1
|
Wu P, Lei M, Widelitz RB, Chuong CM. Cyclic renewal in three ectodermal appendage follicles: Hairs, feathers and teeth. Dev Biol 2025; 522:76-90. [PMID: 40113026 DOI: 10.1016/j.ydbio.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/21/2024] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Ectodermal appendages display a range of renewal mechanisms, with some undergoing continuous growth and others experiencing cyclic regeneration. The latter requires sustainable epithelial stem cells and mesenchymal niche essential for interacting with these stem cells. Furthermore, certain appendages dynamically adjust their mesenchymal niche in response to environmental factors, such as hormonal fluctuations, sex, and seasonal changes, enabling them to cyclically renew with different appendages phenotypes to adapt to different environments and to different life stages. Here we focus on amniotes, including reptiles, birds, and mammals, which exhibit integumentary adaptations that enable their survival across various ecological environments, from aquatic habitats and terrestrial landscapes to aerial domains. We highlight three representative integument appendage follicles: teeth, feathers, and hairs. Despite independent evolutionary origins, these structures share a fundamental architectural design characterized by the presence of stem cells and mesenchymal niches. They differ in the spatial arrangement and topology of these components. By examining the distinct architectural features of these follicles, we demonstrate the different strategies they use to orchestrate the physiological regenerative cycling, from growth initiation to cessation and molting, and regeneration after wounding. We delve into known molecular controls that govern these processes and unravel the evolutionary insights. We also identify new cell interactions that underlie the emergence of evolutionary novel follicle components. Various amniote scales have evolved independently with different configurations, but all lack follicle architecture and maintain homeostasis using a strategy similar to that of skin. The convergently evolved follicles in hairs, feathers, and teeth utilize different designs to achieve cyclic renewability, allowing them to produce spatially and temporally specific appendage phenotypes, thus enhancing the adaptability of the integumentary interface to external environmental pressures. This, in turn, enriches our understanding of evolutionary developmental biology (Evo-Devo) of the integument, shedding light on the intricate interplay between form and function across diverse taxa.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
2
|
Henriquez J, Flibotte S, Fu K, Richman J. Molecular Profiling of Odontoclasts during Physiological Tooth Replacement. J Dent Res 2025; 104:561-571. [PMID: 39876039 PMCID: PMC12000629 DOI: 10.1177/00220345241304756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The odontoclast is a rarely studied cell type that is overly active in many dental pathologies, leading to tooth loss. It is difficult to find diphyodont mammals in which either physiological or pathological root resorption can be studied. Here we use the adult leopard gecko, which has repeated cycles of physiological tooth resorption and shedding. RNA-seq was carried out to compare gene expression profiles of functional teeth to developing teeth. Genes more highly expressed in bell-stage developing teeth were related to morphogenesis (PTHLH, SFRP2, SHH, EDAR). Some genes expressed in osteoclasts (ACP5, CTSK, CSF1R) were relatively more abundant in functional teeth compared with developing teeth. There was, however, no differential expression of RANKL (TNFSF11) in the 2 tooth types. In addition, functional teeth expressed proteolysis genes not found in osteoclasts (ADAMTS2, 3, 4, 14; CTSA, CTSH, CTSS). We used tartrate acid resistant phosphatase and cathepsin K (CTSK) staining to identify odontoclasts in and around the gecko dentition. There were 3 populations of CTSK cells: (1) large, functional multinucleated odontoclasts in the crown of the tooth with a ruffled border inside resorption pits; (2) smaller, precursor cells in the pulp with fewer nuclei; and (3) flattened external precursor cells next to the root and bone of attachment. We found a positive relationship between developing teeth and the population of CTSK+ cells on the root surface. We tested a candidate signal that may be involved in CTSK+ cell presence. An antagonist of CSF1R was delivered to developing teeth in vivo, which resulted in a significant decrease in CTSK and CSF1R compared with DMSO controls. Thus, the CSF1 signaling pathway is upstream of CTSK in teeth. This is the first work to detail the molecular characteristics of odontoclasts during physiological tooth shedding and to demonstrate that in vivo, local drug delivery is possible in the gecko model.
