1
|
Zhou J, Xi Y, Wu T, Zeng X, Yuan J, Peng L, Fu H, Zhou C. A potential therapeutic approach for ulcerative colitis: targeted regulation of mitochondrial dynamics and mitophagy through phytochemicals. Front Immunol 2025; 15:1506292. [PMID: 39840057 PMCID: PMC11747708 DOI: 10.3389/fimmu.2024.1506292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Mitochondria are important organelles that regulate cellular energy and biosynthesis, as well as maintain the body's response to environmental stress. Their dynamics and autophagy influence occurrence of cellular function, particularly under stressful conditions. They can generate reactive oxygen species (ROS) which is a major contributor to inflammatory diseases such as ulcerative colitis (UC). In this review, we discuss the key effects of mitochondrial dynamics and mitophagy on the pathogenesis of UC, with a particular focus on the cellular energy metabolism, oxidative stress, apoptosis, and immunoinflammatory activities. The therapeutic efficacy of existing drugs and phytochemicals targeting the mitochondrial pathway are discussed to reveal important insights for developing therapeutic strategies for treating UC. In addition, new molecular checkpoints with therapeutic potential are identified. We show that the integration of mitochondrial biology with the clinical aspects of UC may generate ideas for enhancing the clinical management of UC.
Collapse
Affiliation(s)
- Jianping Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Xi
- Zigong Hospital of Traditional Chinese Medicine, Zigong, China
| | - Ting Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ce Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Ye Z, Deng M, Yang Y, Song Y, Weng L, Qi W, Ding P, Huang Y, Yu C, Wang Y, Wu Y, Zhang Y, Yuan S, Nie W, Zhang L, Zeng C. Epithelial mitochondrial fission-mediated PANoptosis is crucial for ulcerative colitis and its inhibition by saquinavir through Drp1. Pharmacol Res 2024; 210:107538. [PMID: 39643069 DOI: 10.1016/j.phrs.2024.107538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Ulcerative colitis (UC) is characterized by increased cell death in intestinal epithelial cell (IEC), which compromises gut barrier function and activates inflammation. Aberrant mitochondrial dynamics have been implicated in various forms of cell death, but it is currently unclear if they play a role in IEC death and colitis pathogenesis. This study aims to investigate the contribution of aberrant mitochondrial dynamics to colitis progression using cellular models, animal models, and clinical samples. The results revealed that IEC in mice with Dextran sulfate sodium salt (DSS)-induced colitis exhibited dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and Z-DNA binding protein 1 (ZBP1)-dependent PANoptosis, which is a combination of apoptosis, necroptosis, and pyroptosis. However, these processes and the pathogenesis of DSS-induced colitis were significantly attenuated in IEC-specific Drp1 heterozygous knockout mice. Importantly, ZBP1-PANoptosis and Drp1-mediated mitochondrial fission were observed in IEC of UC patients, exhibiting a positive correlation with disease severity. Mechanistically, hyperactivated mitochondrial fission induced mitochondrial reactive oxygen species production leading to PANoptosis through ZBP1 sulfenylation at Cys327 independently of its Zα domain. Saquinavir, an FDA-approved drug identified through in-silico screening alongside in vivo and in vitro experiments, inhibits mitochondrial fission thereby enhancing therapeutic efficacy in mice with colitis.
Collapse
Affiliation(s)
- Zhiming Ye
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mingxia Deng
- The Guangzhou Laboratory, Guangzhou 510000, China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai 519000, China; School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao
| | - Yuanming Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liangkun Weng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanchen Qi
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 519000, China
| | - Ping Ding
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yihang Huang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Can Yu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Wang
- College of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yixing Wu
- College of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shaoying Yuan
- College of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenkai Nie
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key specialty of Clinical Pharmacy, The first Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, China.
| |
Collapse
|
3
|
Ojo BA, Heo L, Fox SR, Waddell A, Moreno-Fernandez ME, Gibson M, Tran T, Dunn AL, Elknawy EIA, Saini N, López-Rivera JA, Divanovic S, de Jesus Perez VA, Rosen MJ. Patient-derived colon epithelial organoids reveal lipid-related metabolic dysfunction in pediatric ulcerative colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609271. [PMID: 39229116 PMCID: PMC11370613 DOI: 10.1101/2024.08.22.609271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background & Aims Ulcerative colitis (UC) is associated with epithelial metabolic derangements which exacerbate gut inflammation. Patient-derived organoids recapitulate complexities of the parent tissue in health and disease; however, whether colon organoids (colonoids) model metabolic impairments in the pediatric UC epithelium is unclear. This study determined the functional metabolic differences in the colon epithelia using epithelial colonoids from pediatric patients. Methods We developed biopsy-derived colonoids from pediatric patients with endoscopically active UC, inactive UC, and those without endoscopic or histologic evidence of colon inflammation (non-IBD controls). We extensively interrogated metabolic dysregulation through extracellular flux analyses and tested potential therapies that recapitulate or ameliorate such metabolic dysfunction. Results Epithelial colonoids from active UC patients exhibit elevated oxygen consumption and proton leak supported by enhanced glycolytic capacity and dysregulated lipid metabolism. The hypermetabolic features in active UC colonoids were associated with increased cellular stress and chemokine secretion, specifically during differentiation. Transcriptomic and pathway analyses indicated a role for PPAR-α in lipid-induced hypermetabolism in active UC colonoids, which was validated by PPAR-α activation in non-IBD colonoids. Accordingly, limiting neutral lipid accumulation in active UC colonoids through pharmacological inhibition of PPAR-α induced a metabolic shift towards glucose consumption, suppressed hypermetabolism and chemokine secretion, and improved cellular stress markers. Control and inactive UC colonoids had similar metabolic and transcriptomic