlsAmhr2-Cre female mice. In female WlsAmhr2-Cre mice, decreased ovarian size and number of antral follicles were found. The number of corpus luteum in immature PMSG/hCG primed WlsAmhr2-Cre mice was much less than that in the control group. Compared with control animals, WlsAmhr2-Cre mice have lower serum progesterone levels. RNA sequencing was used to identify genes regulated by Wls after hCG treatment. Several genes known to be critical for follicle development and steroidogenesis were significantly down-regulated, such as Fshr, Lhcgr, Sfrp4, Inhba, Cyp17a1, Hsd3b1, and Hsd17b7. The expression of WNT signaling downstream target genes, Bmp2 and Cyp19a1, also decreased significantly in WlsAmhr2-Cre ovary. In summary, the findings of this study suggest that Wls is critical for female fertility and luteinization.
Collapse
Affiliation(s)
- Luyi Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Wei Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ruiqi Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xiaoping Miao
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Jianying Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Dongliang Yu
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yan Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Zunyi Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
| |
Collapse
|
26
|
Sun X, Klinger FG, Liu J, De Felici M, Shen W, Sun X. miR-378-3p maintains the size of mouse primordial follicle pool by regulating cell autophagy and apoptosis. Cell Death Dis 2020; 11:737. [PMID: 32913213 PMCID: PMC7483766 DOI: 10.1038/s41419-020-02965-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Primordial follicle pool provides all available oocytes throughout the whole reproductive life span. Abnormal regulation in primordial follicle assembly leads to abnormal size of primordial follicle pool, even causes infertility. Here, miR-378-3p was proved to regulate mouse primordial follicle assembly both in vivo and in vitro. The expression of miR-378-3p significantly increased in mice ovaries from 17.5 dpc (days post coitum) up to 3 dpp (day post partum) compared with the expression of 16.5 dpc ovaries, which suggested that miR-378-3p was involved in primordial follicle assembly. To uncover the underlying mechanism, newborn mice ovaries were cultured in vitro in the presence of rapamycin and 3-methyladenine, which showed that the expression of miR-378-3p changed together with the percentage of primordial follicle. Moreover, during the normal process of primordial follicle assembly between 17.6 dpc and 3 dpp, autophagy is activated, while, apoptosis is inhibited. The in vivo results showed that newborn mice starved for 1.5 days showing the increased miR-378-3p, activated autophagy and inhibited apoptosis in the ovaries, had more percentage of primordial follicles. Over-expression of miR-378-3p using miR-378-3p agomir caused increased percentage of primordial follicle, increased level of autophagy, and decreased level of apoptosis. Knockdown of miR-378-3p by miR-378-3p antiagomir had the opposite results. Using pmirGLO Dual-Luciferase miRNA Target Expression system, we confirmed both PDK1 and Caspase9 were targets of miR-378-3p, which suggested that miR-378-3p activated autophagy by targeting PDK1 and inhibited apoptosis by targeting Caspase9. MiR-378-3p could be used as a biomarker of diseases caused by abnormal size of primordial follicle pool for diagnosis, prevention, or therapy.
Collapse
Affiliation(s)
- Xiaowen Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Jing Liu
- Central laboratory of Qingdao Agricultural University, Qingdao, 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaofeng Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
27
|
Guo TY, Huang L, Yao W, Du X, Li QQ, Ma ML, Li QF, Liu HL, Zhang JB, Pan ZX. The potential biological functions of circular RNAs during the initiation of atresia in pig follicles. Domest Anim Endocrinol 2020; 72:106401. [PMID: 32278256 DOI: 10.1016/j.domaniend.2019.106401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 11/18/2022]
Abstract
The specific expression profile and function of circular RNAs (circRNAs) in mammalian ovarian follicles, especially during the atresia process, are unclear. In this study, genome-wide deep circRNA sequencing was applied to screen circRNAs in healthy and early atretic antral follicles in pig ovaries. A total of 40,567 distinct circRNAs were identified in follicles, among which 197 circRNAs (108 upregulated and 89 downregulated) were significantly shifted during the early atresia process. Most differentially expressed circRNAs (DECs) lacked protein-coding potential. Annotation analysis of the DECs revealed 162 known host genes, or noncoding RNAs, and 10 intergenic regions. The key pathways in which these host genes are involved include the focal adhesion-PI3K-Akt-mTOR signaling pathway, vascular endothelial growth factor A (VEGFA)-vascular endothelial growth factor receptor 2 signaling pathway and transforming growth factor-beta signaling pathway. Further comparison analysis between host genes of DECs and the differentially expressed linear messenger RNA transcripts revealed the cotranscription of circRNAs and their linear mRNAs in inhibin beta units (INHBA and INHBB), glutathione S-transferase (GSTA1), and VEGFA. In addition, we predicted 196 pairs of potential circRNA-micro RNA (miRNA) interactions among 77 DECs and 101 porcine miRNAs. We have identified 16 functional miRNAs by comparing the 101 miRNAs to the functional miRNAs reported in mammal ovarian follicle atresia and granulosa cell apoptosis studies. Our study adds new knowledge to circRNA distribution profiles in pig ovarian follicles, offers a valuable reference for transcriptomic profiles in the initiation of follicular atresia, highlights warranted circRNAs for further functional investigation, and provides possible biomarkers for ovarian dysfunctions.
