1
|
Guzeloglu-Kayisli O, Ozmen A, Un BC, Un B, Blas J, Johnson I, Thurman A, Walters M, Friend D, Kayisli UA, Lockwood CJ. Targeting FKBP51 prevents stress-induced preterm birth. EMBO Mol Med 2025; 17:775-796. [PMID: 40097636 PMCID: PMC11982339 DOI: 10.1038/s44321-025-00211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Preterm birth (PTB) is a leading cause of perinatal morbidity and mortality, with maternal stress-related disorders, such as depression and anxiety, linked to idiopathic PTB (iPTB). At the maternal-fetal interface, decidualized stromal cells (DSCs) exclusively express the progesterone receptor (PR) and play pivotal roles in maintaining pregnancy and initiating labor. DSCs also express FKBP51, a protein that binds to and inhibits transcriptional activity of glucocorticoid and PR receptors and is associated with stress-related diseases. We previously found that iPTB specimens exhibit increased FKBP51 levels and enhanced FKBP51-PR interactions in DSC nuclei. Additionally, we demonstrated that Fkbp5-deficient mice have prolonged gestation and are resistant to stress-induced PTB, suggesting that FKBP51 contributes to iPTB pathogenesis. Since no FDA-approved therapy exists for PTB, we hypothesized that inhibiting FKBP51 could prevent iPTB. Our current results show that the endogenous prostaglandin D2 derivative 15dPGJ2 reduces FKBP51 levels and FKBP51-PR interactions in cultured cells. Maternal stress increases uterine expression of Fkbp5, Oxtr, and Akr1c18, leading to shortened gestation. However, treatment with 15dPGJ2 lowers uterine Fkbp51, Oxtr, and Ptgs2 levels and prevents stress-induced PTB. Notably, co-treatment with 15dPGJ2 and either P4 or R5020 produced the most significant effects, highlighting the potential of 15dPGJ2 alone or in combination with progestins as a promising therapeutic strategy to prevent PTB.
Collapse
Affiliation(s)
- Ozlem Guzeloglu-Kayisli
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Asli Ozmen
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Busra Cetinkaya Un
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Burak Un
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jacqueline Blas
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | | | | | - Umit A Kayisli
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Charles J Lockwood
- Department of Obstetrics & Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
2
|
Ling LJ, Li MD, Lu JW, Zhang F, Pan F, Su Y, Myatt L, Wang WS, Sun K, Ying H. Induction of epithelial cell senescence by SERPINE1 derived from fibroblasts in the amnion at parturition. Mech Ageing Dev 2025; 225:112053. [PMID: 40132749 DOI: 10.1016/j.mad.2025.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/28/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Senescence of amnion epithelial cells not only disrupts the fetal membrane structure, but also becomes a source of proinflammatory signals contributing to membrane inflammation at parturition. However, the trigger initiating their senescence awaits identification. In this study, we found that SERPINE1 abundance was significantly increased in the amnion at parturition, where SERPINE1 was found predominantly expressed in amnion fibroblasts. SERPINE1 from amnion fibroblasts induced amnion epithelial cell senescence by causing vitronectin shedding from the cells thereby interrupting the association of vitronectin with integrin subunit αV, which led to the inhibition of the cell survival-associated focal adhesion pathway. In turn, proinflammatory cytokines such as interleukin-1β from senescent amnion epithelial cells enhanced SERPINE1 expression in amnion fibroblasts, thus forming a feed-forward loop between SERPINE1 production in amnion fibroblasts and epithelial cell senescence at parturition. Studies in the pregnant mice showed that intra-amniotic injection of SERPINE1 induced preterm birth with increased cellular senescence in the fetal membranes, which could be reversed by co-administration of vitronectin. Our findings indicate that SERPINE1 derived from amnion fibroblasts participates in the induction of amnion epithelial cell senescence at parturition. Intervening in the interaction of SERPINE1 with vitronectin may have therapeutic benefit in the treatment of preterm birth.
Collapse
Affiliation(s)
- Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, PR China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Yao Su
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, PR China.
| |
Collapse
|
3
|
Bush B, Richardson LS, Radnaa E, Behnia F, Jacob J, Lintao RCV, Menon R. Do progesterone receptor membrane components (PGRMC)s play a role in the chorions refractoriness to epithelial-to-mesenchymal transition (EMT)? J Reprod Immunol 2025; 169:104463. [PMID: 39999661 DOI: 10.1016/j.jri.2025.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Fetal membrane inflammation is one of the drivers of adverse pregnancy outcomes. One of the reported pathways of inflammation is epithelial-mesenchymal transition (EMT) of amniotic epithelial cells. EMT is resisted during gestation via signaling initiated by the binding of progesterone (P4) to progesterone receptor membrane components (PGRMC1/PGRMC2). The vulnerability of chorionic trophoblast cells (CTCs) to transition has not been studied. Here, we examined CTCs EMT in response to the stressors and the role of PGRMC1/PGRMC2. CTCs were treated with the autophagy inhibitor bafilomycin (Baf), transforming growth factor beta (TGF-β, EMT-inducer), and lipopolysaccharide (LPS) to simulate cellular stressors associated with an adverse pregnancy environment. The primary endpoints included morphological evidence of EMT, N-cadherin-to-E-cadherin ratio, vimentin/cytokeratin staining, pro-inflammatory cytokine and P4 production. PGRMC1/PGRMC2 knock-out (KO) CTCs were prepared using CRISPR/Cas9, and experiments were repeated to test the influence of the P4-PGRMC axis. Wild-type CTCs were resistant to cellular transitions, changes in P4 production, and shifts in the inflammatory status under normal, LPS, or TGF-β conditions. Autophagy inhibition tended to cause CTCs to transition (morphological changes; high N-cadherin-to-E-cadherin ratio [p < 0.05], no change in vimentin/cytokeratin), though a complete transition was not evident. Further, neither PGRMC1/PGRMC2 played a role in CTC cellular transitions, as their KO did not cause any major changes. Chorion cells resist EMT to minimize inflammation and to maintain their barrier functions regardless of the presence of PGRMC1/ PGRMC2. Cellular stressors or infectious antigens are likely to impact the amnion, where membrane weakening can be initiated.
Collapse
Affiliation(s)
- B Bush
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - L S Richardson
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - E Radnaa
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - F Behnia
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - J Jacob
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA
| | - R C V Lintao
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Institute of Reproductive Health, National Institutes of Health, University of the c Manila, Philippines
| | - R Menon
- Division of Basic Science & Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA; Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, TX, USA.
| |
Collapse
|
4
|
Dufford MT, Fleischer TC, Sommerville LJ, Badsha MB, Polpitiya AD, Logan J, Fox AC, Rust SR, Cox CB, Garite TJ, Boniface JJ, Kearney PE. Clock Proteins Have the Potential to Improve Term Delivery Date Prediction: A Proof-of-Concept Study. Life (Basel) 2025; 15:224. [PMID: 40003633 PMCID: PMC11856609 DOI: 10.3390/life15020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Our ability to accurately predict the delivery date of term pregnancies is limited by shortcomings of modern-day clinical tools and due date estimation methods. The pregnancy clock is a series of coordinated and harmonized signals between mother, fetus, and placenta that regulate the length of gestation. Clock proteins are thought to be important mediators of these signals, yet few studies have investigated their potential utility as predictors of term delivery date. In this study, we performed a cross-sectional proteome analysis of 2648 serum samples collected between 18 and 28 weeks of gestation from mothers who delivered at term. The cohort included pregnancies both with and without complications. A total of 15 proteins of diverse functionalities were shown to have a direct association with time to birth (TTB), 11 of which have not been previously linked to gestational age. The protein A Distintegrin and Metalloproteinase 12 (ADA12) was one of the 15 proteins shown to have an association with TTB. Mothers who expressed the highest levels of ADA12 in the cohort (90th percentile) gave birth earlier than mothers who expressed the lowest levels of ADA12 (10th percentile) at a statistically significant rate (median gestational age at birth 390/7 weeks vs. 393/7 weeks, p < 0.001). Altogether, these findings suggest that ADA12, as well as potentially other clock proteins, have the potential to serve as clinical predictors of term delivery date in uncomplicated pregnancies and represent an important step towards characterizing the role(s) of clock proteins in mediating pregnancy length.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Paul E. Kearney
- Sera Prognostics, Inc., Salt Lake City, UT 84109, USA (T.C.F.); (A.C.F.); (T.J.G.)
| |
Collapse
|
5
|
Acosta-Manzano P, Flor-Alemany M, Van Poppel MNM, Coll-Risco I, Segura-Jiménez V, Stanford KI, Aparicio VA. Concurrent exercise training during pregnancy is related to more favourable maternal lipid levels when IL-8 increases. J Sports Sci 2025; 43:308-322. [PMID: 39902852 DOI: 10.1080/02640414.2025.2456384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
It is unclear how exercise-induced stimuli affect and translate into immunometabolic adaptations during pregnancy. We previously found that exercise influences maternal-foetal circulating cytokines (IL-1β, IL-6, IL-8, IL-10, TNF-α). This study investigated i) the influence of an exercise training programme during pregnancy on metabolic markers (glycaemic and lipid markers, and C-reactive protein) in maternal, and cord arterial and venous serum; and ii) whether these cytokines mediated the effects of exercise on metabolic markers. Eighty-eight pregnant women, divided into exercise (n = 44) and control (n = 44) groups, participated in this quasi-experimental study. The exercise group followed a 60-min 3 days/week concurrent (aerobic+resistance) exercise training. Glycaemic and lipid markers and C-reactive protein concentrations, and cytokines levels, were measured at weeks 17 and 34 and birth with standard biochemical methods and Luminex xMAP technology. Overall, exercise did not induce detectable changes in maternal metabolic markers during pregnancy, except for those exercisers whose IL-8 levels increased, where it was related to lower maternal total cholesterol (indirect effect= -9.1; 95% CI= -24.6, -1.1) and low-density lipoprotein-cholesterol gains (-8.9; -21.9, -1.1). This suggests a mechanism by which exercise may optimise lipid metabolism regulation. Moreover, exercise was related to lower cord arterial serum glucose levels. Further research, especially concerning foetal metabolism, is necessary.
Collapse
Affiliation(s)
- Pedro Acosta-Manzano
- Department of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
- PA-HELP "Physical Activity for Health Promotion, CTS-1018" research group. Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sports Science, University of Granada, Granada, Spain
| | - Marta Flor-Alemany
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology "José Mataix" (INYTA), Sport and Health University Research Institute (IMUDS), University of Granada, Granada, Spain
| | | | - Irene Coll-Risco
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology "José Mataix" (INYTA), Sport and Health University Research Institute (IMUDS), University of Granada, Granada, Spain
| | - Víctor Segura-Jiménez
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- UGC Neurotraumatología y Rehabilitación, Hospital Universitario Virgen de las Nieves, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Centre for Diabetes and Metabolism Research Centre, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Virginia A Aparicio
- Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology "José Mataix" (INYTA), Sport and Health University Research Institute (IMUDS), University of Granada, Granada, Spain
| |
Collapse
|
6
|
Ulrich CC, Parker LL, Lambert JA, Baldwin L, Buxton ILO, Etezadi-Amoli N, Leblanc N, Burkin HR. Matrix Metallopeptidase 9 Promotes Contraction in Human Uterine Myometrium. Reprod Sci 2025; 32:444-454. [PMID: 39776427 PMCID: PMC11825266 DOI: 10.1007/s43032-024-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Matrix metallopeptidase 9 (MMP9) is a secreted zinc-dependent peptidase known for extracellular remodeling. MMP9 is elevated in tissues from women experiencing preterm labor, and previous research has shown that the addition of combined matrix metallopeptidases 2 and 9 (MMP2/9) enhances uterine contractions. We hypothesized that adding MMP9 alone would enhance myometrial contractions and that specific MMP9 inhibition would suppress uterine contractions. In myometrial tissue from women undergoing term Caesarean sections, we observed an increased contractile response as measured by area under the curve over time in tissues treated with MMP9 compared to vehicle-treated controls (p = 0.0003). This effect was primarily due to increased contraction frequency in MMP9-treated tissues compared to controls (p < 0.0001). Specific inhibition of MMP9 with the highly selective MMP9 inhibitor 1 (AG-L-66085) reduced contractile responses in myometrial tissues from pregnant women. We observed a reduction in the oxytocin-induced contractile response as measured by area under the curve over time (p < 0.0001) and contraction amplitude (p < 0.0068) in AG-L-66085-treated tissues compared to vehicle-treated controls. To determine the effects of MMP9 inhibition in the absence of exogenous oxytocin, we tested the effects of AG-L-66085 on spontaneous contractions. The area under the curve (p = 0.0415) and amplitude (p = 0.0354) of spontaneous contractions were reduced in response to 1 μM AG-L-66085, and the inhibitory effects increased as the AG-L-66085 concentration increased. Together, these data support the hypothesis that elevated MMP9 promotes myometrial contractions and labor, while its inhibition promotes relaxation.