Collapse
Affiliation(s)
- J.I. Henriquez
- Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| | - S. Flibotte
- Bioinformatics Core, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - K. Fu
- Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| | - J.M. Richman
- Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Henriquez JI, Richman JM. Resilience of the replacing dentition in adult reptiles. Dev Biol 2024; 516:71-81. [PMID: 39059678 PMCID: PMC11458058 DOI: 10.1016/j.ydbio.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The dentition is critical to animal survival and teeth are present in modern vertebrates including teleost fish, sharks, amphibians, mammals and reptiles. The developmental processes that give rise to teeth are not just preserved through evolution but also share high level of similarity with the embryogenesis of other ectodermal organs. In this review we go beyond the embryonic phase of tooth development to life-long tooth replacement. We will address the origins of successional teeth, the location of putative tissue-resident stem cells, how de novo tooth formation continues throughout life and how teeth are shed in a spatially and temporally controlled manner. We review the evidence that the dental epithelium, which is the earliest recognizable dental structure in the reptilian dentition, serves as a putative niche for tissue-resident epithelial stem cells and recent molecular findings from transcriptomics carried out in reptilian dentitions. We discuss how odontoclasts resorb the primary tooth allowing eruption of the successional tooth. The reptiles, particularly lizards, are emerging as some of the most accessible animals to study tooth replacement which has relevance to evolution of the dentition and human dental disorders.
Collapse
Affiliation(s)
- Joaquin I Henriquez
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Canada
| | - Joy M Richman
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Canada.
| |
Collapse
|
4
|
Razmadze D, Salomies L, Di-Poï N. Squamates as a model to understand key dental features of vertebrates. Dev Biol 2024; 516:1-19. [PMID: 39069116 DOI: 10.1016/j.ydbio.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Thanks to their exceptional diversity, teeth are among the most distinctive features of vertebrates. Parameters such as tooth size, shape, number, identity, and implantation can have substantial implications for the ecology and certain social behaviors of toothed species. Despite decades of research primarily focused on mammalian dentition, particularly using the laboratory mouse model, squamate reptiles ("lizards" and snakes) offer a wide array of tooth types and dentition variations. This diversity, which includes differences in size, shape, function, and replacement capacity, provides invaluable opportunities for investigating these fundamental properties. The central bearded dragon (Pogona vitticeps), a popular pet species with well-established husbandry practices, is of particular interest. It features a broad spectrum of morphs and spontaneous mutants and exhibits a wide range of heterodont phenotypes, including variation in the size, shape, number, implantation, and renewal of teeth at both posterior and anterior positions. These characteristics position the species as a crucial model organism for developmental studies in tooth research and for gaining deeper insights into evolutionary patterns of vertebrate dentitions. In this article, we provide an overview of the current understanding of squamate dentition, its diversity, development, and replacement. Furthermore, we discuss the significant advantages offered by squamate species as model organisms for investigating the evolutionary and developmental aspects of vertebrate dentition.