Collapse
Affiliation(s)
- T Y Guo
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095
| | - L Huang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095
| | - W Yao
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095
| | - X Du
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095
| | - Q Q Li
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095
| | - M L Ma
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095
| | - Q F Li
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095
| | - H L Liu
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095
| | - J B Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095
| | - Z X Pan
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agriculture University, Nanjing, Jiangsu, P. R. China 210095.
| |
Collapse
|
28
|
Gonadal development and sex determination in mouse. Reprod Biol 2020; 20:115-126. [DOI: 10.1016/j.repbio.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022]
|
29
|
Hubbard N, Prasasya RD, Mayo KE. Activation of Notch Signaling by Oocytes and Jag1 in Mouse Ovarian Granulosa Cells. Endocrinology 2019; 160:2863-2876. [PMID: 31609444 PMCID: PMC6850001 DOI: 10.1210/en.2019-00564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
The Notch pathway plays diverse and complex roles in cell signaling during development. In the mammalian ovary, Notch is important for the initial formation and growth of follicles, and for regulating the proliferation and differentiation of follicular granulosa cells during the periovulatory period. This study seeks to determine the contribution of female germ cells toward the initial activation and subsequent maintenance of Notch signaling within somatic granulosa cells of the ovary. To address this issue, transgenic Notch reporter (TNR) mice were crossed with Sohlh1-mCherry (S1CF) transgenic mice to visualize Notch-active cells (EGFP) and germ cells (mCherry) simultaneously in the neonatal ovary. To test the involvement of oocytes in activation of Notch signaling in ovarian somatic cells, we ablated germ cells using busulfan, a chemotherapeutic alkylating agent, or investigated KitWv/Wv (viable dominant white-spotting) mice that lack most germ cells. The data reveal that Notch pathway activation in granulosa cells is significantly suppressed when germ cells are reduced. We further demonstrate that disruption of the gene for the Notch ligand Jag1 in oocytes similarly impacts Notch activation and that recombinant JAG1 enhances Notch target gene expression in granulosa cells. These data are consistent with the hypothesis that germ cells provide a ligand, such as Jag1, that is necessary for activation of Notch signaling in the developing ovary.
Collapse
Affiliation(s)
- Nisan Hubbard
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
| | - Rexxi D Prasasya
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
| | - Kelly E Mayo
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
- Correspondence: Kelly E. Mayo, PhD, Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, 1115 Pancoe Pavilion, Evanston, Illinois 60208. E-mail:
| |
Collapse
|
30
|
Luo M, Yang ZQ, Huang JC, Wang YS, Guo B, Yue ZP. Genistein protects ovarian granulosa cells from oxidative stress via cAMP-PKA signaling. Cell Biol Int 2019; 44:433-445. [PMID: 31579960 DOI: 10.1002/cbin.11244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/22/2019] [Indexed: 01/09/2023]
Abstract
Genistein is an isoflavone that has estrogen (E2 )-like activity and is beneficial for follicular development, but little is known regarding its function in oxidative stress (OS)-mediated granulosa cell (GC) injury. Here, we found that after exposure to H2 O2 , Genistein weakened the elevated levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), which were regarded as the biomarkers for OS, and rescued glutathione (GSH) content and GSH/GSSG ratio accompanying with a simultaneous increase in cyclic adenosine monophosphate (cAMP) level, whereas addition of protein kinase A (PKA) inhibitor H89 impeded the effects of Genistein on the levels of ROS and MDA. Further analysis evidenced that Genistein enhanced the activities of antioxidant enzymes superoxide dismutase (SOD), GSH-peroxidase (GSH-Px), and catalase (CAT) in H2 O2 -treated GCs, but this enhancement was attenuated by H89. Under OS, Genistein improved cell viability and lessened the apoptotic rate of GCs along with a reduction in the activity of Casp3 and levels of Bax and Bad messenger RNA (mRNA), while H89 reversed the above effects. Moreover, Genistein treatment caused an obvious elevation in mitochondrial membrane potential (MMP) followed by a decline in the levels of intracellular mitochondrial superoxide, but H89 inhibited the regulation of Genistein on MMP and mitochondrial superoxide. Supplementation of Genistein promoted the secretion of E2 and increased the expression of Star and Cyp19a1 mRNA, whereas suppressed the level of progesterone (P4 ) accompanied with a decline in the level of Hsd3b1 mRNA expression. H89 blocked the regulation of Genistein on the secretion of E2 and P4 , and alleviated the ascending of Star and Cyp19a1 elicited by Genistein. Collectively, Genistein protects GCs from OS via cAMP-PKA signaling.