Collapse
Affiliation(s)
- Craig C Ulrich
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Lauren L Parker
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Janet A Lambert
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Lexa Baldwin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Iain L O Buxton
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Neda Etezadi-Amoli
- Department of Obstetrics and Gynecology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Heather R Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA.
| |
Collapse
|
7
|
Mayne G, DeWitt PE, Wen J, Schniedewind B, Dabelea D, Christians U, Hurt KJ. Adiponectin and Glucocorticoids Modulate Risk for Preterm Birth: The Healthy Start Study. J Clin Endocrinol Metab 2025; 110:523-533. [PMID: 38980936 DOI: 10.1210/clinem/dgae464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
CONTEXT Adiponectin is a potent uterine tocolytic that decreases with gestational age, suggesting it could be a maternal metabolic quiescence factor. Maternal stress can influence preterm birth risk, and adiponectin levels may be stress responsive. OBJECTIVE We characterized associations between adiponectin and glucocorticoids with preterm birth and modeled their predictive utility. We hypothesized maternal plasma adiponectin and cortisol are inversely related and lower adiponectin and higher cortisol associate with preterm birth. METHODS We performed a nested case-control study using biobanked fasting maternal plasma. We included low-risk singleton pregnancies, and matched 1:3 (16 preterm, 46 term). We quantified high molecular weight (HMW), low molecular weight (LMW), and total adiponectin using an enzyme-linked immunosorbent assay. We validated a high-performance liquid chromatography-tandem mass spectrometry serum assay for use in plasma, to simultaneously measure cortisol, cortisone, and 5 related steroid hormones. We used linear/logistic regression to compare group means and machine learning for predictive modeling. RESULTS The preterm group had lower mean LMW adiponectin (3.07 μg/mL vs 3.81 μg/mL at 15 weeks (w) 0 days (d), P = .045) and higher mean cortisone (34.4 ng/mL vs 29.0 ng/mL at 15w0d, P = .031). The preterm group had lower cortisol to cortisone and lower LMW adiponectin to cortisol ratios. We found HMW adiponectin, cortisol to cortisone ratio, cortisone, maternal height, age, and prepregnancy body mass index most strongly predicted preterm birth (area under the receiver operator curve = 0.8167). In secondary analyses, we assessed biomarker associations with maternal self-reported psychosocial stress. Lower perceived stress was associated with a steeper change in cortisone in the term group. CONCLUSION Overall, metabolic and stress biomarkers are associated with preterm birth in this healthy cohort. We identify a possible mechanistic link between maternal stress and metabolism for pregnancy maintenance.
Collapse
Affiliation(s)
- Gabriella Mayne
- Department of Health & Behavioral Sciences, University of Colorado, Denver, CO 80204, USA
| | - Peter E DeWitt
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer Wen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Björn Schniedewind
- iC42 Clinical Research & Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Uwe Christians
- iC42 Clinical Research & Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Slaats E, Bramreiter B, Chua KJ, Quilang RC, Sallinger K, Eikmans M, Kroneis T. Maternal microchimeric cell trafficking and its biological consequences depend on the onset of inflammation at the feto-maternal interface. Semin Immunopathol 2025; 47:8. [PMID: 39820729 PMCID: PMC11742462 DOI: 10.1007/s00281-025-01037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Microchimerism is defined as the presence of a small population of genetically distinct cells within a host that is derived from another individual. Throughout pregnancy, maternal and fetal cells are known to traffic across the feto-maternal interface and result in maternal and fetal microchimerism, respectively. However, the routes of cell transfer, the molecular signaling as well as the timing in which trafficking takes place are still not completely understood. Recently, the presence of inflammation at the feto-maternal interface has been linked with maternal microchimeric cells modulating organ development in the fetus. Here, we review the current literature and suggest that inflammatory processes at the feto-maternal interface tissues are a physiological prerequisite for the establishment of microchimerism. We further propose a spatio-temporal corridor of microchimeric cell migration to potentially explain some biological effects of microchimerism. Additionally, we elaborate on the possible consequences of a shift in this spatio-temporal corridor, potentially responsible for the development of pathologies in the neonate.
Collapse
Affiliation(s)
- Emiel Slaats
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Bernadette Bramreiter
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Kristine J Chua
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Anthropology, University of Notre Dame, Notre Dame, CA, USA
| | - Rachel C Quilang
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Sallinger
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Kroneis
- Gottfried Schatz Research Center, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
9
|
Catalano RA, Bruckner TA, Gemmill A, Margerison CE. The pandemic preterm paradox: a test of competing explanations. Am J Epidemiol 2024; 193:1823-1831. [PMID: 38885959 PMCID: PMC11637531 DOI: 10.1093/aje/kwae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/20/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Epidemiologists have long argued that side effects of the stress response include preterm birth. Research reports that fear of lethal infection stressed pregnant persons at the outset of the coronavirus disease (COVID-19) pandemic and that "shutdowns" and "social distancing" impeded access to social support and prenatal care. The decline in preterm births in high-income countries, including the United States, during the early months of the pandemic therefore poses a paradox for science. Explanations of this "pandemic preterm paradox" remain untested. We applied time-series modeling to data describing 80 monthly conception cohorts begun in the United States from July 2013 through February 2020 to determine which of 3 explanations most parsimoniously explained the paradox. We infer that "prior loss," or the argument that an increase in spontaneous abortions and stillbirths depleted the population of fetuses at risk of preterm birth, best explains data currently available. We describe the implications of these results for public health practice.
Collapse
Affiliation(s)
- Ralph A Catalano
- School of Public Health, University of California, Berkeley, CA 94704, United States
| | - Tim A Bruckner
- Joe C. Wen School of Population & Public Health and Center for Population, Inequality and Policy, University of California, Irvine, CA 92697, United States
| | - Alison Gemmill
- Department of Population, Family and Reproductive Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Claire E Margerison
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
10
|
Basavaraj C, Grant AD, Aras SG, Erickson EN. Deep learning model using continuous skin temperature data predicts labor onset. BMC Pregnancy Childbirth 2024; 24:777. [PMID: 39587525 PMCID: PMC11587739 DOI: 10.1186/s12884-024-06862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/25/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Changes in body temperature anticipate labor onset in numerous mammals, yet this concept has not been explored in humans. We investigated if continuous body temperature exhibits similar changes in women and whether these changes may be linked to hormonal status. Finally, we developed a deep learning model using temperature patterning to provide a daily forecast of time to labor onset. METHODS We evaluated patterns in continuous skin temperature data in 91 (n = 54 spontaneous labors) pregnant women using a wearable smart ring. In a subset of 28 pregnancies, we examined daily steroid hormone samples leading up to labor to analyze relationships among hormones and body temperature trajectory. Finally, we applied an autoencoder long short-term memory (AE-LSTM) deep learning model to provide a novel daily estimation of days until labor onset. RESULTS Features of temperature change leading up to labor were associated with urinary hormones and labor type. Spontaneous labors exhibited greater estriol to α-pregnanediol ratio, as well as lower body temperature and more stable circadian rhythms compared to pregnancies that did not undergo spontaneous labor. Skin temperature data from 54 pregnancies that underwent spontaneous labor between 34 and 42 weeks of gestation were included in training the AE-LSTM model, and an additional 37 pregnancies that underwent artificial induction of labor or Cesarean without labor were used for further testing. The input to the pipeline was 5-min skin temperature data from a gestational age of 240 days until the day of labor onset. During cross-validation AE-LSTM average error (true - predicted) dropped below 2 days at 8 days before labor, independent of gestational age. Labor onset windows were calculated from the AE-LSTM output using a probabilistic distribution of model error. For these windows AE-LSTM correctly predicted labor start for 79% of the spontaneous labors within a 4.6-day window at 7 days before true labor, and 7.4-day window at 10 days before true labor. CONCLUSION Continuous skin temperature reflects progression toward labor and hormonal change during pregnancy. Deep learning using continuous temperature may provide clinically valuable tools for pregnancy care.
Collapse
Affiliation(s)
- Chinmai Basavaraj
- Department of Computer Science, The University of Arizona, Tucson, AZ, USA
| | | | - Shravan G Aras
- Center for Biomedical Informatics and Biostatistics, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
11
|
Carvajal JA, Galaz J, Villagrán S, Astudillo R, Garmendia L, Delpiano AM. The role of the RHOA/ROCK pathway in the regulation of myometrial stages throughout pregnancy. AJOG GLOBAL REPORTS 2024; 4:100394. [PMID: 39434813 PMCID: PMC11491706 DOI: 10.1016/j.xagr.2024.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Background Controlling uterine contractile activity is essential to regulate the duration of pregnancy. During most of the pregnancy, the uterus does not contract (i.e., myometrial quiescence). The myometrium recovers its contractile phenotype at around 36 weeks (i.e., myometrial activation) through several mechanisms. The RHOA/ROCK pathway plays a vital role in facilitating muscular contractions by calcium sensitization in humans. Yet, the role of this pathway during different myometrial stages, including quiescence, has not been elucidated. Objective we aimed to study the role of the RHOA/ROCK pathway in the regulation of the different myometrial stages throughout pregnancy. Specifically, we hypothesized that the inhibition of the components of the RHOA/ROCK pathway play an important role in maintaining uterine quiescence. Study design Myometrial samples were obtained from pregnant individuals who underwent cesarean section. Pregnant individuals who delivered preterm without labor (myometrial quiescence), preterm with labor (nonphysiological myometrial stimulation), term not in labor (activation), and term in labor (physiological myometrial stimulation) were included. The mRNA and protein expression of RHOA, ROCK I, ROCK II, RND1-3, and ROCK activity through pMYTP1 were evaluated. Results We found that the human myometrium constitutively expressed RHOA/ROCK pathway components throughout pregnancy. No changes in the components of the RHOA/ROCK pathway were found during quiescence. Moreover, the RHOA protein and ROCK activity increased in the myometrium during labor, supporting the hypothesis that this pathway participates in maintaining the contractile activity of the myometrium. This study provides insight into the role of the RHOA/ROCK pathway in controlling myometrial contractile activity during pregnancy.
Collapse
Affiliation(s)
- Jorge A. Carvajal
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| | - Jose Galaz
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| | - Sofía Villagrán
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| | - Rocío Astudillo
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| | - Liliana Garmendia
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| | - Ana María Delpiano
- Departamento de Obstetricia, Escuela de Medicina, Unidad de Medicina Materno Fetal, Pontificia Universidad Católica de Chile, Santiago, Chile (All authors)
| |
Collapse
|
12
|
Cavoretto PI, Farina A, Salmeri N, Syngelaki A, Tan MY, Nicolaides KH. First trimester risk of preeclampsia and rate of spontaneous birth in patients without preeclampsia. Am J Obstet Gynecol 2024; 231:452.e1-452.e7. [PMID: 38244830 DOI: 10.1016/j.ajog.2024.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND First-trimester screening for preeclampsia using a combination of maternal risk factors and mean arterial pressure, uterine artery pulsatility index, and placental growth factor, as proposed by the Fetal Medicine Foundation, provides effective prediction of preterm preeclampsia. Placental dysfunction is a potential precursor of spontaneous birth. OBJECTIVE The objective of this study was to examine if the estimated risk of preeclampsia is associated with the gestational age at onset of spontaneous delivery in the absence of preeclampsia. STUDY DESIGN This was a secondary analysis of the data from the Screening programme for pre-eclampsia trial in which there was a comparison of the performance of first-trimester screening for preterm preeclampsia using the Fetal Medicine Foundation model vs a traditional history-based risk scoring system. A subgroup of women from the trial with spontaneous onset of delivery (labor with intact membranes or preterm prelabor rupture of membranes) was included in this study and was arbitrarily divided into 3 groups according to the risk for preterm preeclampsia as determined by the Fetal Medicine Foundation model at 11 to 13 weeks' gestation as follows: group 1 low risk (˂1/100); group 2 intermediate risk (1/50 to 1/100); and group 3 high risk (˃1/50). A survival analysis was carried out using a Kaplan-Meier estimator and a Cox regression analysis with stratification by the 3 preeclampsia risk groups. Occurrence of spontaneous birth in the study groups was compared using log-rank tests and hazard ratios. RESULTS The study population comprised 10,820 cases with delivery after spontaneous onset of labor among the 16,451 cases who participated in the Screening programme for pre-eclampsia trial. There were 9795 cases in group 1, 583 in group 2, and 442 in group 3. The gestational age at delivery was <28, <32, <35, <37, and <40 weeks in 0.29%, 0.64%, 1.68%, 4.52%, and 44.97% of cases, respectively, in group 1; 0.69%, 1.71%, 3.26%, 7.72%, and 55.23% of cases, respectively, in group 2; and 0.45%, 1.81%, 5.66%, 13.80%, and 63.12% of cases, respectively, in group 3. The curve profile of gestational age at spontaneous birth in the 3 study groups was significantly different overall and in pairwise comparisons (P values <.001). The Cox regression analysis showed that risks increased for spontaneous birth by 18% when the intermediate-risk group was compared with the low-risk group (P˂.001) and by 41% when the high-risk group was compared with the low-risk group (P˂.001). CONCLUSION In this study that investigated birth after spontaneous onset of labor in women without preeclampsia, there were 2 major findings. First, the duration of pregnancy decreased with increasing first-trimester risk for preeclampsia. Second, in the high-risk group, when compared with the low-risk group, the risk for spontaneous birth was 4 times higher at a gestational age of 24 to 26 weeks, 3 times higher at 28 to 32 weeks, and 2 times higher at 34 to 39 weeks. These differences present major clinical implications for antepartum counselling, monitoring, and interventions in these pregnancies.
