1
|
Rosero Salazar DH, Grewal R, Vimawala A, Leotta DF, Levendovszky SR, Liu ZJ. Pharyngeal airway dimensions and adipose distribution in the minipig. J Oral Biol Craniofac Res 2025; 15:77-83. [PMID: 39790991 PMCID: PMC11714709 DOI: 10.1016/j.jobcr.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Objective To evaluate the pharyngeal airway dimensions and regional pharyngeal adipose distribution in the young adult minipig model. Materials and methods Eight 7-8-months-old Yucatan minipigs, half male and female, were sedated and placed prone to scan the pharyngeal region. Magnetic resonance imaging (MRI) was performed using dynamic turbo-field echo (TFE)-sequence with respiratory gating and adipose-weighted sequence. Respiratory airflow velocity, pressure, and volume were also recorded. The sizes of velopharyngeal and oropharyngeal airway, and retroglossal areas were measured coronally during inspiration and expiration. The airway volumes from the nasal cavity to the retroglossal space were segmented, reconstructed, and evaluated in sagittal views. The adipose distribution in the tongue base, soft palate, pharyngeal wall, tongue body, and masseter muscle (reference) were segmented and measured in sagittal and coronal planes. Results The velopharyngeal and oropharyngeal areas were larger in inspiration than in expiration. These areas were also larger than that in the retroglossal space (p < 0.05). The nasal cavity showed a larger volume than that of the pharyngeal regions (p < 0.05). The adipose distribution was larger in the posterior region of the tongue base and anterior soft palate, both larger than the masseter muscle (p < 0.05). Conclusion The larger oropharyngeal dimensions and increased adipose distribution in the tongue base contribute to the functional morphology of the pharyngeal airway in the healthy minipig. These data provide the baseline for further analysis in enlarged and reduced tongue base minipig models.
Collapse
Affiliation(s)
| | - Riana Grewal
- Department of Orthodontics, University of Washington, Seattle, USA
| | - Anuj Vimawala
- Center for Lung Biology, University of Washington, Seattle, USA
| | - Daniel F. Leotta
- Center for Industrial and Medical Ultrasound/Applied Physics Laboratory, University of Washington, Seattle, USA
| | | | - Zi-Jun Liu
- Department of Orthodontics, University of Washington, Seattle, USA
| |
Collapse
|
2
|
Wang W, Liu R, Zhong Q, Cao Y, Qi J, Li Y, Yang Q. Single-cell analysis of nasal epithelial cell development in domestic pigs. Vet Res 2024; 55:140. [PMID: 39478588 PMCID: PMC11523856 DOI: 10.1186/s13567-024-01403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/28/2024] [Indexed: 11/03/2024] Open
Abstract
The nasal mucosa forms a critical barrier against the invasion of respiratory pathogens. Composed of a heterogeneous assortment of cell types, the nasal mucosa relies on the unique characteristics and complex intercellular dynamics of these cells to maintain their structural integrity and functional efficacy. In this study, single-cell RNA sequencing (scRNA-seq) of porcine nasal mucosa was performed, and nineteen distinct nasal cell types, including nine epithelial cell types, five stromal cell types, and five immune cell types, were identified. The distribution patterns of three representative types of epithelial cells (basal cells, goblet cells, and ciliated cells) were subsequently detected by immunofluorescence. We conducted a comparative analysis of these data with published human single-cell data, revealing consistent differentiation trajectories among porcine and human nasal epithelial cells. Specifically, basal cells serve as the initial stage in the differentiation process of nasal epithelial cells, which then epithelial cells. This research not only enhances our understanding of the composition and transcriptional signature of porcine nasal mucosal cells but also offers a theoretical foundation for developing alternative models for human respiratory diseases.