Collapse
Affiliation(s)
- Man Luo
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Zhan-Qing Yang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Ji-Cheng Huang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Yu-Si Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Bin Guo
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Zhan-Peng Yue
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| |
Collapse
|
31
|
In Vitro Growth of Preantral Follicle and Maturation of Intrafollicular Oocyte from Aged Mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2019. [DOI: 10.12750/jarb.34.1.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
32
|
Habermehl TL, Parkinson KC, Hubbard GB, Ikeno Y, Engelmeyer JI, Schumacher B, Mason JB. Extension of longevity and reduction of inflammation is ovarian-dependent, but germ cell-independent in post-reproductive female mice. GeroScience 2019; 41:25-38. [PMID: 30547325 PMCID: PMC6423149 DOI: 10.1007/s11357-018-0049-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular disease, rare in premenopausal women, increases sharply at menopause and is typically accompanied by chronic inflammation. Previous work in our laboratory demonstrated that replacing senescent ovaries in post-reproductive mice with young, actively cycling ovaries restored many health benefits, including decreased cardiomyopathy and restoration of immune function. Our objective here was to determine if depletion of germ cells from young transplanted ovaries would alter the ovarian-dependent extension of life and health span. Sixty-day-old germ cell-depleted and germ cell-containing ovaries were transplanted to post-reproductive, 17-month-old mice. Mean life span for female CBA/J mice is approximately 644 days. Mice that received germ cell-containing ovaries lived 798 days (maximum = 815 days). Mice that received germ cell-depleted ovaries lived 880 days (maximum = 1046 days), 29% further past the time of surgery than mice that received germ cell-containing ovaries. The severity of inflammation was reduced in all mice that received young ovaries, whether germ cell-containing or germ cell-depleted. Aging-associated inflammatory cytokine changes were reversed in post-reproductive mice by 4 months of new-ovary exposure. In summary, germ cell depletion enhanced the longevity-extending effects of the young, transplanted ovaries and, as with germ cell-containing ovaries, decreased the severity of inflammation, but did so independent of germ cells. Based on these observations, we propose that gonadal somatic cells are programed to preserve the somatic health of the organism with the intent of facilitating future germline transmission. As reproductive potential decreases or is lost, the incentive to preserve the somatic health of the organism is lost as well.
Collapse
Affiliation(s)
- Tracy L Habermehl
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, 4700 Old Main Hill, Logan, UT, 84322, USA
| | - Kate C Parkinson
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, 4700 Old Main Hill, Logan, UT, 84322, USA
| | - Gene B Hubbard
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Geriatric Research and Education Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Jennifer I Engelmeyer
- The Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD) Research Center, University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Köln, Germany
| | - Björn Schumacher
- The Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD) Research Center, University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Köln, Germany
| | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, 4700 Old Main Hill, Logan, UT, 84322, USA.
| |
Collapse
|
33
|
Liu Y, Qi B, Xie J, Wu X, Ling Y, Cao X, Kong F, Xin J, Jiang X, Wu Q, Wang W, Li Q, Zhang S, Wu F, Zhang D, Wang R, Zhang X, Li W. Filtered reproductive long non-coding RNAs by genome-wide analyses of goat ovary at different estrus periods. BMC Genomics 2018; 19:866. [PMID: 30509164 PMCID: PMC6278114 DOI: 10.1186/s12864-018-5268-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Background The goat is an important farm animal. Reproduction is an important process of goat farming. The ovary is the most important reproductive organ for goats. In recent years, an increasing number of long non-coding RNAs (lncRNAs) have been implicated in the regulation of mammal reproduction. However, there are few studies on the function of lncRNAs in reproduction, particularly lncRNAs in the ovary. Results The sequencing of goat ovaries generated 1,122,014,112 clean reads, and 4926 lncRNAs and 1454 TUCPs (transcripts of uncertain coding potential) were identified for further analysis by using the coding potential analysis software, CNCI, CPC and Pfam-sca. There were 115 /22 differential lncRNAs /TUCPs transcripts between the ovaries of the luteal phase and the follicular phase. We predicted the related genes of lncRNA /TUCP based on co-expression and co-localization methods. In total, 2584 /904 genes were predicted by co-expression, and 326/73 genes were predicted by co-localization. The functions of these genes were further analyzed with GO and KEGG analysis. The results showed that lncRNAs /TUCPs, which are highly expressed in goat ovaries in the luteal phase, are mainly associated with the synthesis of progesterone, and we filtered the lncRNAs /TUCPs, such as XR_001918177.1 and TUCP_001362, which may regulate the synthesis of progesterone; lncRNAs /TUCPs, which are highly expressed in goat ovaries in the follicular phase, are mainly associated with oogenesis and the maturation of oocytes, and we filtered the lncRNAs /TUCPs that may regulate the oogenesis and maturation of oocyte, such as XR_001917388.1 and TUCP_000849. Conclusion The present study provided the genome expression profile of lncRNAs /TUCPs in goat ovaries at different estrus periods and filtered the potential lncRNAs /TUCPs associated with goat reproduction. These results are helpful to further study the molecular mechanisms of goat reproduction. Electronic supplementary material The online version of this article (10.1186/s12864-018-5268-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Bing Qi
- School of Life Sciences, Taishan Medical University, Taian, 271016, Shandong, China
| | - Juan Xie
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaoqing Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xinyan Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No.4899 Juye Street, Jingyue District, Changchun, 130112, China
| | - Feng Kong
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Jing Xin
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xin Jiang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Qiaoqin Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Wenying Wang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Qingmei Li
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Shengnan Zhang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Fengrui Wu
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Di Zhang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Rong Wang
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaorong Zhang
- School of Life Sciences, Taishan Medical University, Taian, 271016, Shandong, China
| | - Wenyong Li
- Key Laboratory of Embryo Development, Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui, China.
| |
Collapse
|
34
|
Puttabyatappa M, Padmanabhan V. Ovarian and Extra-Ovarian Mediators in the Development of Polycystic Ovary Syndrome. J Mol Endocrinol 2018; 61:R161-R184. [PMID: 29941488 PMCID: PMC6192837 DOI: 10.1530/jme-18-0079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder affecting women of reproductive age. The origin of PCOS is still not clear and appears to be a function of gene x environment interactions. This review addresses the current knowledge of the genetic and developmental contributions to the etiology of PCOS, the ovarian and extra-ovarian mediators of PCOS and the gaps and key challenges that need to be addressed in the diagnosis, treatment and prevention of PCOS.