Collapse
Affiliation(s)
- Paolo I Cavoretto
- Department of Obstetrics and Gynaecology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Farina
- Obstetric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Noemi Salmeri
- Department of Obstetrics and Gynaecology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Argyro Syngelaki
- Fetal Medicine Research Institute, King's College Hospital, London, United Kingdom
| | - Min Yi Tan
- Fetal Medicine Research Institute, King's College Hospital, London, United Kingdom
| | - Kypros H Nicolaides
- Fetal Medicine Research Institute, King's College Hospital, London, United Kingdom
| |
Collapse
|
13
|
Handelsman DJ. Toward a Robust Definition of Sport Sex. Endocr Rev 2024; 45:709-736. [PMID: 38578952 DOI: 10.1210/endrev/bnae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Elite individual sports in which success depends on power, speed, or endurance are conventionally divided into male and female events using traditional binary definitions of sex. Male puberty creates durable physical advantages due to the 20- to 30-fold increase in circulating testosterone producing a sustained uplift in men's muscle, bone, hemoglobin, and cardiorespiratory function resulting from male puberty and sustained during men's lives. These male physical advantages provide strong justification for a separate protected category of female events allowing women to achieve the fame and fortune from success they would be denied if competing against men. Recent wider social acceptance of transgender individuals, together with the less recognized involvement of intersex individuals, challenge and threaten to defeat the sex classifications for elite individual female events. This can create unfair advantages if seeking inclusion into elite female events of unmodified male-bodied athletes with female gender identity who have gained the physical advantages of male puberty. Based on reproductive physiology, this paper proposes a working definition of sport sex based primarily on an individual's experience of male puberty and can be applied to transgender and various XY intersex conditions. Consistent with the multidimensionality of biological sex (chromosomal, genetic, hormonal, anatomical sex), this definition may be viewed as a multistrand cable whose overall strength survives when any single strand weakens or fails, rather than as a unidimensional chain whose strength is only as good as its weakest link.
Collapse
Affiliation(s)
- David J Handelsman
- Andrology Department, ANZAC Research Institute, University of Sydney, Concord Hospital, Syndey, NSW 2139, Australia
| |
Collapse
|
14
|
Forndran T, Große S, Weber G, Hausdorf L, Samsel D, Berndt A, Gaßler N, Groten T. Protocol for the quantitative analysis of images retrieved by multiplex immunofluorescence staining to allow cell type-specific spatial phenotyping of markers of interest in the human placenta. Placenta 2024. [DOI: 10.1016/j.placenta.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
15
|
Hamburg-Shields E, Mesiano S. The hormonal control of parturition. Physiol Rev 2024; 104:1121-1145. [PMID: 38329421 PMCID: PMC11380996 DOI: 10.1152/physrev.00019.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024] Open
Abstract
Parturition is a complex physiological process that must occur in a reliable manner and at an appropriate gestation stage to ensure a healthy newborn and mother. To this end, hormones that affect the function of the gravid uterus, especially progesterone (P4), 17β-estradiol (E2), oxytocin (OT), and prostaglandins (PGs), play pivotal roles. P4 via the nuclear P4 receptor (PR) promotes uterine quiescence and for most of pregnancy exerts a dominant block to labor. Loss of the P4 block to parturition in association with a gain in prolabor actions of E2 are key transitions in the hormonal cascade leading to parturition. P4 withdrawal can occur through various mechanisms depending on species and physiological context. Parturition in most species involves inflammation within the uterine tissues and especially at the maternal-fetal interface. Local PGs and other inflammatory mediators may initiate parturition by inducing P4 withdrawal. Withdrawal of the P4 block is coordinated with increased E2 actions to enhance uterotonic signals mediated by OT and PGs to promote uterine contractions, cervix softening, and membrane rupture, i.e., labor. This review examines recent advances in research to understand the hormonal control of parturition, with focus on the roles of P4, E2, PGs, OT, inflammatory cytokines, and placental peptide hormones together with evolutionary biology of and implications for clinical management of human parturition.
Collapse
Affiliation(s)
- Emily Hamburg-Shields
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio, United States
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio, United States
| |
Collapse
|
16
|
Silva-Fernandes A, Conde A, Marques M, Caparros-Gonzalez RA, Fransson E, Mesquita AR, Figueiredo B, Skalkidou A. Inflammatory biomarkers and perinatal depression: A systematic review. PLoS One 2024; 19:e0280612. [PMID: 38820411 PMCID: PMC11142563 DOI: 10.1371/journal.pone.0280612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/06/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Approximately 10 to 20% of pregnant women worldwide experience perinatal depression (PND), a depressive episode with onset during pregnancy or after childbirth. We performed a systematic review to identify, summarize and discuss studies on inflammatory biomarkers described in relation to PND. METHOD Inclusion criteria defined the selection of observational studies written in English, French, Spanish or Portuguese, that evaluate analytical levels of inflammatory molecules (protein levels) in biological fluids in women, with a diagnosis of depression using ICD/DSM diagnostic criteria or depressive symptoms assessed by standardized psychometric instruments, during pregnancy and/or postpartum. Case reports, experimental studies, reviews, qualitative analysis, meta-analysis, gray literature or replicated data were excluded. Three electronic databases were used for search (Pubmed, Web of Science and PsychInfo) and quality assessment of selected studies were performed using the Newcastle-Ottawa Scale. Data extraction included study design; number of subjects; obstetric information; tools and timepoints of depression and inflammatory markers assessment. RESULTS 56 studies (sample size for cross-sectional and case-control studies ranging from 10 to 469; sample size for longitudinal studies ranging from 26 to 467), where the major aim was to analyze the association between depression and inflammatory biomarkers during pregnancy and postpartum period were included in this systematic review. Overall, the findings of our systematic review lend support to the hypothesis that several inflammatory markers may be associated with peripartum depressive symptoms. The associations were somewhat different looking at pregnancy compared to the delivery time-point and postpartum, and mainly referred to increased levels of IL-6, IL-8, CRP and TNF-α among depressed. DISCUSSION In summary, our systematic review findings provide evidence supporting the hypothesis that several inflammatory markers may correlate with peripartum depressive symptoms. However, our work also highlighted notable differences in the timing of biological sampling for inflammatory markers and in the methodologies used to assess depression during the perinatal period. Additionally, variations were observed in how inflammatory biomarkers and depression were approached, including their classification as exposure or outcome variables, and the timing of assessments. It is essential for future research to investigate the influence of biological fluids and the timing of assessments for both inflammatory biomarkers and depression to gain a deeper understanding of their association. This comprehensive exploration is pivotal for elucidating the intricate relationship between inflammation and perinatal depression.
Collapse
Affiliation(s)
- Anabela Silva-Fernandes
- Psychology Research Center (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Ana Conde
- CINTESIS@RISE, CINTESIS.UPT, Portucalense University, Porto, Portugal
| | - Margarida Marques
- Faculdade de Psicologia, CICPSI, Universidade de Lisboa, Lisboa, Portugal
| | - Rafael A. Caparros-Gonzalez
- Faculty of Health Sciences, Department of Nursing, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Granada, Spain
| | - Emma Fransson
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Ana Raquel Mesquita
- Psychology Research Center (CIPsi), School of Psychology, University of Minho, Braga, Portugal
- ProChild CoLab Against Poverty and Social Exclusion–Association (ProChild CoLAB) Campus de Couros Rua de Vila Flor, Guimarães, Portugal
| | - Bárbara Figueiredo
- Psychology Research Center (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Alkistis Skalkidou
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Qu M, Lu P, Lifshitz LM, Moore Simas TA, Delpapa E, ZhuGe R. Phenanthroline relaxes uterine contractions induced by diverse contractile agents by decreasing cytosolic calcium concentration. Eur J Pharmacol 2024; 968:176343. [PMID: 38281680 PMCID: PMC10939717 DOI: 10.1016/j.ejphar.2024.176343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Uterine contractions during labor and preterm labor are influenced by a complex interplay of factors, including hormones and inflammatory mediators. This complexity may contribute to the limited efficacy of current tocolytics for preterm labor, a significant challenge in obstetrics with 15 million cases annually and approximately 1 million resulting deaths worldwide. We have previously shown that the myometrium expresses bitter taste receptors (TAS2Rs) and that their activation leads to uterine relaxation. Here, we investigated whether the selective TAS2R5 agonist phenanthroline can induce relaxation across a spectrum of human uterine contractions and whether the underlying mechanism involves changes in intracellular Ca2+ signaling. We performed experiments using samples from pregnant women undergoing scheduled cesarean delivery, assessing responses to various inflammatory mediators and oxytocin with and without phenanthroline. Our results showed that phenanthroline concentration-dependently inhibited contractions induced by PGF2α, U46619, 5-HT, endothelin-1 and oxytocin. Furthermore, in hTERT-infected human myometrial cells exposed to uterotonics, phenanthroline effectively suppressed the increase in intracellular Ca2+ concentration induced by PGF2α, U46619, oxytocin, and endothelin-1. These results suggest that the selective TAS2R5 agonist may not only significantly reduce uterine contractions but also decrease intracellular Ca2+ levels. This study highlights the potential development of TAS2R5 agonists as a new class of uterine relaxants, providing a novel avenue for improving the management of preterm labor.
Collapse
Affiliation(s)
- Mingzi Qu
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Ping Lu
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, UMass Chan Medical School, 373 Plantation St., Worcester, MA, USA
| | - Tiffany A Moore Simas
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, 119 Belmont St, Worcester, MA, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, 119 Belmont St, Worcester, MA, USA.
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA.
| |
Collapse
|
18
|
Li MD, Lu JW, Zhang F, Lei WJ, Pan F, Lin YK, Ling LJ, Myatt L, Wang WS, Sun K. ADAMTS4 is a crucial proteolytic enzyme for versican cleavage in the amnion at parturition. Commun Biol 2024; 7:301. [PMID: 38461223 PMCID: PMC10924920 DOI: 10.1038/s42003-024-06007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/03/2024] [Indexed: 03/11/2024] Open
Abstract
Hyalectan cleavage may play an important role in extracellular matrix remodeling. However, the proteolytic enzyme responsible for hyalectan degradation for fetal membrane rupture at parturition remains unknown. Here, we reveal that versican (VCAN) is the major hyalectan in the amnion, where its cleavage increases at parturition with spontaneous rupture of membrane. We further reveal that ADAMTS4 is a crucial proteolytic enzyme for VCAN cleavage in the amnion. Inflammatory factors may enhance VCAN cleavage by inducing ADAMTS4 expression and inhibiting ADAMTS4 endocytosis in amnion fibroblasts. In turn, versikine, the VCAN cleavage product, induces inflammatory factors in amnion fibroblasts, thereby forming a feedforward loop between inflammation and VCAN degradation. Mouse studies show that intra-amniotic injection of ADAMTS4 induces preterm birth along with increased VCAN degradation and proinflammatory factors abundance in the fetal membranes. Conclusively, there is enhanced VCAN cleavage by ADAMTS4 in the amnion at parturition, which can be reenforced by inflammation.