profiles. Conclusions Our pediatric colonoids revealed significant lipid-related metabolic dysregulation in the pediatric UC epithelium that may be alleviated by PPAR-α inhibition. This study supports the advancement of colonoids as a preclinical human model for testing epithelial-directed therapies against such metabolic dysfunction. What You Need to Know Background and Context: Colon mucosa healing in pediatric UC requires reinstating normal epithelial function but a lack of human preclinical models of the diseased epithelium hinders the development of epithelial-directed interventions. New Findings Using colon biopsy-derived epithelial organoids, samples from pediatric patients with active UC show hyperactive metabolic function largely driven by enhanced lipid metabolism. Pharmacologic inhibition of lipid metabolism alleviates metabolic dysfunction, cellular stress, and chemokine production. Limitations Though our epithelial colon organoids from active UC patients show targetable metabolic and molecular features from non-IBD controls, they were cultured under sterile conditions, which may not fully capture any potential real-time contributions of the complex inflammatory milieu typically present in the disease. Clinical Research Relevance Current therapies for pediatric UC mainly target the immune system despite the need for epithelial healing to sustain remission. We identified a pharmacologic target that regulates epithelial metabolism and can be developed for epithelial-directed therapy in UC.Basic Research Relevance: Pediatric UC patient tissue adult stem cell-derived colon epithelial organoids retain disease-associated metabolic pathology and can serve as preclinical human models of disease. Excess reliance on lipids as an energy source leads to oxidative and inflammatory dysfunction in pediatric UC colon organoids. Preprint: This manuscript is currently on bioRxiv. doi: https://doi.org/10.1101/2024.08.22.609271 Lay Summary: Using patient tissue-derived colon epithelial organoids, the investigators identified epithelial metabolic dysfunction and inflammation in pediatric ulcerative colitis that can be alleviated by PPAR-a inhibition.
Collapse
|
4
|
Jang S, Jang S, Ko J, Bae JE, Hyung H, Park JY, Lim SG, Park S, Park S, Yi J, Kim S, Kim MO, Cho DH, Ryoo ZY. HSPA9 reduction exacerbates symptoms and cell death in DSS-Induced inflammatory colitis. Sci Rep 2024; 14:5908. [PMID: 38467701 PMCID: PMC10928168 DOI: 10.1038/s41598-024-56216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that is influenced by various factors, including environmental factors, immune responses, and genetic elements. Among the factors that influence IBD progression, macrophages play a significant role in generating inflammatory mediators, and an increase in the number of activated macrophages contributes to cellular damage, thereby exacerbating the overall inflammatory conditions. HSPA9, a member of the heat shock protein 70 family, plays a crucial role in regulating mitochondrial processes and responding to oxidative stress. HSPA9 deficiency disrupts mitochondrial dynamics, increasing mitochondrial fission and the production of reactive oxygen species. Based on the known functions of HSPA9, we considered the possibility that HSPA9 reduction may contribute to the exacerbation of colitis and investigated its relevance. In a dextran sodium sulfate-induced colitis mouse model, the downregulated HSPA9 exacerbates colitis symptoms, including increased immune cell infiltration, elevated proinflammatory cytokines, decreased tight junctions, and altered macrophage polarization. Moreover, along with the increased mitochondrial fission, we found that the reduction in HSPA9 significantly affected the superoxide dismutase 1 levels and contributed to cellular death. These findings enhance our understanding of the intricate mechanisms underlying colitis and contribute to the development of novel therapeutic approaches for this challenging condition.
Collapse
Affiliation(s)
- Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Soyeon Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiwon Ko
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Eun Bae
- KNU LAMP Research Center, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyejin Hyung
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji Yeong Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Geun Lim
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sijun Park
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Song Park
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junkoo Yi
- School of Animal Life Convergence Science, Hankyong National University, Anseong, 17579, Korea
| | - Seonggon Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si, Gyeongsang buk-do, 37224, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Organelle Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
- ORGASIS Corp., Suwon, Gyeonggido, 16229, Republic of Korea.
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Sánchez-Quintero MJ, Rodríguez-Díaz C, Rodríguez-González FJ, Fernández-Castañer A, García-Fuentes E, López-Gómez C. Role of Mitochondria in Inflammatory Bowel Diseases: A Systematic Review. Int J Mol Sci 2023; 24:17124. [PMID: 38069446 PMCID: PMC10707203 DOI: 10.3390/ijms242317124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria are key cellular organelles whose main function is maintaining cell bioenergetics by producing ATP through oxidative phosphorylation. However, mitochondria are involved in a much higher number of cellular processes. Mitochondria are the home of key metabolic pathways like the tricarboxylic acid cycle and β-oxidation of fatty acids, as well as biosynthetic pathways of key products like nucleotides and amino acids, the control of the redox balance of the cell and detoxifying the cell from H2S and NH3. This plethora of critical functions within the cell is the reason mitochondrial function is involved in several complex disorders (apart from pure mitochondrial disorders), among them inflammatory bowel diseases (IBD). IBD are a group of chronic, inflammatory disorders of the gut, mainly composed of ulcerative colitis and Crohn's disease. In this review, we present the current knowledge regarding the impact of mitochondrial dysfunction in the context of IBD. The role of mitochondria in both intestinal mucosa and immune cell populations are discussed, as well as the role of mitochondrial function in mechanisms like mucosal repair, the microbiota- and brain-gut axes and the development of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Francisco J. Rodríguez-González
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Alejandra Fernández-Castañer
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos López-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| |
Collapse
|