Collapse
Affiliation(s)
- Daria Razmadze
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Lotta Salomies
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Maho T, Reisz RR. Exceptionally rapid tooth development and ontogenetic changes in the feeding apparatus of the Komodo dragon. PLoS One 2024; 19:e0295002. [PMID: 38324523 PMCID: PMC10849390 DOI: 10.1371/journal.pone.0295002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024] Open
Abstract
Dental developmental and replacement patterns in extinct amniotes have attracted a lot of attention. Notable among these are Paleozoic predatory synapsids, but also Mesozoic theropod dinosaurs, well known for having true ziphodonty, strongly serrated carinae with dentine cores within an enamel cap. The Komodo dragon, Varanus komodoensis, is the only extant terrestrial vertebrate to exhibit true ziphodonty, making it an ideal model organism for gaining new insights into the life history and feeding behaviours of theropod dinosaurs and early synapsids. We undertook a comparative dental histological analysis of this extant apex predator in combination with computed tomography of intact skulls. This study allowed us to reconstruct the dental morphology, ontogeny, and replacement patterns in the largest living lizard with known feeding behaviour, and apply our findings to extinct taxa where the behaviour is largely unknown. We discovered through computed tomography that V. komodoensis maintains up to five replacement teeth per tooth position, while histological analysis showed an exceptionally rapid formation of new teeth, every 40 days. Additionally, a dramatic ontogenetic shift in the dental morphology of V. komodoensis was also discovered, likely related to changes in feeding preferences and habitat. The juveniles have fewer dental specializations, lack true ziphodonty, are arboreal and feed mostly on insects, whereas the adults have strongly developed ziphodonty and are terrestrial apex predators with defleshing feeding behaviour. In addition, we found evidence that the ziphodont teeth of V. komodoensis have true ampullae (interdental folds for strengthening the serrations), similar to those found only in theropod dinosaurs. Comparisons with other species of Varanus and successive outgroup taxa reveal a complex pattern of dental features and adaptations, including the evolution of snake-like tongue flicking used for foraging for prey. However, only the Komodo dragon exhibits this remarkable set of dental innovations and specializations among squamates.
Collapse
Affiliation(s)
- Tea Maho
- International Center of Future Science, Jilin University, Changchun, Jilin Province, China
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Robert R. Reisz
- International Center of Future Science, Jilin University, Changchun, Jilin Province, China
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
6
|
Green DR, Winkler DE, Leichliter JN, Harms GS, Hatt JM, Clauss M, Tütken T. Formation and Replacement of Bone and Tooth Mineralized Tissues in Green Iguanas (Iguana iguana) Revealed by In-Vivo Fluorescence Marking. Integr Comp Biol 2023; 63:515-529. [PMID: 37475667 DOI: 10.1093/icb/icad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Hard tissue formation patterns and rates reveal details of animal physiology, life history, and environment, but are understudied in reptiles. Here, we use fluorescence labels delivered in vivo and laser confocal scanning microscopy to study tooth and bone formation in a managed group of green iguanas (Iguana iguana, Linné 1758) kept for 1.5 years under experimentally controlled conditions and undergoing several dietary switches. We constrain rates of tooth elongation, which we observe to be slow when enamel is initially deposited (c. 9 µm/day), but then increases exponentially in the dentin root, reaching c. 55 µm/day or more after crown completion. We further constrain the total timing of tooth formation to ∼40-60 days, and observe highly variable timings of tooth resorption onset and replacement. Fluorescent labels clearly indicate cohorts of teeth recruited within Zahnreihen replacement waves, with faster sequential tooth recruitment and greater wave sizes posteriorly, where each wave initiates. Fluorescence further reveals enamel maturation after initial deposition. Rates of hard tissue formation in long bones range from 0.4 to 3.4 µm/day, correlating with animal weight gain and cortical bone recording the entire history of the experiment. We suggest additional labeling experiments to study hard tissue formation patterns in other reptiles, and propose strategies for chemical analyses of hard tissues in order to extract temporal information about past environments, behaviors, and diets from reptilian fossils throughout the Phanerozoic.