Collapse
Affiliation(s)
- Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
19
|
Basavaraj C, Grant AD, Aras SG, Erickson EN. Deep Learning Model Using Continuous Skin Temperature Data Predicts Labor Onset. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.25.24303344. [PMID: 38464102 PMCID: PMC10925356 DOI: 10.1101/2024.02.25.24303344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Changes in body temperature anticipate labor onset in numerous mammals, yet this concept has not been explored in humans. Methods We evaluated patterns in continuous skin temperature data in 91 pregnant women using a wearable smart ring. Additionally, we collected daily steroid hormone samples leading up to labor in a subset of 28 pregnancies and analyzed relationships among hormones and body temperature trajectory. Finally, we developed a novel autoencoder long-short-term-memory (AE-LSTM) deep learning model to provide a daily estimation of days until labor onset. Results Features of temperature change leading up to labor were associated with urinary hormones and labor type. Spontaneous labors exhibited greater estriol to α-pregnanediol ratio, as well as lower body temperature and more stable circadian rhythms compared to pregnancies that did not undergo spontaneous labor. Skin temperature data from 54 pregnancies that underwent spontaneous labor between 34 and 42 weeks of gestation were included in training the AE-LSTM model, and an additional 40 pregnancies that underwent artificial induction of labor or Cesarean without labor were used for further testing. The model was trained only on aggregate 5-minute skin temperature data starting at a gestational age of 240 until labor onset. During cross-validation AE-LSTM average error (true - predicted) dropped below 2 days at 8 days before labor, independent of gestational age. Labor onset windows were calculated from the AE-LSTM output using a probabilistic distribution of model error. For these windows AE-LSTM correctly predicted labor start for 79% of the spontaneous labors within a 4.6-day window at 7 days before true labor, and 7.4-day window at 10 days before true labor. Conclusion Continuous skin temperature reflects progression toward labor and hormonal status during pregnancy. Deep learning using continuous temperature may provide clinically valuable tools for pregnancy care.
Collapse
Affiliation(s)
- Chinmai Basavaraj
- Department of Computer Science, The University of Arizona, Tucson, AZ, USA
| | | | - Shravan G Aras
- Center for Biomedical Informatics and Biostatistics, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | |
Collapse
|
20
|
Flores-Espinosa P, Mancilla-Herrera I, Olmos-Ortiz A, Díaz L, Zaga-Clavellina V. Evaluation of Leukocyte Chemotaxis Induced by Human Fetal Membranes in an In Vitro Model. Methods Mol Biol 2024; 2781:27-37. [PMID: 38502440 DOI: 10.1007/978-1-0716-3746-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Leukocyte infiltration into the maternal-fetal interface is a consequence of the robust inflammation in the gestational tissues during term labor and preterm labor with or without infection. During pregnancy, the fetal membranes act as a physical barrier that isolates the fetus into the amniotic cavity, keeping it in an optimal environment for its development. In addition, the fetal membranes possess immunological competencies such as the secretion of cytokines and chemokines in response to different stimuli. Clinical and experimental evidence indicates that these tissues are involved in the extensive chemotaxis of immune cells in normal or pathological conditions.Few studies have evaluated the chemotactic capacities of the fetal membranes considering that this tissue is composed of two adjacent tissues, the amnion and the chorion, which have different characteristics. Although these tissues function as a unit, their response is complex since there is an interaction between them, where each tissue contributes differently. The protocol described here allows us to evaluate the in vitro chemotactic capacities of fetal membranes in response to various applied stimuli, considering the contribution of each of their components (amnion and choriodecidua) using a Boyden chamber assay and phenotyping the chemo-attracted leukocytes by flow cytometry.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico.
| | - Ismael Mancilla-Herrera
- Department of Infectology and Immunology, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Andrea Olmos-Ortiz
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, , Mexico City, Mexico
| | - Verónica Zaga-Clavellina
- Department of Immunobiochemistry, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
21
|
Gallo DM, Fitzgerald W, Romero R, Gomez-Lopez N, Gudicha DW, Than NG, Bosco M, Chaiworapongsa T, Jung E, Meyyazhagan A, Suksai M, Gotsch F, Erez O, Tarca AL, Margolis L. Proteomic profile of extracellular vesicles in maternal plasma of women with fetal death. J Matern Fetal Neonatal Med 2023; 36:2177529. [PMID: 36813269 PMCID: PMC10395052 DOI: 10.1080/14767058.2023.2177529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVES Fetal death is a complication of pregnancy caused by multiple etiologies rather than being the end-result of a single disease process. Many soluble analytes in the maternal circulation, such as hormones and cytokines, have been implicated in its pathophysiology. However, changes in the protein content of extracellular vesicles (EVs), which could provide additional insight into the disease pathways of this obstetrical syndrome, have not been examined. This study aimed to characterize the proteomic profile of EVs in the plasma of pregnant women who experienced fetal death and to evaluate whether such a profile reflected the pathophysiological mechanisms of this obstetrical complication. Moreover, the proteomic results were compared to and integrated with those obtained from the soluble fraction of maternal plasma. METHODS This retrospective case-control study included 47 women who experienced fetal death and 94 matched, healthy, pregnant controls. Proteomic analysis of 82 proteins in the EVs and the soluble fractions of maternal plasma samples was conducted by using a bead-based, multiplexed immunoassay platform. Quantile regression analysis and random forest models were implemented to assess differences in the concentration of proteins in the EV and soluble fractions and to evaluate their combined discriminatory power between clinical groups. Hierarchical cluster analysis was applied to identify subgroups of fetal death cases with similar proteomic profiles. A p-value of <.05 was used to infer significance, unless multiple testing was involved, with the false discovery rate controlled at the 10% level (q < 0.1). All statistical analyses were performed by using the R statistical language and environment-and specialized packages. RESULTS Nineteen proteins (placental growth factor, macrophage migration inhibitory factor, endoglin, regulated upon activation normal T cell expressed and presumably secreted (RANTES), interleukin (IL)-6, macrophage inflammatory protein 1-alpha, urokinase plasminogen activator surface receptor, tissue factor pathway inhibitor, IL-8, E-Selectin, vascular endothelial growth factor receptor 2, pentraxin 3, IL-16, galectin-1, monocyte chemotactic protein 1, disintegrin and metalloproteinase domain-containing protein 12, insulin-like growth factor-binding protein 1, matrix metalloproteinase-1(MMP1), and CD163) were found to have different plasma concentrations (of an EV or a soluble fraction) in women with fetal death compared to controls. There was a similar pattern of change for the dysregulated proteins in the EV and soluble fractions and a positive correlation between the log2-fold changes of proteins significant in either the EV or the soluble fraction (ρ = 0.89, p < .001). The combination of EV and soluble fraction proteins resulted in a good discriminatory model (area under the ROC curve, 82%; sensitivity, 57.5% at a 10% false-positive rate). Unsupervised clustering based on the proteins differentially expressed in either the EV or the soluble fraction of patients with fetal death relative to controls revealed three major clusters of patients. CONCLUSION Pregnant women with fetal death have different concentrations of 19 proteins in the EV and soluble fractions compared to controls, and the direction of changes in concentration was similar between fractions. The combination of EV and soluble protein concentrations revealed three different clusters of fetal death cases with distinct clinical and placental histopathological characteristics.
Collapse
Affiliation(s)
- Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nándor Gábor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Systems, Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA
- Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Leonid Margolis
- Section on Intercellular Interactions, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Menon R, Muglia LJ, Levin LH. Review on new approach methods to gain insight into the feto-maternal interface physiology. Front Med (Lausanne) 2023; 10:1304002. [PMID: 38098843 PMCID: PMC10720461 DOI: 10.3389/fmed.2023.1304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Non-human animals represent a large and important feature in the history of biomedical research. The validity of their use, in terms of reproducible outcomes and translational confidence to the human situation, as well as ethical concerns surrounding that use, have been and remain controversial topics. Over the last 10 years, the communities developing microphysiological systems (MPS) have produced new approach method (NAMs) such as organoids and organs-on-a-chip. These alternative methodologies have shown indications of greater reliability and translatability than animal use in some areas, represent more humane substitutions for animals in these settings, and - with continued scientific effort - may change the conduct of basic research, clinical studies, safety testing, and drug development. Here, we present an introduction to these more human-relevant methodologies and suggest how a suite of pregnancy associated feto-maternal interface system-oriented NAMs may be integrated as reliable partial-/full animal replacements for investigators, significantly aid animal-/environmental welfare, and improve healthcare outcomes.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Louis J. Muglia
- The Burroughs Wellcome Fund, Research Triangle Park, NC, United States
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | |
Collapse
|
23
|
Bento GFC, Richardson L, da Silva MG, Tantengco OAG, Menon R. Modeling an ascending infection by Ureaplasma parvum and its cell signaling and inflammatory response at the feto-maternal interface. Am J Reprod Immunol 2023; 90:e13770. [PMID: 37766409 PMCID: PMC10571092 DOI: 10.1111/aji.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
PROBLEM Ascending bacterial infection is associated with ∼ 40% of spontaneous preterm birth (PTB), and Ureaplasma spp. is one of the most common bacteria isolated from the amniotic fluid. Developing novel in vitro models that mimic in vivo uterine physiology is essential to study microbial pathogenesis. We utilized the feto-maternal interface organ-on-chip (FMi-OOC) device and determined the propagation of Ureaplasma parvum, and its impact on cell signaling and inflammation. METHOD OF STUDY FMi-OOC is a microphysiologic device mimicking fetal membrane/decidua interconnected through microchannels. The impact of resident decidual CD45+ leukocytes was also determined by incorporating them into the decidual chamber in different combinations with U. parvum. We tested the propagation of live U. parvum from the decidual to the amniochorion membranes (immunocytochemistry and quantitative PCR), determined its impact on cytotoxicity (LDH assay), cell signaling (JESSTM Western Blot), cellular transition (immunostaining for vimentin and cytokeratin), and inflammation (cytokine bead array). RESULTS U. parvum transversed the chorion and reached the amnion epithelium after 72 hours but did not induce cell signaling kinases (p38MAPK and JNK) activation, or cellular transition (epithelial-mesenchymal), regardless of the presence of immune cells. The inflammatory response was limited to the choriodecidual interface and did not promote inflammation in the amnion layer. CONCLUSIONS Our data suggest that U. parvum is poorly immunogenic and does not produce massive inflammatory changes at the feto-maternal interface. We speculate that the presence of U. parvum may still compromise the feto-maternal interface making it susceptible to other pathogenic infection.
Collapse
Affiliation(s)
- Giovana Fernanda Cosi Bento
- Department of Pathology, Botucatu Medical School, São Paulo State University, São Paulo, Brazil
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| | | | - Ourlad Alzeus G. Tantengco
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, United States of America
| |
Collapse
|
24
|
Pan M, Zhou J, Wang J, Cao W, Li L, Wang L. The role of placental aging in adverse pregnancy outcomes: A mitochondrial perspective. Life Sci 2023; 329:121924. [PMID: 37429418 DOI: 10.1016/j.lfs.2023.121924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Premature placental aging is associated with placental insufficiency, which reduces the functional capacity of the placenta, leading to adverse pregnancy outcomes. Placental mitochondria are vital organelles that provide energy and play essential roles in placental development and functional maintenance. In response to oxidative stress, damage, and senescence, an adaptive response is induced to selectively remove mitochondria through the mitochondrial equivalent of autophagy. However, adaptation can be disrupted when mitochondrial abnormalities or dysfunctions persist. This review focuses on the adaptation and transformation of mitochondria during pregnancy. These changes modify placental function throughout pregnancy and can cause complications. We discuss the relationship between placental aging and adverse pregnancy outcomes from the perspective of mitochondria and potential approaches to improve abnormal pregnancy outcomes.
Collapse
Affiliation(s)
- Meijun Pan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wenli Cao
- Center for Reproductive Medicine, Zhoushan Women and Children Hospital, Zhejiang, China
| | - Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
25
|
Erickson EN, Gotlieb N, Pereira LM, Myatt L, Mosquera-Lopez C, Jacobs PG. Predicting labor onset relative to the estimated date of delivery using smart ring physiological data. NPJ Digit Med 2023; 6:153. [PMID: 37598232 PMCID: PMC10439919 DOI: 10.1038/s41746-023-00902-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
The transition from pregnancy into parturition is physiologically directed by maternal, fetal and placental tissues. We hypothesize that these processes may be reflected in maternal physiological metrics. We enrolled pregnant participants in the third-trimester (n = 118) to study continuously worn smart ring devices monitoring heart rate, heart rate variability, skin temperature, sleep and physical activity from negative temperature coefficient, 3-D accelerometer and infrared photoplethysmography sensors. Weekly surveys assessed labor symptoms, pain, fatigue and mood. We estimated the association between each metric, gestational age, and the likelihood of a participant's labor beginning prior to (versus after) the clinical estimated delivery date (EDD) of 40.0 weeks with mixed effects regression. A boosted random forest was trained on the physiological metrics to predict pregnancies that naturally passed the EDD versus undergoing onset of labor prior to the EDD. Here we report that many raw sleep, activity, pain, fatigue and labor symptom metrics are correlated with gestational age. As gestational age advances, pregnant individuals have lower resting heart rate 0.357 beats/minute/week, 0.84 higher heart rate variability (milliseconds) and shorter durations of physical activity and sleep. Further, random forest predictions determine pregnancies that would pass the EDD with accuracy of 0.71 (area under the receiver operating curve). Self-reported symptoms of labor correlate with increased gestational age and not with the timing of labor (relative to EDD) or onset of spontaneous labor. The use of maternal smart ring-derived physiological data in the third-trimester may improve prediction of the natural duration of pregnancy relative to the EDD.