Collapse
|
35
|
Hormonal stimulation in 4 to 7 months old Nelore (Bos taurus indicus) females improved ovarian follicular responses but not the in vitro embryo production. Theriogenology 2018; 118:130-136. [PMID: 29906662 DOI: 10.1016/j.theriogenology.2018.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
Abstract
The inclusion of pre-pubertal bovine females in reproductive management could allow in vitro embryo production and reduce generation interval, thereby causing faster genetic gain of the herd. However, oocytes of pre-pubertal females have lower competence, blastocyst production, and pregnancy rates than those collected from pubertal animals. This study aimed to evaluate the effect of an induced hormonal stimulation on the serum concentrations of Anti-Mullerian hormone (AMH) and FSH, ovarian responses, ovum pick up (OPU), and in vitro produced embryos (IVP) from oocytes obtained from four-to seven-months old Nelore female cattle. In a crossover design, these females were randomly allocated into: 1) Treated Group (TG, n = 9): the animals were subjected to a hormonal protocol (implanted progesterone device, estradiol benzoate, LH, and FSH) from Day 0 (the start of the treatment) to Day 7 (OPU day), and 2) Control Group (CG, n = 9): the females did not receive any hormonal stimulation, but they had ablation of their largest follicles on Day 2 of experiment. Blood collection for serum FSH measurements was done on Days 5, 6, 7, and 8, and collection for serum AMH measurements was done on Days 5 and 8. As hypothesized, TG had higher serum FSH concentrations (p < 0.05) on Day 5 (1.16 ± 0.31 ng/mL), Day 6 (1.21 ± 0.45 ng/mL), and Day 7 (0.95 ± 0.26 ng/mL) than CG (0.56 ± 0.17 ng/mL on Day 5, 0.60 ± 0.25 ng/mL on Day 6, and 0.60 ± 0.14 ng/mL on Day 7). However, serum AMH concentrations were neither significantly different (p > 0.05) between CG and TG, nor between the collection days. Hormonal stimulation also increased (p < 0.05) total follicular population (20.0 ± 4.95 CG vs 26.66 ± 4.24 TG), ovarian diameter (13.08 ± 1.0 mm CG vs 14.81 ± 1.38 mm TG) and number of follicles ≥2.5 mm (6.88 ± 2.14 CG vs 11.55 ± 4.09 TG). In TG, grades I and II oocytes predominated, whereas, in CG grades III and IV oocytes were more abundant (p < 0.05). No significant increases (p > 0.05) in the cleavage (49.33% CG vs 51.42% TG), cleavage > 4 cells (9.33% CG vs 16.19% TG), and blastocysts rates (1.33% CG vs 8.57% TG) were seen in TG. This hormonal protocol increased serum FSH concentrations that possibly contributed to increases in the observed follicle, as well as improving oocyte quality. This exogenous hormonal stimulation increased available oocytes numbers for IVP, despite no increase in the in vitro embryo production efficiency.
Collapse
|
36
|
Li P, Meng J, Jing J, Hao Q, Zhu Z, Yao J, Lyu L. Study on the relationship between expression patterns of cocaine-and amphetamine regulated transcript and hormones secretion in porcine ovarian follicles. Biol Res 2018; 51:6. [PMID: 29482665 PMCID: PMC6389156 DOI: 10.1186/s40659-018-0154-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 02/19/2018] [Indexed: 12/27/2022] Open
Abstract
Background Cocaine-and amphetamine regulated transcript (CART) is an endogenous neuropeptide, which is widespread in animals, plays a key role in regulation of follicular atresia in cattle and sheep. Among animal ovaries, CART mRNA was firstly found in the cattle ovaries. CART was localized in the antral follicles oocytes, granulosa and cumulus cells by immunohistochemistry and in situ hybridization. Further research found that secretion of E2 was inhibited in granulosa cells with a certain dose of CART, the effect depends on the stage of cell differentiation, suggesting that CART could play a crucial role in regulating follicle atresia. The objective of this study was to characterize the CART expression model and hormones secretion in vivo and vitro in pig follicle granulosa cells, preliminarily studied whether CART have an effect on granulosa cells proliferation and hormones secretion in multiparous animals such as pigs. Methods The expression levels of CART mRNA in granulosa cells of different follicles were analyzed using qRT-PCR technology. Immunohistochemistry technology was used to localize CART peptide. Granulosa cells were cultured in medium supplemented with different concentrations of CART and FSH for 168 h using Long-term culture system, and observed using a microscope. The concentration of Estradiol (E2) and progesterone (P) in follicular fluids of different test groups were detected by enzyme linked immunosorbent assay (ELISA). Results Results showed that expression level of CART mRNA was highest in medium follicles, and significantly higher than that in large and small follicles (P < 0.05). Immunohistochemical results showed that CART were expressed both in granulosa cells and theca cells of large follicles, while CART were detected only in theca cells of medium and small follicles. After the granulosa cells were cultured for 168 h, and found that concentrations of E2 increase with concentrations of follicle-stimulating hormone (FSH) increase when the CART concentration was 0 μM. And the concentration of FSH reached 25 ng/mL, the concentration of E2 is greatest. It shows that the production of E2 needs induction of FSH in granulosa cells of pig ovarian follicles. With the increasing of CART concentrations (0.01, 0.1, 1 μM), E2 concentration has a declining trend, when the FSH concentrations were 25 and 50 ng/mL in the medium, respectively. Conclusions These results suggested that CART plays a role to inhibit granulosa cells proliferation and E2 production, which induced by FSH in porcine ovarian follicular granulosa cells in vitro, but the inhibition effect is not significant. So we hypothesis CART maybe not a main local negative regulatory factor during porcine follicular development, which is different from the single fetal animals.