Collapse
Affiliation(s)
- Daniel R Green
- Lamont-Doherty Earth Observatory, Climate School, Columbia University, 2910 Broadway Level A, New York, NY 10025, USA
| | - Daniela E Winkler
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, J.-J.-Becher-Weg 21, 55128 Mainz, Germany
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Jennifer N Leichliter
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, J.-J.-Becher-Weg 21, 55128 Mainz, Germany
- Emmy Noether Group for Hominin Meat Consumption, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Gregory S Harms
- Imaging Core Facility, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Departments of Biology and Earth Systems Science and Mathematics, Physics and Computer Science, WIlkes University, Wilkes-Barre, PA 18766, USA
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Thomas Tütken
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, J.-J.-Becher-Weg 21, 55128 Mainz, Germany
| |
Collapse
|
7
|
Maho T, Maho S, Scott D, Reisz RR. Permian hypercarnivore suggests dental complexity among early amniotes. Nat Commun 2022; 13:4882. [PMID: 35986022 PMCID: PMC9391490 DOI: 10.1038/s41467-022-32621-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe oldest known complex terrestrial vertebrate community included hypercarnivorous varanopids, a successful clade of amniotes with wide geographic and temporal distributions. Little is known about their dentition and feeding behaviour, but with the unprecedented number of specimens of the varanopid Mesenosaurus from cave deposits in Oklahoma, we show that it exhibited serrations on the tooth crowns, and exceptionally rapid rates of development and reduced longevity relative to other terrestrial amniotes. In contrast, the coeval large apex predator Dimetrodon greatly increased dental longevity by increasing thickness and massiveness, whereas herbivores greatly reduced tooth replacement rates and increased dental longevity. Insectivores and omnivores represented the primitive condition and maintained modest replacement rates and longevity. The varied patterns of dental development among these early terrestrial amniotes reveal a hidden aspect of dental complexity in the emerging diverse amniote community, very soon after their initial appearance in the fossil record.
Collapse
|
8
|
Mateus O, Estraviz-López D. A new theropod dinosaur from the early cretaceous (Barremian) of Cabo Espichel, Portugal: Implications for spinosaurid evolution. PLoS One 2022; 17:e0262614. [PMID: 35171930 PMCID: PMC8849621 DOI: 10.1371/journal.pone.0262614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022] Open
Abstract
Spinosaurids are some of the most enigmatic Mesozoic theropod dinosaurs due to their unique adaptations to aquatic environments and their relative scarcity. Their taxonomy has proven to be especially problematic. Recent discoveries from Western Europe in general, specifically Iberia, provide some of the best specimens for the understanding of their phylogeny, leading to the description of the spinosaurid Vallibonavenatrix cani and the recognition of the Iberian dinosaur Camarillasaurus cirugedae as one of them. Portuguese associated spinosaurid remains (ML1190) from the Papo Seco Formation (early Barremian) were previously assigned to Baryonyx walkeri but new material recovered in 2020 along with new phylogenetic analyses suggests a different phylogenetic placement, making their revision necessary. Here we show that these remains are not attributable to Baryonyx walkeri, but to a new genus and species, Iberospinus natarioi, gen. et sp. nov. The new taxon is characterized by the presence of a single Meckelian foramen in the Meckelian sulcus, a straight profile of the ventral surface of the dentary and a distal thickening of the acromion process of the pubis between other characters. Iberospinus natarioi is recovered as a sister taxon of the clade formed by Baryonyx and Suchomimus, and outside Spinosaurinae when Vallibonaventrix cani is excluded from the analysis. The description of this taxon reinforces Iberia as a hotspot for spinosaur biodiversity, with several endemic taxa for the region. As expected for the clade, the dentary displays a highly vascularized neurovascular network. The morphometric analysis of parts of the skeleton (pedal phalanx and caudal vertebrae, among others) shows an intermediate condition between basal tetanurans and spinosaurines.
