1
|
Louvado A, Silva DAM, Oliveira V, Castro C, Cleary DFR, Gomes NCM. Association between Turbot ( Scophthalmus maximus) Fish Phenotype and the Post-Larval Bacteriome. Microorganisms 2024; 12:2014. [PMID: 39458323 PMCID: PMC11510086 DOI: 10.3390/microorganisms12102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Over the past decade, an increasing number of studies have emphasized the importance of the host microbiome in influencing organismal health and development. Aligned with this understanding, our study aimed to investigate the potential association between the turbot (Scophthalmus maximus) phenotypic traits and the post-larval bacteriome. Turbot post-larvae were sampled from twenty randomly selected production cycles thirty days after hatching (DAH) across multiple post-larval production batches over a three-month period (April to June). Fish were selectively sampled based on five phenotypic traits, namely, normal, large, small, malformed, and depigmented. Our results showed that small-sized post-larvae had significantly higher bacterial phylogenetic diversity in their bacterial communities than all other phenotypes. A more in-depth compositional analysis also revealed specific associations between certain bacterial taxa and fish phenotypes. For example, the genera Aliivibrio and Sulfitobacter were enriched in small-sized post-larvae, while the family Micrococcaceae were predominantly found in larger post-larvae. Furthermore, genus Exiguobacterium was linked to depigmented larvae, and genus Pantoea was more prevalent in normal post-larvae. These observations underscore the importance of further research to understand the roles of these bacterial taxa in larval growth and phenotypic differentiation. Such insights could contribute to developing microbiome modulation strategies, which may enhance turbot post-larval health and quality and improve larviculture production.
Collapse
Affiliation(s)
- Antonio Louvado
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.); (D.A.M.S.); (V.O.); (D.F.R.C.)
| | - Davide A. M. Silva
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.); (D.A.M.S.); (V.O.); (D.F.R.C.)
| | - Vanessa Oliveira
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.); (D.A.M.S.); (V.O.); (D.F.R.C.)
| | | | - Daniel F. R. Cleary
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.); (D.A.M.S.); (V.O.); (D.F.R.C.)
| | - Newton C. M. Gomes
- CESAM & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.L.); (D.A.M.S.); (V.O.); (D.F.R.C.)
| |
Collapse
|
2
|
McKinnon Reish H, Dewey L, Kirschman LJ. A host of issues: pseudoreplication in host-microbiota studies. Appl Environ Microbiol 2024; 90:e0103324. [PMID: 39082810 PMCID: PMC11337823 DOI: 10.1128/aem.01033-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Pseudoreplication compromises the validity of research by treating non-independent samples as independent replicates. This review examines the prevalence of pseudoreplication in host-microbiota studies, highlighting the critical need for rigorous experimental design and appropriate statistical analysis. We systematically reviewed 115 manuscripts on host-microbiota interactions. Our analysis revealed that 22% of the papers contained pseudoreplication, primarily due to co-housed organisms, whereas 52% lacked sufficient methodological details. The remaining 26% adequately addressed pseudoreplication through proper experimental design or statistical analysis. The high incidence of pseudoreplication and insufficient information underscores the importance of methodological reporting and statistical rigor to ensure reproducibility of host-microbiota research.