Collapse
Affiliation(s)
- Pengfei Li
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jinzhu Meng
- Wujiang College, Tongren University, Tongren, 554300, Guizhou, China
| | - Jiongjie Jing
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Qingling Hao
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhiwei Zhu
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jianbo Yao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.,Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Lihua Lyu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
37
|
Parkinson KC, Peterson RL, Mason JB. Cognitive behavior and sensory function were significantly influenced by restoration of active ovarian function in postreproductive mice. Exp Gerontol 2017; 92:28-33. [DOI: 10.1016/j.exger.2017.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
|
38
|
Patiño LC, Beau I, Carlosama C, Buitrago JC, González R, Suárez CF, Patarroyo MA, Delemer B, Young J, Binart N, Laissue P. New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing. Hum Reprod 2017; 32:1512-1520. [DOI: 10.1093/humrep/dex089] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
|
39
|
Microfluidic Encapsulation of Ovarian Follicles for 3D Culture. Ann Biomed Eng 2017; 45:1676-1684. [PMID: 28321583 DOI: 10.1007/s10439-017-1823-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/16/2017] [Indexed: 12/23/2022]
Abstract
The ovarian follicle that contains one single oocyte is the fundamental functional tissue unit of mammalian ovary. Therefore, isolation and in vitro culture of ovarian follicles to obtain fertilizable oocytes are regarded as a promising strategy for women to combat infertility. In this communication, we performed a brief survey of studies on microfluidic encapsulation of ovarian follicles in core-shell hydrogel microcapsules for biomimetic 3D culture. These studies highlighted that recapitulation of the mechanical heterogeneity of the extracellular matrix in ovary is crucial for in vitro culture to develop early pre-antral follicles to the antral stage, and for the release of cumulus-oocyte complex (COC) from antral follicles in vitro. The hydrogel encapsulation-based biomimetic culture system and the microfluidic technology may be invaluable to facilitate follicle culture as a viable option for restoring women's fertility in the clinic.
Collapse
|
40
|
Expression analysis of microRNAs and mRNAs in ovarian granulosa cells after microcystin-LR exposure. Toxicon 2017; 129:11-19. [PMID: 28161121 DOI: 10.1016/j.toxicon.2017.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/25/2022]
Abstract
Microcystin is a cyclic heptapeptide compounds which could cause female mammals' reproductive toxicity. Ovarian granulosa cells (GCs) are essential for the growth and development of follicles. In this study, after mouse granulosa cells (mGCs) treated with microcystin-LR (MC-LR) for 48 h, microRNAs (miRNAs) and mRNAs microarray technology were adopted to detect the expression of miRNAs and mRNAs. The results showed that 125 miRNAs and 283 mRNAs changed significantly, including 50 miRNAs down-regulated (fold change < -1.2), 75 miRNAs up-regulated (fold change > 1.2), 162 mRNAs down-regulated (fold change < -1.15) and 121 mRNAs up-regulated (fold change > 1.15) in treated group compared with the control group. Functional analysis showed that significant changed miRNAs and mRNAs are mainly involved in proliferation, apoptosis, immunity, metabolism and other biological processes of mGCs. By KEGG pathways analysis, we found that differentially expressed miRNAs and mRNAs mainly participated in apoptosis, formation of cancer, proliferation, production of hormones and other related signal pathways. miRNA-gene network analysis indicated that miR-29b-3p, miR-29a-3p, miR-29c-3p, miR-1906, miR-182-5p, growth factor receptor bound protein 2-associated protein 2 (Gab2), FBJ osteosarcoma oncogene (Fos), insulin-like growth factor 1 (Igf1), mannosidase 1, alpha (Man1a) are key miRNAs and genes. The microarray results were validated by real-time fluorescent quantitative PCR (qRT-PCR).
Collapse
|
41
|
Peterson RL, Parkinson KC, Mason JB. Restoration of immune and renal function in aged females by re-establishment of active ovarian function. Reprod Fertil Dev 2017; 29:2052-2059. [DOI: 10.1071/rd16333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 01/14/2023] Open
Abstract
Proper immune functioning is necessary to maximize reproductive success. In addition, age-associated uremia in women is often associated with hypothalamic–pituitary–gonadal dysfunction. In the present experiments, we tested immune and renal function to determine if exposure of postreproductive mice to young, reproductively cycling ovaries would influence non-reproductive physiological functions. Control female CBA/J mice were evaluated at 6, 13 and 16 months of age. Additional mice received new (60-day-old) ovaries at 12 months of age and were evaluated at 16 months of age. Consequently, 6-month-old control mice and 16-month-old recipient mice both possessed 6-month-old ovaries and were reproductively cycling. A significant age-related decline in immune function (T-cell subset analysis) was found in 16-month-old mice, but was improved 64% by ovarian transplantation. Renal function (blood urea nitrogen : creatinine ratio) was also decreased with aging, but ovarian transplantation restored function to levels found in 6-month-old mice. In summary, we have shown that immune and renal function, which are negatively influenced by aging, can be positively influenced or restored by re-establishment of active ovarian function in aged female mice. These findings provide a strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.