Collapse
Affiliation(s)
- Octávio Mateus
- GEOBIOTEC, Department of Earth Sciences, NOVA School of Science and Technology, Caparica, Portugal
- Museu da Lourinhã, Lourinhã, Portugal
| | - Darío Estraviz-López
- GEOBIOTEC, Department of Earth Sciences, NOVA School of Science and Technology, Caparica, Portugal
- Museu da Lourinhã, Lourinhã, Portugal
- * E-mail:
| |
Collapse
|
9
|
Brink KS, Henríquez JI, Grieco TM, Martin del Campo JR, Fu K, Richman JM. Tooth Removal in the Leopard Gecko and the de novo Formation of Replacement Teeth. Front Physiol 2021; 12:576816. [PMID: 34012403 PMCID: PMC8126719 DOI: 10.3389/fphys.2021.576816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Many reptiles are able to continuously replace their teeth through life, an ability attributed to the existence of epithelial stem cells. Tooth replacement occurs in a spatially and temporally regulated manner, suggesting the involvement of diffusible factors, potentially over long distances. Here, we locally disrupted tooth replacement in the leopard gecko (Eublepharis macularius) and followed the recovery of the dentition. We looked at the effects on local patterning and functionally tested whether putative epithelial stem cells can give rise to multiple cell types in the enamel organs of new teeth. Second generation teeth with enamel and dentine were removed from adult geckos. The dental lamina was either left intact or disrupted in order to interfere with local patterning cues. The dentition began to reform by 1 month and was nearly recovered by 2-3 months as shown in μCT scans and eruption of teeth labeled with fluorescent markers. Microscopic analysis showed that the dental lamina was fully healed by 1 month. The deepest parts of the dental lamina retained odontogenic identity as shown by PITX2 staining. A pulse-chase was carried out to label cells that were stimulated to enter the cell cycle and then would carry BrdU forward into subsequent tooth generations. Initially we labeled 70-78% of PCNA cells with BrdU. After a 1-month chase, the percentage of BrdU + PCNA labeled cells in the dental lamina had dropped to 10%, consistent with the dilution of the label. There was also a population of single, BrdU-labeled cells present up to 2 months post surgery. These BrdU-labeled cells were almost entirely located in the dental lamina and were the likely progenitor/stem cells because they had not entered the cell cycle. In contrast fragmented BrdU was seen in the PCNA-positive, proliferating enamel organs. Homeostasis and recovery of the gecko dentition was therefore mediated by a stable population of epithelial stem cells in the dental lamina.
Collapse
Affiliation(s)
| | | | | | | | | | - Joy M. Richman
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Brink KS, Wu P, Chuong CM, Richman JM. The Effects of Premature Tooth Extraction and Damage on Replacement Timing in the Green Iguana. Integr Comp Biol 2020; 60:581-593. [PMID: 32974642 PMCID: PMC7546963 DOI: 10.1093/icb/icaa099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Reptiles with continuous tooth replacement, or polyphyodonty, replace their teeth in predictable, well-timed waves in alternating tooth positions around the mouth. This process is thought to occur irrespective of tooth wear or breakage. In this study, we aimed to determine if damage to teeth and premature tooth extraction affects tooth replacement timing long-term in juvenile green iguanas (Iguana iguana). First, we examined normal tooth development histologically using a BrdU pulse-chase analysis to detect label-retaining cells in replacement teeth and dental tissues. Next, we performed tooth extraction experiments for characterization of dental tissues after functional tooth (FT) extraction, including proliferation and β-Catenin expression, for up to 12 weeks. We then compared these results to a newly analyzed historical dataset of X-rays collected up to 7 months after FT damage and extraction in the green iguana. Results show that proliferation in the dental and successional lamina (SL) does not change after extraction of the FT, and proliferation occurs in the SL only when a tooth differentiates. Damage to an FT crown does not affect the timing of the tooth replacement cycle, however, complete extraction shifts the replacement cycle ahead by 4 weeks by removing the need for resorption of the FT. These results suggest that traumatic FT loss affects the timing of the replacement cycle at that one position, which may have implications for tooth replacement patterning around the entire mouth.
Collapse
Affiliation(s)
- Kirstin S Brink
- Department of Oral Health Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Ping Wu
- Keck School of Medicine, University of Southern California, 2011 Zonal Ave, Los Angeles, CA HMR313, USA
| | - Cheng-Ming Chuong
- Keck School of Medicine, University of Southern California, 2011 Zonal Ave, Los Angeles, CA HMR313, USA
| | - Joy M Richman
- Department of Oral Health Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|