Collapse
Affiliation(s)
- Hannah McKinnon Reish
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, USA
| | - Lindsey Dewey
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, USA
- Deparment of Biology, University of Dayton, Dayton, Ohio, USA
| | - Lucas J. Kirschman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, USA
| |
Collapse
|
3
|
Pereira H, Chakarov N, Hoffman JI, Rinaud T, Ottensmann M, Gladow KP, Tobias B, Caspers BA, Maraci Ö, Krüger O. Early-life factors shaping the gut microbiota of Common buzzard nestlings. Anim Microbiome 2024; 6:27. [PMID: 38745254 DOI: 10.1186/s42523-024-00313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Exploring the dynamics of gut microbiome colonisation during early-life stages is important for understanding the potential impact of microbes on host development and fitness. Evidence from model organisms suggests a crucial early-life phase when shifts in gut microbiota can lead to immune dysregulation and reduced host condition. However, our understanding of gut microbiota colonisation in long-lived vertebrates, especially during early development, remains limited. We therefore used a wild population of common buzzard nestlings (Buteo buteo) to investigate connections between the early-life gut microbiota colonisation, environmental and host factors. RESULTS We targeted both bacterial and eukaryotic microbiota using the 16S and 28S rRNA genes. We sampled the individuals during early developmental stages in a longitudinal design. Our data revealed that age significantly affected microbial diversity and composition. Nest environment was a notable predictor of microbiota composition, with particularly eukaryotic communities differing between habitats occupied by the hosts. Nestling condition and infection with the blood parasite Leucocytozoon predicted microbial community composition. CONCLUSION Our findings emphasise the importance of studying microbiome dynamics to capture changes occurring during ontogeny. They highlight the role of microbial communities in reflecting host health and the importance of the nest environment for the developing nestling microbiome. Overall, this study contributes to understanding the complex interplay between microbial communities, host factors, and environmental variables, and sheds light on the ecological processes governing gut microbial colonisation during early-life stages.
Collapse
Affiliation(s)
- Hugo Pereira
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany.
| | - Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Joseph I Hoffman
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Department of Evolutionary Population Genetics, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Tony Rinaud
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Meinolf Ottensmann
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Kai-Philipp Gladow
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Busche Tobias
- Medical School East Westphalia-Lippe & Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, NRW, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Öncü Maraci
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| | - Oliver Krüger
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615, Bielefeld, NRW, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Konsequenz 45, 33615, Bielefeld, NRW, Germany
| |
Collapse
|
4
|
Diez-Méndez D, Bodawatta KH, Freiberga I, Klečková I, Jønsson KA, Poulsen M, Sam K. Indirect maternal effects via nest microbiome composition drive gut colonization in altricial chicks. Mol Ecol 2023. [PMID: 37096441 DOI: 10.1111/mec.16959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
Gut microbial communities are complex and heterogeneous and play critical roles for animal hosts. Early-life disruptions to microbiome establishment can negatively impact host fitness and development. However, the consequences of such early-life disruptions remain unknown in wild birds. To help fill this gap, we investigated the effect of continuous early-life gut microbiome disruptions on the establishment and development of gut communities in wild Great tit (Parus major) and Blue tit (Cyanistes caeruleus) nestlings by applying antibiotics and probiotics. Treatment neither affected nestling growth nor their gut microbiome composition. Independent of treatment, nestling gut microbiomes of both species grouped by brood, which shared the highest numbers of bacterial taxa with both nest environment and their mother. Although fathers showed different gut communities than their nestlings and nests, they still contributed to structuring chick microbiomes. Lastly, we observed that the distance between nests increased inter-brood microbiome dissimilarity, but only in Great tits, indicating that species-specific foraging behaviour and/or microhabitat influence gut microbiomes. Overall, the strong maternal effect, driven by continuous recolonization from the nest environment and vertical transfer of microbes during feeding, appears to provide resilience towards early-life disruptions in nestling gut microbiomes.