Collapse
Affiliation(s)
- Elise N Erickson
- College of Nursing / College of Pharmacy, The University of Arizona, Tucson, AZ, USA.
- Midwifery Division, School of Nursing, Oregon Health & Science University, Portland, OR, USA.
| | | | - Leonardo M Pereira
- Department of Obstetrics & Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- Department of Obstetrics & Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Clara Mosquera-Lopez
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Peter G Jacobs
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
26
|
Erickson EN. A prolonged latent phase: An early career in oxytocin during birth. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 15:100190. [PMID: 37405229 PMCID: PMC10316000 DOI: 10.1016/j.cpnec.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
•The author, a nurse-midwife scientist, shares her path to the study of the causes and consequences of clinical oxytocin use.•This paper highlights mentors and key research that informed new thinking about the role of oxytocin during parturition.•Future directions for improving maternal care during childbirth are presented, including genetic and epigenetic perspectives.
Collapse
|
27
|
Richardson L, Kammala AK, Kim S, Lam PY, Truong N, Radnaa E, Urrabaz-Garza R, Han A, Menon R. Development of oxidative stress-associated disease models using feto-maternal interface organ-on-a-chip. FASEB J 2023; 37:e23000. [PMID: 37249377 PMCID: PMC10259454 DOI: 10.1096/fj.202300531r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Oxidative stress (OS) and inflammation arising from cellular derangements at the fetal membrane-decidual interface (feto-maternal interface [FMi]) is a major antecedent to preterm birth (PTB). However, it is impractical to study OS-associated FMi disease state during human pregnancy, and thus it is difficult to develop strategies to reduce the incidences of PTB. A microfluidic organ-on-chip model (FMi-OOC) that mimics the in vivo structure and functions of FMi in vitro was developed to address this challenge. The FMi-OOC contained fetal (amnion epithelial, mesenchymal, and chorion) and maternal (decidua) cells cultured in four compartments interconnected by arrays of microchannels to allow independent but interconnected co-cultivation. Using this model, we tested the effects of OS and inflammation on both fetal (fetal → maternal) and maternal (maternal → fetal) sides of the FMi and determined their differential impact on PTB-associated pathways. OS was induced using cigarette smoke extract (CSE) exposure. The impacts of OS were assessed by measuring cell viability, disruption of immune homeostasis, epithelial-to-mesenchymal transition (EMT), development of senescence, and inflammation. CSE propagated (LC/MS-MS analysis for nicotine) over a 72-hour period from the maternal to fetal side, or vice versa. However, they caused two distinct pathological effects on the maternal and fetal cells. Specifically, fetal OS induced cellular pathologies and inflammation, whereas maternal OS caused immune intolerance. The pronounced impact produced by the fetus supports the hypothesis that fetal inflammatory response is a mechanistic trigger for parturition. The FMi disease-associated changes identified in the FMi-OOC suggest the unique capability of this in vitro model in testing in utero conditions.
Collapse
Affiliation(s)
- Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ananth Kumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Nina Truong
- John Sealy School of Medicine at Galveston, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA5
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
28
|
Kajdy A, Sys D, Modzelewski J, Bogusławska J, Cymbaluk-Płoska A, Kwiatkowska E, Bednarek-Jędrzejek M, Borowski D, Stefańska K, Rabijewski M, Baran A, Torbe A, Feduniw S, Kwiatkowski S. Evidence of Placental Aging in Late SGA, Fetal Growth Restriction and Stillbirth-A Systematic Review. Biomedicines 2023; 11:1785. [PMID: 37509425 PMCID: PMC10376283 DOI: 10.3390/biomedicines11071785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
During pregnancy, the placenta undergoes a natural aging process, which is considered normal. However, it has been hypothesized that an abnormally accelerated and premature aging of the placenta may contribute to placenta-related health issues. Placental senescence has been linked to several obstetric complications, including abnormal fetal growth, preeclampsia, preterm birth, and stillbirth, with stillbirth being the most challenging. A systematic search was conducted on Pubmed, Embase, and Scopus databases. Twenty-two full-text articles were identified for the final synthesis. Of these, 15 presented original research and 7 presented narrative reviews. There is a paucity of evidence in the literature on the role of placental aging in late small for gestational age (SGA), fetal growth restriction (FGR), and stillbirth. For future research, guidelines for both planning and reporting research must be implemented. The inclusion criteria should include clear differentiation between early and late SGA and FGR. As for stillbirths, only those with no other known cause of stillbirth should be included in the studies. This means excluding stillbirths due to congenital defects, infections, placental abruption, and maternal conditions affecting feto-maternal hemodynamics.
Collapse
Affiliation(s)
- Anna Kajdy
- First Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland
| | - Dorota Sys
- Department of Medical Statistics, School of Public Health, Centre of Postgraduate Medical Education, 01-828 Warsaw, Poland
| | - Jan Modzelewski
- First Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Ewa Kwiatkowska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland
| | | | - Dariusz Borowski
- Clinic of Obstetrics and Gynaecology, Provincial Combined Hospital in Kielce, 25-736 Kielce, Poland
| | - Katarzyna Stefańska
- Department of Obstetrics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Michał Rabijewski
- Department of Reproductive Health, Center of Postgraduate Medical Education, Centre of Postgraduate Medical Education, Żelazna 90 St., 01-004 Warsaw, Poland
| | - Arkadiusz Baran
- First Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland
| | - Andrzej Torbe
- Department Obstetrics and Gynecology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Stepan Feduniw
- Department of Gynecology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Sebastian Kwiatkowski
- Department Obstetrics and Gynecology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
29
|
Flores-Espinosa P, Méndez I, Irles C, Olmos-Ortiz A, Helguera-Repetto C, Mancilla-Herrera I, Ortuño-Sahagún D, Goffin V, Zaga-Clavellina V. Immunomodulatory role of decidual prolactin on the human fetal membranes and placenta. Front Immunol 2023; 14:1212736. [PMID: 37359537 PMCID: PMC10288977 DOI: 10.3389/fimmu.2023.1212736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The close interaction between fetal and maternal cells during pregnancy requires multiple immune-endocrine mechanisms to provide the fetus with a tolerogenic environment and protection against any infectious challenge. The fetal membranes and placenta create a hyperprolactinemic milieu in which prolactin (PRL) synthesized by the maternal decidua is transported through the amnion-chorion and accumulated into the amniotic cavity, where the fetus is bedded in high concentrations during pregnancy. PRL is a pleiotropic immune-neuroendocrine hormone with multiple immunomodulatory functions mainly related to reproduction. However, the biological role of PRL at the maternal-fetal interface has yet to be fully elucidated. In this review, we have summarized the current information on the multiple effects of PRL, focusing on its immunological effects and biological significance for the immune privilege of the maternal-fetal interface.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Isabel Méndez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Claudine Irles
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Vincent Goffin
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)-S1151, CNRS Unité Mixte de Recherche (UMR)-S8253, Institut Necker Enfants Malades, Paris, France
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| |
Collapse
|
30
|
Richardson L, Radnaa E, Lintao RCV, Urrabaz-Garza R, Maredia R, Han A, Sun J, Menon R. A Microphysiological Device to Model the Choriodecidual Interface Immune Status during Pregnancy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1437-1446. [PMID: 36920387 PMCID: PMC10121841 DOI: 10.4049/jimmunol.2200821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
During human pregnancy the chorion (fetal) lines decidua (maternal) creating the feto-maternal interface. Despite their proximity, resident decidual immune cells remain quiescent during gestation and do not invade the chorion. Infection and infiltration of activated immune cells toward the chorion are often associated with preterm birth. However, the mechanisms that maintain choriodecidual immune homeostasis or compromise immune barrier functions remain unclear. To understand these processes, a two-chamber microphysiological system (MPS) was created to model the human choriodecidual immune interface under normal and infectious conditions in vitro. This MPS has outer (fetal chorion trophoblast cells) and inner chambers (maternal decidual + CD45+ cells [70:30 ratio]) connected by microchannels. Decidual cells were treated with LPS to mimic maternal infection, followed by immunostaining for HLA-DR and HLA-G, immune panel screening by imaging cytometry by time of flight, and immune regulatory factors IL-8 and IL-10, soluble HLA-G, and progesterone (ELISA). LPS induced a proinflammatory phenotype in the decidua characterized by a decrease in HLA-DR and an increase in IL-8 compared with controls. LPS treatment increased the influx of immune cells into the chorion, indicative of chorionitis. Cytometry by time of flight characterized immune cells in both chambers as active NK cells and neutrophils, with a decrease in the abundance of nonproinflammatory cytokine-producing NK cells and T cells. Conversely, chorion cells increased progesterone and soluble HLA-G production while maintaining HLA-G expression. These results highlight the utility of MPS to model choriodecidual immune cell infiltration and determine the complex maternal-fetal crosstalk to regulate immune balance during infection.
Collapse
Affiliation(s)
- Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, United States of America
| | - Rheanna Urrabaz-Garza
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ruhi Maredia
- John Sealy School of Medicine at Galveston, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Jiaren Sun
- Department of Microbiology & Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
31
|
Motomura K, Miller D, Galaz J, Liu TN, Romero R, Gomez-Lopez N. The effects of progesterone on immune cellular function at the maternal-fetal interface and in maternal circulation. J Steroid Biochem Mol Biol 2023; 229:106254. [PMID: 36681283 PMCID: PMC10038932 DOI: 10.1016/j.jsbmb.2023.106254] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Progesterone is a sex steroid hormone that plays a critical role in the establishment and maintenance of pregnancy. This hormone drives numerous maternal physiological adaptations to ensure the continuation of pregnancy and to facilitate fetal growth, including broad and potent modulation of the maternal immune system to promote maternal-fetal tolerance. In this brief review, we provide an overview of the immunomodulatory functions of progesterone in the decidua, placenta, myometrium, and maternal circulation during pregnancy. Specifically, we summarize current evidence of the regulated functions of innate and adaptive immune cells induced by progesterone and its downstream effector molecules in these compartments, including observations in human pregnancy and in animal models. Our review highlights the gaps in knowledge of interactions between progesterone and maternal cellular immunity that may direct future research.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Tzu Ning Liu
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
32
|
Marcellin L, Batteux F, Chouzenoux S, Schmitz T, Lorthe E, Mehats C, Goffinet F, Kayem G. Second-trimester amniotic fluid proteins changes in subsequent spontaneous preterm birth. Acta Obstet Gynecol Scand 2023; 102:597-604. [PMID: 36918342 PMCID: PMC10072248 DOI: 10.1111/aogs.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION The global sequence of the pathogenesis of preterm labor remains unclear. This study aimed to compare amniotic fluid concentrations of extracellular matrix-related proteins (procollagen, osteopontin and IL-33), and of cytokines (IL-19, IL-6, IL-20, TNFα, TGFβ, and IL-1β) in asymptomatic women with and without subsequent spontaneous preterm delivery. MATERIAL AND METHODS We used amniotic fluid samples of singleton pregnancy, collected by amniocentesis between 16 and 20 weeks' gestation, without stigmata of infection (i.e., all amniotic fluid samples were tested with broad-range 16 S rDNA PCR to distinguish samples with evidence of past bacterial infection from sterile ones), during a randomized, double-blind, placebo-controlled trial to perform a nested case-control laboratory study. Cases were women with a spontaneous delivery before 37 weeks of gestation (preterm group). Controls were women who gave birth at or after 39 weeks (full term group). Amniotic fluid concentrations of the extracellular matrix-related proteins and cytokines measured by immunoassays were compared for two study groups. CLINICALTRIALS gov: NCT00718705. RESULTS Between July 2008 and July 2011, in 12 maternal-fetal medicine centers in France, 166 women with available PCR-negative amniotic fluid samples were retained for the analysis. Concentrations of procollagen, osteopontin, IL-19, IL-6, IL-20, IL-33, TNFα, TGFβ, and IL-1β were compared between the 37 who gave birth preterm and the 129 women with full-term delivery. Amniotic fluid levels of procollagen, osteopontin, IL-19, IL-33, and TNFα were significantly higher in the preterm than the full-term group. IL-6, IL-20, TGFβ, and IL-1β levels did not differ between the groups. CONCLUSIONS In amniotic fluid 16 S rDNA PCR negative samples obtained during second-trimester amniocentesis, extracellular matrix-related protein concentrations (procollagen, osteopontin and IL-33), together with IL-19 and TNFα, were observed higher at this time in cases of later spontaneous preterm birth.