Collapse
|
42
|
He X. Microscale Biomaterials with Bioinspired Complexity of Early Embryo Development and in the Ovary for Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 2016; 3:2692-2701. [PMID: 29367949 DOI: 10.1021/acsbiomaterials.6b00540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tissue engineering and regenerative medicine (TERM) are attracting more and more attention for treating various diseases in modern medicine. Various biomaterials including hydrogels and scaffolds have been developed to prepare cells (particularly stem cells) and tissues under 3D conditions for TERM applications. Although these biomaterials are usually homogeneous in early studies, effort has been made recently to generate biomaterials with the spatiotemporal complexities present in the native milieu of the specific cells and tissues under investigation. In this communication, the microfluidic and coaxial electrospray approaches that we used for generating microscale biomaterials with the spatial complexity of both pre-hatching embryos and ovary in the female reproductive system were introduced. This is followed by an overview of our recent work on applying the resultant bioinspired biomaterials for cultivation of normal and cancer stem cells, regeneration of cardiac tissue, and culture of ovarian follicles. The cardiac regeneration studies show the importance of using different biomaterials to engineer stem cells at different stages (i.e., in vitro culture versus in vivo implantation) for tissue regeneration. All the studies demonstrate the merit of accounting for bioinspired complexities in engineering cells and tissues for TERM applications.
Collapse
Affiliation(s)
- Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
43
|
Manipulation of Ovarian Function Significantly Influenced Sarcopenia in Postreproductive-Age Mice. J Transplant 2016; 2016:4570842. [PMID: 27747096 PMCID: PMC5055969 DOI: 10.1155/2016/4570842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/24/2016] [Indexed: 01/30/2023] Open
Abstract
Previously, transplantation of ovaries from young cycling mice into old postreproductive-age mice increased life span. We anticipated that the same factors that increased life span could also influence health span. Female CBA/J mice received new (60 d) ovaries at 12 and 17 months of age and were evaluated at 16 and 25 months of age, respectively. There were no significant differences in body weight among any age or treatment group. The percentage of fat mass was significantly increased at 13 and 16 months of age but was reduced by ovarian transplantation in 16-month-old mice. The percentages of lean body mass and total body water were significantly reduced in 13-month-old control mice but were restored in 16- and 25-month-old recipient mice by ovarian transplantation to the levels found in six-month-old control mice. In summary, we have shown that skeletal muscle mass, which is negatively influenced by aging, can be positively influenced or restored by reestablishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.
Collapse
|
44
|
Matsubara K. Mouse Mesonephros in Fetus Period is Necessary for Differentiation of Primordial Germ Cells in Ectopic Kidney Capsule. JOURNAL OF MEDICAL SCIENCES 2016. [DOI: 10.3923/jms.2016.49.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Kawai T, Yanaka N, Richards JS, Shimada M. De Novo-Synthesized Retinoic Acid in Ovarian Antral Follicles Enhances FSH-Mediated Ovarian Follicular Cell Differentiation and Female Fertility. Endocrinology 2016; 157:2160-72. [PMID: 27022678 PMCID: PMC4870881 DOI: 10.1210/en.2015-2064] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Retinoic acid (RA) is the active form of vitamin A and is synthesized from retinol by two key enzymes, alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH). As the physiological precursor of RA, retinol impacts female reproductive functions and fertility. The expression of Adh1 and Adh5 as well as Aldh1a1 and Aldh1a7 are significantly increased in the ovaries of mice treated with equine chorionic gonadotropin/FSH. The RA receptor is expressed and localized in granulosa cells and is activated by endogenous RA as indicated by LacZ expression in granulosa cells of RA-responsive transgene-LacZ transgenic mice (RA reporter mice). Coinjection of the ADH inhibitor, 4-methylpyrazole, with equine chorionic gonadotropin significantly decreases the number and developmental competence of oocytes ovulated in response to human chorionic gonadotropin/LH as compared with controls. Injections of RA completely reverse the effects of the inhibitor of ovulation and oocyte development. When mice were fed a retinol-free, vitamin A-deficient diet that significantly reduced the serum levels of retinol, the expression of the LH receptor (Lhcgr) was significantly lower in the ovaries of the vitamin A-deficient mice, and injections of human chorionic gonadotropin failed to induce genes controlling ovulation. These results indicate that ovarian de novo biosynthesis of RA is required for the follicular expression of Lhcgr in granulosa cells and their ability to respond to the ovulatory LH surge.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Endocrinology (T.K., M.S.) and Laboratory of Nutrition (N.Y.), Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Noriyuki Yanaka
- Laboratory of Reproductive Endocrinology (T.K., M.S.) and Laboratory of Nutrition (N.Y.), Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - JoAnne S Richards
- Laboratory of Reproductive Endocrinology (T.K., M.S.) and Laboratory of Nutrition (N.Y.), Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology (T.K., M.S.) and Laboratory of Nutrition (N.Y.), Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
46
|