Collapse
Affiliation(s)
- Wenqian Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruiling Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qiu Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunlei Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaxin Qi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Park DB, Jang DW, Kim DH, Kim SW. Development of a New Swine Model Resembling Human Empty Nose Syndrome. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1559. [PMID: 39459347 PMCID: PMC11509164 DOI: 10.3390/medicina60101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Empty nose syndrome (ENS) is a debilitating condition that often results from traumatic or iatrogenic causes, such as nasal surgery. There are various conservative and surgical treatments for ENS, but their effectiveness remains uncertain. Therefore, the development of animal models that accurately mimic human ENS is essential for advancing effective treatment strategies. Materials and Methods: To investigate ENS development, turbinoplasty was performed in the nasal cavity of swine, entailing partial removal of the ventral turbinate using turbinectomy scissors followed by electrocauterization. After 56 days, samples were obtained for histological and morphological analyses. Results: A significant reduction in the volume of the ventral turbinate in the ENS model led to an expansion of the nasal cavity. Histological analysis revealed mucosal epithelial changes similar to those observed in ENS patients, including squamous cell metaplasia, goblet cell metaplasia, submucosal fibrosis, and glandular atrophy. Biomarkers related to these histopathological features were identified, and signals potentially contributing to squamous cell metaplasia were elucidated. Conclusions: The swine ENS model is anticipated to be instrumental in unraveling the pathogenesis of ENS and may also be useful for evaluating the effectiveness of various treatments for ENS.
Collapse
Affiliation(s)
- Dan Bi Park
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - David W. Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
5
|
Jung SS. Simplified models of aerosol collision and deposition for disease transmission. Sci Rep 2023; 13:20778. [PMID: 38012339 PMCID: PMC10682024 DOI: 10.1038/s41598-023-48053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Fluid-mechanics research has focused primarily on droplets/aerosols being expelled from infected individuals and transmission of well-mixed aerosols indoors. However, aerosol collisions with susceptible hosts earlier in the spread, as well as aerosol deposition in the nasal cavity, have been relatively overlooked. In this paper, two simple fluid models are presented to gain a better understanding of the collision and deposition between a human and aerosols. The first model is based on the impact of turbulent diffusion coefficients and air flow in a room on the collisions between aerosols and humans. Infection rates can be determined based on factors such as air circulation and geometry as an infection zone expands from an infected host. The second model clarifies how aerosols of different sizes adhere to different parts of the respiratory tract. Based on the inhalation rate and the nasal cavity shape, the critical particle size and the deposition location can be determined. Our study offers simple fluid models to understand the effects of geometric factors and air flows on the aerosol transmission and deposition.
Collapse
Affiliation(s)
- Sunghwan Sunny Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
6
|
Xi J, Si XA, Malvè M. Nasal anatomy and sniffing in respiration and olfaction of wild and domestic animals. Front Vet Sci 2023; 10:1172140. [PMID: 37520001 PMCID: PMC10375297 DOI: 10.3389/fvets.2023.1172140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Animals have been widely utilized as surrogate models for humans in exposure testing, infectious disease experiments, and immunology studies. However, respiratory diseases affect both humans and animals. These disorders can spontaneously affect wild and domestic animals, impacting their quality and quantity of life. The origin of such responses can primarily be traced back to the pathogens deposited in the respiratory tract. There is a lack of understanding of the transport and deposition of respirable particulate matter (bio-aerosols or viruses) in either wild or domestic animals. Moreover, local dosimetry is more relevant than the total or regionally averaged doses in assessing exposure risks or therapeutic outcomes. An accurate prediction of the total and local dosimetry is the crucial first step to quantifying the dose-response relationship, which in turn necessitates detailed knowledge of animals' respiratory tract and flow/aerosol dynamics within it. In this review, we examined the nasal anatomy and physiology (i.e., structure-function relationship) of different animals, including the dog, rat, rabbit, deer, rhombus monkey, cat, and other domestic and wild animals. Special attention was paid to the similarities and differences in the vestibular, respiratory, and olfactory regions among different species. The ventilation airflow and behaviors of inhaled aerosols were described as pertinent to the animals' mechanisms for ventilation modulation and olfaction enhancement. In particular, sniffing, a breathing maneuver that animals often practice enhancing olfaction, was examined in detail in different animals. Animal models used in COVID-19 research were discussed. The advances and challenges of using numerical modeling in place of animal studies were discussed. The application of this technique in animals is relevant for bidirectional improvements in animal and human health.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, United States
| | - Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, United States
| | - Mauro Malvè
- Department of Engineering, Public University of Navarre, Pamplona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|