Collapse
Affiliation(s)
- Louis Marcellin
- Université Paris Cité, Paris, France.,Department of Gynecology Obstetrics II and Reproductive Medicine, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS, Paris, France
| | - Frédéric Batteux
- Université Paris Cité, Paris, France.,Institut Cochin, INSERM U1016, CNRS, Paris, France.,Department of Biological Immunology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre (HUPC), Centre Hospitalier Universitaire (CHU) Cochin, Paris, France
| | - Sandrine Chouzenoux
- Université Paris Cité, Paris, France.,Institut Cochin, INSERM U1016, CNRS, Paris, France
| | - Thomas Schmitz
- Université Paris Cité, Paris, France.,Department of Gynecology Obstetrics, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elsa Lorthe
- Université Paris Cité, Paris, France.,Epidemiology and Statistics Research Center/CRESS, INSERM (U1153 - Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé)), INRA, Paris, France.,EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| | - Céline Mehats
- Université Paris Cité, Paris, France.,Institut Cochin, INSERM U1016, CNRS, Paris, France
| | - François Goffinet
- Université Paris Cité, Paris, France.,Epidemiology and Statistics Research Center/CRESS, INSERM (U1153 - Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé)), INRA, Paris, France.,Port-Royal Maternity Unit, Department of Obstetrics Paris, DHU Risk and Pregnancy, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gilles Kayem
- Université Paris Cité, Paris, France.,Epidemiology and Statistics Research Center/CRESS, INSERM (U1153 - Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé)), INRA, Paris, France.,Obstetrics and Gynecology Department, Hôpital Armand-Trousseau, Paris, France
| |
Collapse
|
33
|
Lin YK, Zhang F, Lei WJ, Gan XW, Li MD, Pan F, Wang WS, Sun K. Amnion-derived serum amyloid A1 participates in sterile inflammation of fetal membranes at parturition. Inflamm Res 2023; 72:797-812. [PMID: 36879064 DOI: 10.1007/s00011-023-01713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES Sterile inflammation of fetal membranes is an indispensable event of normal parturition. However, triggers of sterile inflammation are not fully resolved. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver. Fetal membranes can also synthesize SAA1 but its functions are not well defined. Given the role of SAA1 in the acute phase response to inflammation, we postulated that SAA1 synthesized in the fetal membranes may be a trigger of local inflammation at parturition. METHODS The changes of SAA1 abundance in parturition were studied in the amnion of human fetal membranes. The role of SAA1 in chemokine expression and leukocyte chemotaxis was examined in cultured human amnion tissue explants as well as primary human amnion fibroblasts. The effects of SAA1 on monocytes, macrophages and dendritic cells were investigated in cells derived from a human leukemia monocytic cell line (THP-1). RESULTS SAA1 synthesis increased significantly in human amnion at parturition. SAA1 evoked multiple chemotaxis pathways in human amnion fibroblasts along with upregulation of a series of chemokines via both toll-like receptor 4 (TLR4) and formyl peptide receptor 2 (FPR2). Moreover, SAA1-conditioned medium of cultured amnion fibroblasts was capable of chemoattracting virtually all types of mononuclear leukocytes, particularly monocytes and dendritic cells, which reconciled with the chemotactic activity of conditioned medium of cultured amnion tissue explants collected from spontaneous labor. Furthermore, SAA1 could induce the expression of genes associated with inflammation and extracellular matrix remodeling in monocytes, macrophages and dendritic cells derived from THP-1. CONCLUSIONS SAA1 is a trigger of sterile inflammation of the fetal membranes at parturition.
Collapse
Affiliation(s)
- Yi-Kai Lin
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Xiao-Wen Gan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong university, Shanghai, People's Republic of China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China.
| |
Collapse
|
34
|
Ortiz B, Driscoll A, Menon R, Taylor BD, Richardson LS. Chlamydia trachomatis antigen induces TLR4-TAB1-mediated inflammation, but not cell death, in maternal decidua cells. Am J Reprod Immunol 2023; 89:e13664. [PMID: 36495029 PMCID: PMC10436189 DOI: 10.1111/aji.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gestation, the decidua is an essential layer of the maternal-fetal interface, providing immune support and maintaining inflammatory homeostasis. Although Chlamydia (C.) trachomatis is associated with adverse pregnancy outcomes the pathogenic effects on maternal decidua contributing to adverse events are not understood. This study examined how C. trachomatis antigen affects cell signaling, cell death, and inflammation in the decidua. METHODS Primary decidua cells (pDECs) from term, not-in-labor, fetal membrane-decidua were cultured using the following conditions: (1) control - standard cell culture conditions, (2) 100 ng/ml or (3) 200 ng/ml of C. trachomatis antigen to model decidual cell infection in vitro. Differential expression of Toll-like receptor (TLR) 4 (receptor for C. trachomatis antigen), signaling pathway markers phosphorylated TGF-Beta Activated Kinase 1 (PTAB1), TAB1, phosphorylated p38 mitogen-activated protein kinases (Pp38 MAPK), and p38 MAPK (western blot), decidual cell apoptosis and necrosis (flow cytometry), and inflammation (ELISA for cytokines) were determined in cells exposed to C. trachomatis antigen. T-test was used to assess statistical significance (p < 0.05). RESULTS C. trachomatis antigen significantly induced expression of TLR4 (p = 0.03) and activation of TAB1 (p = 0.02) compared to controls. However, it did not induce p38 MAPK activation. In addition, pDECs maintained their stromal cell morphology when exposed to C. trachomatis antigen showing no signs of apoptosis and/or necrosis but did induce pro-inflammatory cytokine interleukin (IL)-6 (100 ng/ml: p = 0.02 and 200 ng/ml: p = 0.03), in pDECs compared to controls. CONCLUSION Prenatal C. trachomatis infection can produce antigens that induce TLR4-TAB1 signaling and IL-6 inflammation independent of Pp38 MAPK and apoptosis and necrosis. This suggests that C. trachomatis can imbalance decidual inflammatory homeostasis, potentially contributing to adverse events during pregnancy.
Collapse
Affiliation(s)
- Briana Ortiz
- School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ashley Driscoll
- School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| | - Brandie D. Taylor
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| | - Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| |
Collapse
|
35
|
Modde Epstein C, McCoy TP. Linking Electronic Health Records With Wearable Technology From the All of Us Research Program. J Obstet Gynecol Neonatal Nurs 2023; 52:139-149. [PMID: 36702164 DOI: 10.1016/j.jogn.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE To evaluate the feasibility of using electronic health records (EHRs) and wearable data to describe patterns of longitudinal change in day-level heart rate before, during, and after pregnancy and how these patterns differ by age and body mass index. DESIGN Descriptive secondary analysis feasibility study using data from the National Institutes of Health All of Us Research Program. SETTING United States. PARTICIPANTS Women (N = 89) who had a birth or length of gestation code in the EHR and at least 60 days of Fitbit heart rate data during pregnancy. METHODS We estimated pregnancy-related episodes using EHR codes. Time consisted of five 3-month periods: before pregnancy, first trimester, second trimester, third trimester, and after birth. We analyzed data using descriptive statistics and locally estimated scatterplot smoothing. RESULTS An average of 330 days (SD = 112) of Fitbit heart rate data (29,392 days) were available from participants. During pregnancy, distinct peaks in heart rate occurred during the first trimester (6% increase) and third trimester (15% increase). CONCLUSION Future researchers can examine whether longitudinal timing and patterns of heart rate from wearable devices could be leveraged to detect health problems early in pregnancy.
Collapse
|
36
|
Farfán-Labonne B, Leff-Gelman P, Pellón-Díaz G, Camacho-Arroyo I. Cellular senescence in normal and adverse pregnancy. Reprod Biol 2023; 23:100734. [PMID: 36773450 DOI: 10.1016/j.repbio.2023.100734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023]
Abstract
Cellular senescence (CS) is defined as a state of terminal proliferation arrest accompanied by morphological alterations, pro-inflammatory phenotype, and metabolic changes. In recent years, the implications of senescence in numerous physiological and pathological conditions such as development, tissue repair, aging, or cancer have been evident. Some inductors of senescence are tissue repair pathways, telomere shortening, DNA damage, degenerative disorders, and wound healing. Lately, it has been demonstrated that CS plays a decisive role in the development and progression of healthy pregnancy and labor. Premature maternal-fetal tissues senescence (placenta, choriamniotic membranes, and endothelium) is implicated in many adverse pregnancy outcomes, including fetal growth restriction, preeclampsia, preterm birth, and intrauterine fetal death. Here we discuss cellular senescence and its association with normal pregnancy development and adverse pregnancy outcomes. Current evidence allows us to establish the relevance of CS in processes associated with the appropriate development of placentation, the progression of pregnancy, and the onset of labor; likewise, it allows us to understand the undeniable participation of CS deregulation in pathological processes associated with pregnancy.
Collapse
Affiliation(s)
- Blanca Farfán-Labonne
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", México.
| | - Philippe Leff-Gelman
- Coordinación de Salud Mental, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", México
| | - Gabriela Pellón-Díaz
- Coordinación de Salud Mental, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes", México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
37
|
Kissler K, Hurt KJ. The Pathophysiology of Labor Dystocia: Theme with Variations. Reprod Sci 2023; 30:729-742. [PMID: 35817950 PMCID: PMC10388369 DOI: 10.1007/s43032-022-01018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Abnormally prolonged labor, or labor dystocia, is a common complication of parturition. It is the indication for about half of unplanned cesarean deliveries in low-risk nulliparous women. Reducing the rate of unplanned cesarean birth in the USA has been a public health priority over the last two decades with limited success. Labor dystocia is a complex disorder due to multiple causes with a common clinical outcome of slow cervical dilation and fetal descent. A better understanding of the pathophysiologic mechanisms of labor dystocia could lead to new clinical opportunities to increase the rate of normal vaginal delivery, reduce cesarean birth rates, and improve maternal and neonatal health. We conducted a literature review of the causes and pathophysiologic mechanisms of labor dystocia. We summarize known mechanisms supported by clinical and experimental data and newer hypotheses with less supporting evidence. We review recent data on uterine preparation for labor, uterine contractility, cervical preparation for labor, maternal obesity, cephalopelvic disproportion, fetal malposition, intrauterine infection, and maternal stress. We also describe current clinical approaches to preventing and managing labor dystocia. The variation in pathophysiologic causes of labor dystocia probably limits the utility of current general treatment options. However, treatments targeting specific underlying etiologies could be more effective. We found that the pathophysiologic basis of labor dystocia is under-researched, offering wide opportunities for translational investigation of individualized labor management, particularly regarding uterine metabolism and fetal position. More precise diagnostic tools and individualized therapies for labor dystocia might lead to better outcomes. We conclude that additional knowledge of parturition physiology coupled with rigorous clinical evaluation of novel biologically directed treatments could improve obstetric quality of care.
Collapse
Affiliation(s)
- Katherine Kissler
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Mailstop 8613, Aurora, CO, 80045, USA.