Mason JB, Terry BC, Merchant SS, Mason HM, Nazokkarmaher M. Manipulation of Ovarian Function Significantly Influenced Trabecular and Cortical Bone Volume, Architecture and Density in Mice at Death. PLoS One 2015; 10:e0145821. [PMID: 26717576 PMCID: PMC4696788 DOI: 10.1371/journal.pone.0145821] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Previously, transplantation of ovaries from young, cycling mice into old, postreproductive-age mice increased life span and decreased cardiomyopathy at death. We anticipated that the same factors that increased life span and decreased cardiomyopathy could also influence the progression of orthopedic disease. At 11 months of age, prepubertally ovariectomized and ovary-intact mice (including reproductively cycling and acyclic mice) received new 60-day-old ovaries. At death, epiphyseal bone in the proximal tibia and the distal femur and mid-shaft tibial and femoral diaphyseal bone was analyzed with micro-computed tomography. For qualitative analysis of osteophytosis, we also included mineralized connective tissue within the stifle joint. Prepubertal ovariectomy had the greatest influence on bone volume, ovarian transplantation had the greatest influence on bone architecture and both treatments influenced bone density. Ovarian transplantation increased cortical, but not trabecular bone density and tended to increase osteophytosis and heterotopic mineralization, except in acyclic recipients. These effects may have been dictated by the timing of the treatments, with ovariectomy appearing to influence early development and ovarian transplantation limited to influencing only the postreproductive period. However, major differences observed between cycling, acyclic and ovariectomized recipients of new ovaries may have been, in part due to differences in the levels of hormone receptors present and the responsiveness of specific bone processes to hormone signaling. Changes that resulted from these treatments may represent a compensatory response to normal age-associated, negative, orthopedic changes. Alternatively, differences between treatments may simply be the 'preservation' of unblemished orthopedic conditions, prior to the influence of negative, age-associated effects. These findings may suggest that in women, tailoring hormone replacement therapy to the patient's current reproductive status may improve therapy effectiveness and that beginning therapy earlier may help preserve trabecular bone mineral density that would otherwise be lost during perimenopause.
Collapse
Affiliation(s)
- Jeffrey B. Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT, United States of America
| | - Boston C. Terry
- Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Samer S. Merchant
- Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - Holly M. Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT, United States of America
| | - Mahdi Nazokkarmaher
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT, United States of America
| |
Collapse
|
47
|
Wang L, Li C, Li R, Deng Y, Tan Y, Tong C, Qi H. MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim 2015; 52:365-373. [PMID: 26676955 DOI: 10.1007/s11626-015-9977-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/05/2015] [Indexed: 12/18/2022]
Abstract
Previous studies have reported that microRNA-764-3p (miR-764-3p) is one of the most up-regulated microRNAs (miRNAs) in TGF-β1-stimulated mouse ovarian granulosa cells. However, little is known about the roles and mechanisms of miR-764-3p in granulosa cell function during follicular development. In this study, we found that overexpression of miR-764-3p inhibited 17β-estradiol (E2) synthesis of granulosa cells through directly targeting steroidogenic factor-1 (SF-1). MiR-764-3p inhibited SF-1 by affecting its messenger RNA (mRNA) stability, which subsequently suppressed the expression levels of Cyp19a1 gene (aromatase, a downstream target of SF-1). In addition, SF-1 was involved in regulation of miR-764-3p-mediated Cyp19a1 expression in granulosa cells which contributed, at least partially, to the effects of miR-764-3p on granulosa cell E2 release. These results suggest that miR-764-3p functions to decrease steroidogenesis by targeting SF-1, at least in part, through inactivation of Cyp19a1. Taken together, our data provide mechanistic insights into the roles of miR-764-3p on E2 synthesis. Understanding of potential miRNAs affecting estrogen synthesis will help to diagnose and treat steroid-related diseases.
Collapse
Affiliation(s)
- Lianlian Wang
- Department of Reproduction Health and Infertility, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cong Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Rong Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Youlin Deng
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yixin Tan
- Department of Medical Records, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
48
|
Toda K, Hayashi Y, Ono M, Saibara T. Co-administration of insulin with a gonadotropin partly improves ovulatory responses of estrogen-deficient mice. Mol Cell Endocrinol 2015; 411:177-86. [PMID: 25957088 DOI: 10.1016/j.mce.2015.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/30/2022]
Abstract
Administration of 17-βestradiol (E2) with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) can induce ovulation in estrogen-deficient (ArKO) mice; nevertheless, ovulatory efficiency and rate are low. In this study, effects of insulin on the ovulatory responses were investigated. In ArKO ovary, hCG signal was found to be transmitted in an uncoordinated manner when phosphorylation levels of signaling molecules are examined. Co-administration of insulin with hCG improved the transmission of hCG signal as well as the ovulatory efficiency in ArKO mice. It also improved the ovulatory rate but far below the wild-type rate. Gene expression analysis demonstrated that Cyp11a1 and Cyp17a1 mRNAs were significantly induced 4 h after PMSG administration in the wild-type ovary, but not in ArKO ovary. Collectively, these results suggest that insulin improves ovulatory responses of ArKO mice, but it fails to ameliorate follicular dysfunctions caused possibly by an inappropriate intraovarian milieu during follicular maturation.