Collapse
Affiliation(s)
- David Diez-Méndez
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Inga Freiberga
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Irena Klečková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
5
|
Dallas JW, Warne RW. Captivity and Animal Microbiomes: Potential Roles of Microbiota for Influencing Animal Conservation. MICROBIAL ECOLOGY 2023; 85:820-838. [PMID: 35316343 DOI: 10.1007/s00248-022-01991-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/07/2022] [Indexed: 05/04/2023]
Abstract
During the ongoing biodiversity crisis, captive conservation and breeding programs offer a refuge for species to persist and provide source populations for reintroduction efforts. Unfortunately, captive animals are at a higher disease risk and reintroduction efforts remain largely unsuccessful. One potential factor in these outcomes is the host microbiota which includes a large diversity and abundance of bacteria, fungi, and viruses that play an essential role in host physiology. Relative to wild populations, the generalized pattern of gut and skin microbiomes in captivity are reduced alpha diversity and they exhibit a significant shift in community composition and/or structure which often correlates with various physiological maladies. Many conditions of captivity (antibiotic exposure, altered diet composition, homogenous environment, increased stress, and altered intraspecific interactions) likely lead to changes in the host-associated microbiome. To minimize the problems arising from captivity, efforts can be taken to manipulate microbial diversity and composition to be comparable with wild populations through methods such as increasing dietary diversity, exposure to natural environmental reservoirs, or probiotics. For individuals destined for reintroduction, these strategies can prime the microbiota to buffer against novel pathogens and changes in diet and improve reintroduction success. The microbiome is a critical component of animal physiology and its role in species conservation should be expanded and included in the repertoire of future management practices.
Collapse
Affiliation(s)
- Jason W Dallas
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA.
| | - Robin W Warne
- Department of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL, 62901, USA
| |
Collapse
|
6
|
Schuster CJ, Sanders JL, Couch C, Kent ML. Recent Advances with Fish Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:285-317. [PMID: 35544007 DOI: 10.1007/978-3-030-93306-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There have been several significant new findings regarding Microsporidia of fishes over the last decade. Here we provide an update on new taxa, new hosts and new diseases in captive and wild fishes since 2013. The importance of microsporidiosis continues to increase with the rapid growth of finfish aquaculture and the dramatic increase in the use of zebrafish as a model in biomedical research. In addition to reviewing new taxa and microsporidian diseases, we include discussions on advances with diagnostic methods, impacts of microsporidia on fish beyond morbidity and mortality, novel findings with transmission and invertebrate hosts, and a summary of the phylogenetics of fish microsporidia.
Collapse
Affiliation(s)
- Corbin J Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Justin L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Claire Couch
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
7
|
Maraci Ö, Antonatou-Papaioannou A, Jünemann S, Castillo-Gutiérrez O, Busche T, Kalinowski J, Caspers BA. The Gut Microbial Composition Is Species-Specific and Individual-Specific in Two Species of Estrildid Finches, the Bengalese Finch and the Zebra Finch. Front Microbiol 2021; 12:619141. [PMID: 33679641 PMCID: PMC7933042 DOI: 10.3389/fmicb.2021.619141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Microbial communities residing in the gastrointestinal tracts of animals have profound impacts on the physiological processes of their hosts. In humans, host-specific and environmental factors likely interact together to shape gut microbial communities, resulting in remarkable inter-individual differences. However, we still lack a full understanding of to what extent microbes are individual-specific and controlled by host-specific factors across different animal taxa. Here, we document the gut microbial characteristics in two estrildid finch species, the Bengalese finch (Lonchura striata domestica) and the zebra finch (Taeniopygia guttata) to investigate between-species and within-species differences. We collected fecal samples from breeding pairs that were housed under strictly controlled environmental and dietary conditions. All individuals were sampled at five different time points over a range of 120 days covering different stages of the reproductive cycle. We found significant species-specific differences in gut microbial assemblages. Over a period of 3 months, individuals exhibited unique, individual-specific microbial profiles. Although we found a strong individual signature in both sexes, within-individual variation in microbial communities was larger in males of both species. Furthermore, breeding pairs had more similar microbial profiles, compared to randomly chosen males and females. Our study conclusively shows that host-specific factors contribute structuring of gut microbiota.
Collapse
Affiliation(s)
- Öncü Maraci
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - Anna Antonatou-Papaioannou
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
- Institute of Biology-Zoology, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Jünemann
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Omar Castillo-Gutiérrez
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Barbara A. Caspers
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|