| |
Collapse
|
38
|
Del Campo A, Aiartzaguena A, Suárez B, Rodríguez A, Rodríguez L, Burgos J. Lower uterine segment thickness assessed by transvaginal ultrasound before labor induction: reproducibility analysis and relationship with delivery outcome. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:399-407. [PMID: 35802514 DOI: 10.1002/uog.26024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To evaluate the reproducibility of lower uterine segment (LUS) thickness measurement before induction of labor (IOL), and to assess the relationship between LUS thickness and IOL outcomes. METHODS This was a prospective cohort study of pregnant women undergoing IOL at term, conducted in a single tertiary hospital between July 2014 and February 2017. Women with a singleton pregnancy at ≥ 37 weeks' gestation, with a live fetus in cephalic presentation and a Bishop score of ≤ 6, were eligible for inclusion. Both nulliparous and parous women, and those with a previous Cesarean section (CS), were eligible. All women underwent transvaginal ultrasound assessment before IOL admission, and cervical length and LUS thickness were measured offline after delivery. Maternal and obstetric characteristics and Bishop score were recorded. The main outcome was the overall rate of CS after IOL, and secondary outcomes were CS for either failure to progress in the active phase of labor or failed IOL, and CS for failed IOL only. Interobserver agreement for measurement of LUS thickness between two operators was assessed using the intraclass correlation coefficient (ICC) and Bland-Altman analysis with the ANOVA test to evaluate systematic bias. Univariable and multivariable analysis were employed to evaluate the relationship between clinical and sonographic characteristics and IOL outcomes. RESULTS Of 265 women included in the analysis, 195 (73.6%) had a vaginal delivery and 70 (26.4%) required a CS after IOL. Reproducibility analysis showed excellent interobserver agreement for the measurement of LUS thickness (ICC, 0.96 (95% CI, 0.93-0.98)). On Bland-Altman analysis, the mean difference in LUS thickness between the two operators was 0.15 mm (95% limits of agreement, -1.84 to 2.14 mm), and there was no evidence of systematic bias (ANOVA test, P = 0.46). Univariable analysis showed that LUS thickness was associated significantly with overall CS (P = 0.002), CS for failure to progress in the active phase of labor or failed IOL (P = 0.03) and CS for failed IOL (P = 0.037). On multivariable logistic regression analysis, LUS thickness was an independent predictive factor for overall CS (odds ratio (OR), 1.149 (95% CI, 1.031-1.281)) and CS for failure to progress in the active phase of labor or failed IOL (OR, 1.226 (95% CI, 1.039-1.445)). CONCLUSIONS In women undergoing IOL at term, measurement of LUS thickness is feasible and reproducible, and is associated significantly with IOL outcome. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- A Del Campo
- Obstetrics and Gynecology Department, BioCruces Bizkaia Health Research Institute, Red de Salud Materno Infantil y del Desarrollo (SAMID), Hospital Universitario Cruces, Osakidetza, UPV/EHU, Barakaldo, Bizkaia, Spain
| | - A Aiartzaguena
- Obstetrics and Gynecology Department, BioCruces Bizkaia Health Research Institute, Red de Salud Materno Infantil y del Desarrollo (SAMID), Hospital Universitario Cruces, Osakidetza, UPV/EHU, Barakaldo, Bizkaia, Spain
| | - B Suárez
- Obstetrics and Gynecology Department, BioCruces Bizkaia Health Research Institute, Red de Salud Materno Infantil y del Desarrollo (SAMID), Hospital Universitario Cruces, Osakidetza, UPV/EHU, Barakaldo, Bizkaia, Spain
| | - A Rodríguez
- Obstetrics and Gynecology Department, BioCruces Bizkaia Health Research Institute, Red de Salud Materno Infantil y del Desarrollo (SAMID), Hospital Universitario Cruces, Osakidetza, UPV/EHU, Barakaldo, Bizkaia, Spain
| | - L Rodríguez
- Obstetrics and Gynecology Department, BioCruces Bizkaia Health Research Institute, Red de Salud Materno Infantil y del Desarrollo (SAMID), Hospital Universitario Cruces, Osakidetza, UPV/EHU, Barakaldo, Bizkaia, Spain
| | - J Burgos
- Obstetrics and Gynecology Department, BioCruces Bizkaia Health Research Institute, Red de Salud Materno Infantil y del Desarrollo (SAMID), Hospital Universitario Cruces, Osakidetza, UPV/EHU, Barakaldo, Bizkaia, Spain
| |
Collapse
|
39
|
Ajgaonkar S, Hirst JJ, Norris M, Zakar T. Regulation of inflammatory genes in decidual cells: Involvement of the bromodomain and extra-terminal family proteins. PLoS One 2023; 18:e0280645. [PMID: 36897880 PMCID: PMC10004631 DOI: 10.1371/journal.pone.0280645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/05/2023] [Indexed: 03/11/2023] Open
Abstract
The decidua undergoes proinflammatory activation in late pregnancy, promoting labor. Bromodomain and Extra-Terminal (BET) family proteins interact with acetylated histones and may control gene expression in inflammation. Here, we assessed whether BETs are involved in inflammatory gene regulation in human decidual cells. We have treated primary cultures of decidual stromal cells (DSCs) from term pregnancies with endotoxin (LPS) and measured the expression of a panel of pro-and anti-inflammatory genes. BET involvement was assessed using the selective BET inhibitors (+)-JQ1 and I-BET-762 or the negative control compound (-)-JQ1. Histone 3 and -4 acetylation and BETs binding at the target gene promoters were determined to assess whether these processes are involved in the actions of LPS, BETs, and BET inhibitors. LPS increased the expression of the proinflammatory (PTGS2, IL6, CXCL8/IL8, TNF) and the anti-inflammatory (IL10, IDO1) genes of the panel. The constitutively expressed inflammatory genes (PTGS1, PTGES) were unaffected. The BET inhibitors, but not the control compound, reduced the basal and LPS-induced expression of PTGS1, PTGS2, IL6, CXCL8/IL8, IL10, and IDO1. TNF expression was not changed by BET inhibition. The dominant BETs were Bromodomain-containing protein -2 (BRD2) and -4L (BRD4L) in DSCs. LPS increased histone 4 acetylation at the CXCL8/IL8 and TNF promoters and histone 3 and -4 acetylation at the IDO1 promoter, while (+)-JQ1 abrogated histone acetylation at several promoters. Overall, histone acetylation and promoter binding of BETs showed no consistent relationship with gene expression across the gene panel and the treatments. BET proteins, predominantly BRD2 and BRD4L, control critical pro- and anti-inflammatory genes in DSCs. TNF induction exemplifies a BET-independent pathway. Changing histone acetylation at the promoters is not a general obligatory requirement for inflammatory gene expression in response to LPS. BETs likely act at chromatin loci separate from the examined promoters. BET inhibitors may block decidual activation at labor.
Collapse
Affiliation(s)
- Sandeep Ajgaonkar
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Jonathan J. Hirst
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Mary Norris
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- * E-mail:
| |
Collapse
|
40
|
Phosphoserine-86-HSPB1 (pS86-HSPB1) is cytoplasmic and highly induced in rat myometrium at labour. Histochem Cell Biol 2023; 159:149-162. [PMID: 36260112 PMCID: PMC9922239 DOI: 10.1007/s00418-022-02158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
Abstract
Uterine myocytes during pregnancy proceed through a series of adaptations and collectively transform into a powerfully contractile tissue by term. Previous work has indicated that members of the heat shock protein (HSP) B family of stress proteins are associated with the process of adaptation and transformation. Utilizing immunoblot analyses, widefield epifluorescence and total internal reflection (TIRF) microscopy, this study investigated the temporal and spatial detection of HSPB1 phosphorylated on serine-86 (pS86-HSPB1) in rat myometrium during pregnancy, the role of uterine distension in regulation of pS86-HSPB1, and the comparative localization with pS15-HSPB1 in rat myometrial tissue as well as in an immortalized human myometrial cell line. Immunoblot detection of pS86-HSPB1 was significantly elevated during late pregnancy and labour. In particular, pS86-HSPB1 was significantly increased at day (d)22 and d23 (labour) compared with all other timepoints assessed. Localization of pS86-HSPB1 in myometrium became prominent at d22 and d23 with cytoplasmic detection around myometrial cell nuclei. Furthermore, pS86-HSPB1 detection was found to be significantly elevated in the gravid rat uterine myometrium compared with the non-gravid tissue at d19 and d23. Both widefield epifluorescence and TIRF microscopy examination of human myometrial cells demonstrated that pS15-HSPB1 was prominently localized to focal adhesions, while pS82-HSPB1 (homologous to rodent pS86-HSPB1) was primarily located in the cell cytoplasm. Our data demonstrate that levels of phosphorylated HSPB1 increase just prior to and during labour, and that uterine distension is a stress-inducing signal for HSPB1 phosphorylation. The exact roles of these phosphorylated forms in myometrial cells remain to be determined.
Collapse
|
41
|
Cervicovaginal Cytokines to Predict the Onset of Normal and Preterm Labor: a Pseudo-longitudinal Study. Reprod Sci 2023; 30:221-232. [PMID: 35799020 DOI: 10.1007/s43032-022-01007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/12/2022] [Indexed: 01/06/2023]
Abstract
Inflammatory processes associated with human parturition are still not completely understood, not only because the gap between inflammation and the onset of labor has been difficult to study but also because of the limited knowledge about the role of cervicovaginal fluid (CVF) cytokines during the sequence of labor. We aimed to determine whether CVF cytokines could predict the onset of normal and preterm labor. Chemokines and proinflammatory and anti-inflammatory cytokines in CVF were measured in a pseudo-longitudinal manner in healthy women between 12 and 41 weeks gestation with intact fetal membranes before and during the first stage of labor. Women were grouped into five stages, from the absence of uterine activity and cervical changes to regular uterine contractions with cervix dilation > 3 cm (active phase of labor). Of 144 women with spontaneous labor, 96 gave birth at term, 48 gave birth preterm, and both groups displayed similar cytokine concentrations. We found positive correlations between proinflammatory cytokines and the initial sequence of labor, using individual cytokines and score-based data by principal component analysis (IFN-γ, TNF-α, IL-1β, IL-6) as dependent variables. The risk of labor onset increased as the concentrations of IL-6 increased (hazard ratio = 202.09, 95% confidence interval = 24.57-1662.49, P < 0.001). The IL-6 concentration predicted the onset of labor within 12 days of sampling (area under the time-dependent ROC curve = 0.785, 95% confidence interval = 0.693-0.877). Here, we showed that regardless of gestational age, the onset of labor could be predicted by the IL-6 concentration in the CVF, since the initial sequence of spontaneous labor displayed an inflammatory response expressed by the increase in proinflammatory cytokines.
Collapse
|
42
|
Zhang C, Guo Y, Yang Y, Du Z, Fan Y, Zhao Y, Yuan S. Oxidative stress on vessels at the maternal-fetal interface for female reproductive system disorders: Update. Front Endocrinol (Lausanne) 2023; 14:1118121. [PMID: 36967779 PMCID: PMC10036807 DOI: 10.3389/fendo.2023.1118121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Considerable evidence shows that oxidative stress exists in the pathophysiological process of female reproductive system diseases. At present, there have been many studies on oxidative stress of placenta during pregnancy, especially for preeclampsia. However, studies that directly focus on the effects of oxidative stress on blood vessels at the maternal-fetal interface and their associated possible outcomes are still incomplete and ambiguous. To provide an option for early clinical prediction and therapeutic application of oxidative stress in female reproductive system diseases, this paper briefly describes the composition of the maternal-fetal interface and the molecular mediators produced by oxidative stress, focuses on the sources of oxidative stress and the signaling pathways of oxidative stress at the maternal-fetal interface, expounds the adverse consequences of oxidative stress on blood vessels, and deeply discusses the relationship between oxidative stress and some pregnancy complications and other female reproductive system diseases.
Collapse
Affiliation(s)
- Chenlu Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaxin Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaojin Du
- Reproductive Medical Center, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Yunhui Fan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yin Zhao, ; Suzhen Yuan,
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yin Zhao, ; Suzhen Yuan,
| |
Collapse
|
43
|
MAYNE GB, DeWITT PE, RINGHAM B, WARRENER AG, CHRISTIANS U, DABELEA D, HURT KJ. A Nested Case-Control Study of Allopregnanolone and Preterm Birth in the Healthy Start Cohort. J Endocr Soc 2022; 7:bvac179. [PMID: 36632210 PMCID: PMC9825133 DOI: 10.1210/jendso/bvac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Context Chronic stress is a risk factor for preterm birth; however, objective measures of stress in pregnancy are limited. Maternal stress biomarkers may fill this gap. Steroid hormones and neurosteroids such as allopregnanolone (ALLO) play important roles in stress physiology and pregnancy maintenance and therefore may be promising for preterm birth prediction. Objective We evaluated maternal serum ALLO, progesterone, cortisol, cortisone, pregnanolone, and epipregnanolone twice in gestation to evaluate associations with preterm birth. Methods We performed a nested case-control study using biobanked fasting serum samples from the Healthy Start prebirth cohort. We included healthy women with a singleton pregnancy and matched preterm cases with term controls (1:1; N = 27 per group). We used a new HPLC-tandem mass spectrometry assay to quantify ALLO and five related steroids. We used ANOVA, Fisher exact, χ2, t test, and linear and logistic regression as statistical tests. Results Maternal serum ALLO did not associate with preterm birth nor differ between groups. Mean cortisol levels were significantly higher in the preterm group early in pregnancy (13w0d-18w0d; P < 0.05) and higher early pregnancy cortisol associated with increased odds of preterm birth (at 13w0d; odds ratio, 1.007; 95% CI, 1.0002-1.014). Progesterone, cortisone, pregnanolone, and epipregnanolone did not associate with preterm birth. Conclusion The findings from our pilot study suggest potential utility of cortisol as a maternal serum biomarker for preterm birth risk assessment in early pregnancy. Further evaluation using larger cohorts and additional gestational timepoints for ALLO and the other analytes may be informative.
Collapse
Affiliation(s)
- Gabriella B MAYNE
- Department of Anthropology, University of Colorado, Denver, CO 80204, USA
| | - Peter E DeWITT
- Department of Pediatrics Informatics and Data Science, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brandy RINGHAM
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna G WARRENER
- Department of Anthropology, University of Colorado, Denver, CO 80204, USA
| | - Uwe CHRISTIANS
- iC42 Clinical Research & Development, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dana DABELEA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - K Joseph HURT
- Correspondence: K. Joseph Hurt, MD, PhD, 12700 East 19th Ave, Aurora, CO 80045, USA.
| |
Collapse
|
44
|
Vilotić A, Nacka-Aleksić M, Pirković A, Bojić-Trbojević Ž, Dekanski D, Jovanović Krivokuća M. IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. Int J Mol Sci 2022; 23:ijms232314574. [PMID: 36498901 PMCID: PMC9738067 DOI: 10.3390/ijms232314574] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin-6 (IL-6) is an acknowledged inflammatory cytokine with a pleiotropic action, mediating innate and adaptive immunity and multiple physiological processes, including protective and regenerative ones. IL-8 is a pro-inflammatory CXC chemokine with a primary function in attracting and activating neutrophils, but also implicated in a variety of other cellular processes. These two ILs are abundantly expressed at the feto-maternal interface over the course of a pregnancy and have been shown to participate in numerous pregnancy-related events. In this review, we summarize the literature data regarding their role in healthy and pathological pregnancies. The general information related to IL-6 and IL-8 functions is followed by an overview of their overall expression in cycling endometrium and at the feto-maternal interface. Further, we provide an overview of their involvement in pregnancy establishment and parturition. Finally, the implication of IL-6 and IL-8 in pregnancy-associated pathological conditions, such as pregnancy loss, preeclampsia, gestational diabetes mellitus and infection/inflammation is discussed.