Collapse
Affiliation(s)
- Katsumi Toda
- Department of Biochemistry, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan.
| | - Yoshihiro Hayashi
- Department of Pathology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Masafumi Ono
- Department of Gastroenterology and Hepatology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
49
|
Ting AY, Xu J, Stouffer RL. Differential effects of estrogen and progesterone on development of primate secondary follicles in a steroid-depleted milieu in vitro. Hum Reprod 2015; 30:1907-17. [PMID: 26040480 PMCID: PMC4507328 DOI: 10.1093/humrep/dev119] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/19/2015] [Accepted: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION What are the direct effects of progesterone (P4) and estradiol (E2) on the development and function of primate follicles in vitro from the pre-antral to early antral stage? SUMMARY ANSWER In a steroid-depleted milieu, E2 improved follicle survival, growth, antrum formation and oocyte health, whereas P4 exerted minimal beneficial effects on follicle survival and reduced oocyte health. WHAT IS KNOWN ALREADY Effects of P4 and E2 on follicle development have been studied primarily in large antral and pre-ovulatory follicles. Chronic P4 exposure suppresses antral follicle growth, but acute P4 exposure promotes oocyte maturation in pre-ovulatory follicles. Effects of E2 can be stimulatory or inhibitory depending upon species, dose and duration of exposure. STUDY DESIGN, SIZE, DURATION Non-human primate model, randomized, control versus treatment. Macaque (n = 6) secondary follicles (n = 24 per animal per treatment group) were cultured for 5 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS Adult rhesus macaque secondary follicles were encapsulated in 0.25% alginate and cultured individually in media containing follicle stimulating hormone plus (i) vehicle, (ii) a steroid-synthesis inhibitor, trilostane (TRL, 250 ng/ml), (iii) TRL + low E2 (100 pg/ml) or progestin (P, 10 ng/ml R5020) and (iv) TRL + high E2 (1 ng/ml E2) or P (100 ng/ml R5020). Follicles reaching the antral stage (≥750 µm) were treated with human chorionic gonadotrophin for 34 h. End-points included follicle survival, antrum formation, growth pattern, plus oocyte health and maturation status, as well as media concentrations of P4, E2 and anti-Müllerian hormone (AMH). MAIN RESULTS AND THE ROLE OF CHANCE In a steroid-depleted milieu, low dose, but not high dose, P improved (P < 0.05) follicle survival, but had no effect (P > 0.05) on antrum formation and AMH production. Low-dose P increased (P < 0.05) P4 production in fast-grow follicles, and both doses of P elevated (P < 0.05) E2 production in slow-grow follicles. Additionally, low-dose P increased (P < 0.05) the percentage of no-grow follicles, and high-dose P promoted oocyte degeneration. In contrast, E2, in a steroid-depleted milieu, improved (P < 0.05) follicle survival, growth, antrum formation and oocyte health. E2 had no effect on P4 or E2 production. Follicles exposed to E2 yielded mature oocytes capable of fertilization and early cleavage, at a rate similar to untreated control follicles. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro effects of P and E2 during the interval from the secondary to small antral stage of macaque follicles. WIDER IMPLICATIONS OF THE FINDINGS This study provides novel information on the direct actions of P4 and E2 on primate pre-antral follicle development. Combined with our previous report on the actions of androgens, our findings suggest that androgens appear to be a survival factor but hinder antral follicle differentiation, E2 appears to be a survival and growth factor at the pre-antral and early antral stage, whereas P4 may not be essential during early folliculogenesis in primates. STUDY FUNDING/COMPETING INTERESTS NIH P50 HD071836 (NCTRI), NIH ORWH/NICHD 2K12HD043488 (BIRCWH), ONPRC 8P51OD011092. There are no conflicts of interest.
Collapse
Affiliation(s)
- A Y Ting
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - J Xu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - R L Stouffer
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
50
|
Yin S, Song C, Wu H, Chen X, Zhang Y. Adverse Effects of High Concentrations of Fluoride on Characteristics of the Ovary and Mature Oocyte of Mouse. PLoS One 2015; 10:e0129594. [PMID: 26053026 PMCID: PMC4460091 DOI: 10.1371/journal.pone.0129594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/10/2015] [Indexed: 01/01/2023] Open
Abstract
Reproductive toxicity has been an exciting topic of research in reproductive biology in recent years. Soluble fluoride salts are toxic at high concentrations; their reproductive toxicity was assessed in this study by administering different fluoride salt concentrations to mice. Continuous feeding for five weeks resulted in damage to the histological architecture of ovaries. The expression of genes, including Dazl, Stra8, Nobox, Sohlh1, and ZP3 gene, associated with oocyte formation were much lower in the experimental group as compared with the control group. The number of in vitro fertilization of mature oocytes were also much lower in the experimental group as compared with control. Moreover, the fertility of female mice, as assessed by mating with normal male mice, was also lower in experimental compared with control groups. The expression of the oocyte-specific genes: Bmp15, Gdf9, H1oo, and ZP2, which are involved in oocyte growth and the induction of the acrosome reaction, decreased with the fluoride administration. DNA methylation and histone acetylation (H3K18ac and H3K9ac) are indispensable for germline development and genomic imprinting in mammals, and fluoride administration resulted in reduced levels of H3K9ac and H3K18ac in the experimental group as compared with the control group, as detected by immunostaining. Our results indicate that the administration of high concentrations of fluoride to female mice significantly reduced the number of mature oocytes and hampered their development and fertilization. Thus, this study lays a foundation for future studies on fluoride-induced reproductive disorders in women.
Collapse
Affiliation(s)
- Songna Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haibo Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
- * E-mail:
| |
Collapse
|