Collapse
|
45
|
Mesiano S. Progesterone withdrawal and parturition. J Steroid Biochem Mol Biol 2022; 224:106177. [PMID: 36096351 DOI: 10.1016/j.jsbmb.2022.106177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
The steroid hormone progesterone (P4), acting via the nuclear P4 receptors (PRs) in uterine cells, is essential for the establishment and maintenance of pregnancy. P4/PR signaling maintains pregnancy by promoting uterine quiescence and blocking the contractions of labor. Withdrawal of the P4/PR block to labor induces parturition. The success of pregnancy requires the timely birth of a mature neonate to a healthy mother, and to this end, the mechanism by which the P4/PR block is withdrawn, and how that process is physiologically controlled is critical. This review examines current understanding of cell and molecular biology of P4/PR withdrawal in the control of parturition.
Collapse
Affiliation(s)
- Sam Mesiano
- William H Weir MD Professor of Reproductive Biology, Department of Reproductive Biology Case, Western Reserve University, USA; Department of Obstetrics and Gynecology, University Hospitals of Cleveland, 11100 Euclid Ave, Cleveland, OH 44106, USA.
| |
Collapse
|
46
|
Vidal MS, Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne) 2022; 13:1015622. [PMID: 36313741 PMCID: PMC9606232 DOI: 10.3389/fendo.2022.1015622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Survivors of preterm birth struggle with multitudes of disabilities due to improper in utero programming of various tissues and organ systems contributing to adult-onset diseases at a very early stage of their lives. Therefore, the persistent rates of low birth weight (birth weight < 2,500 grams), as well as rates of neonatal and maternal morbidities and mortalities, need to be addressed. Active research throughout the years has provided us with multiple theories regarding the risk factors, initiators, biomarkers, and clinical manifestations of spontaneous preterm birth. Fetal organs, like the placenta and fetal membranes, and maternal tissues and organs, like the decidua, myometrium, and cervix, have all been shown to uniquely respond to specific exogenous or endogenous risk factors. These uniquely contribute to dynamic changes at the molecular and cellular levels to effect preterm labor pathways leading to delivery. Multiple intervention targets in these different tissues and organs have been successfully tested in preclinical trials to reduce the individual impacts on promoting preterm birth. However, these preclinical trial data have not been effectively translated into developing biomarkers of high-risk individuals for an early diagnosis of the disease. This becomes more evident when examining the current global rate of preterm birth, which remains staggeringly high despite years of research. We postulate that studying each tissue and organ in silos, as how the majority of research has been conducted in the past years, is unlikely to address the network interaction between various systems leading to a synchronized activity during either term or preterm labor and delivery. To address current limitations, this review proposes an integrated approach to studying various tissues and organs involved in the maintenance of normal pregnancy, promotion of normal parturition, and more importantly, contributions towards preterm birth. We also stress the need for biological models that allows for concomitant observation and analysis of interactions, rather than focusing on these tissues and organ in silos.
Collapse
Affiliation(s)
- Manuel S. Vidal
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ryan C. V. Lintao
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mary Elise L. Severino
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ourlad Alzeus G. Tantengco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
47
|
Zhang F, Sun K, Wang WS. Identification of a feed-forward loop between 15(S)-HETE and PGE2 in human amnion at parturition. J Lipid Res 2022; 63:100294. [PMID: 36206855 PMCID: PMC9646666 DOI: 10.1016/j.jlr.2022.100294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Human parturition is associated with massive arachidonic acid (AA) mobilization in the amnion, indicating that large amounts of AA-derived eicosanoids are required for parturition. Prostaglandin E2 (PGE2) synthesized from the cyclooxygenase (COX) pathway is the best characterized AA-derived eicosanoid in the amnion which plays a pivotal role in parturition. The existence of any other pivotal AA-derived eicosanoids involved in parturition remains elusive. Here, we screened such eicosanoids in human amnion tissue with AA-targeted metabolomics and studied their role and synthesis in parturition by using human amnion fibroblasts and a mouse model. We found that lipoxygenase (ALOX) pathway-derived 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) and its synthetic enzymes ALOX15 and ALOX15B were significantly increased in human amnion at parturition. Although 15(S)-HETE is ineffective on its own, it potently potentiated the activation of NF-κB by inflammatory mediators including lipopolysaccharide, interleukin-1β, and serum amyloid A1, resulting in the amplification of COX-2 expression and PGE2 production in amnion fibroblasts. In turn, we determined that PGE2 induced ALOX15/15B expression and 15(S)-HETE production through its EP2 receptor-coupled PKA pathway, thereby forming a feed-forward loop between 15(S)-HETE and PGE2 production in the amnion at parturition. Our studies in pregnant mice showed that 15(S)-HETE injection induced preterm birth with increased COX-2 and PGE2 abundance in the fetal membranes and placenta. Conclusively, 15(S)-HETE is identified as another crucial parturition-pertinent AA-derived eicosanoid in the amnion, which may form a feed-forward loop with PGE2 in parturition. Interruption of this feed-forward loop may be of therapeutic value for the treatment of preterm birth.
Collapse
|
48
|
Shi L, Hu L, Lee N, Fang S, Myers K. Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix. Acta Biomater 2022; 150:277-294. [PMID: 35931278 PMCID: PMC11590015 DOI: 10.1016/j.actbio.2022.07.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
The mechanical function of the uterine cervix is critical for a healthy pregnancy. During pregnancy, the cervix undergoes significant softening to allow for a successful delivery. Abnormal cervical remodeling is suspected to contribute to preterm birth. Material constitutive models describing known biological shifts in pregnancy are essential to predict the mechanical integrity of the cervix. In this work, the material response of human cervical tissue under spherical indentation and uniaxial tensile tests loaded along different anatomical directions is experimentally measured. A deep-learning segmentation tool is applied to capture the tissue deformation during the uniaxial tensile tests. A 3-dimensional, equilibrium anisotropic continuous fiber constitutive model is formulated, considering collagen fiber directionality, fiber bundle dispersion, and the entropic nature of wavy cross-linked collagen molecules. Additionally, the universality of the material model is demonstrated by characterizing previously published mouse cervix mechanical data. Overall, the proposed material model captures the tension-compression asymmetric material responses and the remodeling characteristics of both human and mouse cervical tissue. The pregnant (PG) human cervix (mean locking stretch ζ=2.4, mean initial stiffness ξ=12 kPa, mean bulk modulus κ=0.26 kPa, mean dispersion b=1.0) is more compliant compared with the nonpregnant (NP) cervix (mean ζ=1.3, mean ξ=32 kPa, mean κ=1.4 kPa, mean b=1.4). Creating a validated material model, which describes the role of collagen fiber directionality, dispersion, and crosslinking, enables tissue-level biomechanical simulations to determine which material and anatomical factors drive the cervix to open prematurely. STATEMENT OF SIGNIFICANCE: In this study, we report a 3D anisotropic hyperelastic constitutive model based on Langevin statistical mechanics and successfully describe the material behavior of both human and mouse cervical tissue using this model. This model bridges the connection between the extracellular matrix (ECM) microstructure remodeling and the macro mechanical properties change of the cervix during pregnancy via microstructure-associated material parameters. This is the first model, to our knowledge, to connect the the entropic nature of wavy cross-linked collagen molecules with the mechanical behavior of the cervix. Inspired by microstructure, this model provides a foundation to understand further the relationship between abnormal cervical ECM remodeling and preterm birth. Furthermore, with a relatively simple form, the proposed model can be applied to other fibrous tissues in the future.
Collapse
Affiliation(s)
- Lei Shi
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lingfeng Hu
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicole Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
49
|
Menon R. Epithelial to mesenchymal transition (EMT) of feto-maternal reproductive tissues generates inflammation: a detrimental factor for preterm birth. BMB Rep 2022. [PMID: 35880430 PMCID: PMC9442346 DOI: 10.5483/bmbrep.2022.55.8.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human pregnancy is a delicate and complex process where multiorgan interactions between two independent systems, the mother, and her fetus, maintain pregnancy. Intercellular interactions that can define homeostasis at the various cellular level between the two systems allow uninterrupted fetal growth and development until delivery. Interactions are needed for tissue remodeling during pregnancy at both fetal and maternal tissue layers. One of the mechanisms that help tissue remodeling is via cellular transitions where epithelial cells undergo a cyclic transition from epithelial to mesenchymal (EMT) and back from mesenchymal to epithelial (MET). Two major pregnancy-associated tissue systems that use EMT, and MET are the fetal membrane (amniochorion) amnion epithelial layer and cervical epithelial cells and will be reviewed here. EMT is often associated with localized inflammation, and it is a well-balanced process to facilitate tissue remodeling. Cyclic transition processes are important because a terminal state or the static state of EMT can cause accumulation of proinflammatory mesenchymal cells in the matrix regions of these tissues and increase localized inflammation that can cause tissue damage. Interactions that determine homeostasis are often controlled by both endocrine and paracrine mediators. Pregnancy maintenance hormone progesterone and its receptors are critical for maintaining the balance between EMT and MET. Increased intrauterine oxidative stress at term can force a static (terminal) EMT and increase inflammation that are physiologic processes that destabilize homeostasis that maintain pregnancy to promote labor and delivery of the fetus. However, conditions that can produce an untimely increase in EMT and inflammation can be pathologic. These tissue damages are often associated with adverse pregnancy complications such as preterm prelabor rupture of the membranes (pPROM) and spontaneous preterm birth (PTB). Therefore, an understanding of the biomolecular processes that maintain cyclic EMT-MET is critical to reducing the risk of pPROM and PTB. Extracellular vesicles (exosomes of 40-160 nm) that can carry various cargo are involved in cellular transitions as paracrine mediators. Exosomes can carry a variety of biomolecules as cargo. Studies specifically using exosomes from cells undergone EMT can carry a pro-inflammatory cargo and in a paracrine fashion can modify the neighboring tissue environment to cause enhancement of uterine inflammation.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston 77555-1062, TX, USA
| |
Collapse
|
50
|
Zhang H, Zhang X, Zhang H, Luo H, Feng Y, Wang J, Huang C, Yu Z. Assessing the effect of fine particulate matter on adverse birth outcomes in Huai River Basin, Henan, China, 2013-2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119357. [PMID: 35489530 DOI: 10.1016/j.envpol.2022.119357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/25/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Previous studies have indicated that maternal exposure to particles with aerodynamic diameter <2.5 μm (PM2.5) is associated with adverse birth outcomes. However, the critical exposure windows remain inconsistent. A retrospective cohort study was conducted in Huai River Basin, Henan, China during 2013-2018. Daily PM2.5 concentration was collected using Chinese Air Quality Reanalysis datasets. We calculated exposures for each participant based on the residential address during pregnancy. Binary logistic regression was used to examine the trimester-specific association of PM2.5 exposure with preterm birth (PTB), low birth weight (LBW) and term LBW (tLBW), and we further estimated monthly and weekly association using distributed lag models. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for each 10 μg/m3 increase in PM2.5 exposure. Stratified analyses were performed by maternal age, infant gender, parity, and socioeconomic status (SES). In total, 196,780 eligible births were identified, including 4257 (2.2%) PTBs, 3483 (1.8%) LBWs and 1770 (0.9%) tLBWs. Maternal PM2.5 exposure during the second trimester were associated with the risk of PTB and LBW. At the monthly level, the PTB and LBW risks were associated with PM2.5 exposure mainly in the 4th -6th month. By estimating the weekly-specific association, we observed that critical exposure windows of PM2.5 exposure and PTB were in the 18th- 27th gestational weeks. Stronger associations were found in younger, multiparous mothers and those with a female baby and in low SES. In conclusion, the results indicate that maternal PM2.5 exposure during the second trimester was associated with PTB and LBW. Younger, multiparous mothers and those with female babies and in low SES were susceptible.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Han Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hongyan Luo
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yang Feng
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jingzhe Wang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China; National Health Commission Key Laboratory of Birth Defects Prevention, Key Laboratory of Population Defects Prevention, Zhengzhou, China
| |
Collapse
|