1
|
Tinajero A, Merchant W, Khan A, Surbhi, Caron A, Reynolds R, Jia L, Gautron L. Spontaneous and pharmacologically induced hypothermia protect mice against endotoxic shock. Br J Pharmacol 2025. [PMID: 39987925 DOI: 10.1111/bph.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND AND PURPOSE Despite the well-known occurrence of hypothermia during sepsis, its underlying biological nature and adaptive value remain debated. EXPERIMENTAL APPROACH Using indirect calorimetry, telemetry, thermal gradient studies and pharmacological studies, we examined the thermal and metabolic responses of mice treated with a shock-inducing lethal dose of lipopolysaccharide (LPS). KEY RESULTS We report that LPS-treated mice undergo spontaneous hypothermia, driven by hypometabolism and cold-seeking behaviours, even when animals approach the end of life. Conversely, rewarming LPS-treated mice at 30°C delayed hypothermia but worsened mortality, thus highlighting the adaptive importance of hypothermia. Additionally, we show that LPS-induced hypothermia was partly mediated by peripheral neurotensin expressed in response to vascular toll-like receptor 4 (TLR4) signalling. The administration of a neurotensin analogue (JMV449) induced pharmacological hypothermia and significantly ameliorated the clinical presentation and lethality rates in LPS-treated mice. Moreover, the therapeutic benefits of pharmacological hypothermia were prevented when LPS-treated mice were switched to 30°C. Lastly, these beneficial outcomes were attributed to a reduction in oxygen consumption, metabolic stress and cytopathic hypoxia, rather than the modulation of the cytokine storm. CONCLUSION AND IMPLICATIONS Collectively, our findings indicate that spontaneous and pharmacologically-induced hypothermia protect against endotoxic shock.
Collapse
Affiliation(s)
- Arely Tinajero
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Warda Merchant
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Adan Khan
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Surbhi
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandre Caron
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan Reynolds
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Jia
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Laurent Gautron
- Department of Internal Medicine and Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Yang H, Ping X, Zhou J, Ailifeire H, Wu J, Nadal-Nicolás FM, Miyagishima KJ, Bao J, Huang Y, Cui Y, Xing X, Wang S, Yao K, Li W, Shentu X. Reversible cold-induced lens opacity in a hibernator reveals a molecular target for treating cataracts. J Clin Invest 2024; 134:e169666. [PMID: 39286982 PMCID: PMC11405036 DOI: 10.1172/jci169666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/17/2024] [Indexed: 09/19/2024] Open
Abstract
Maintaining protein homeostasis (proteostasis) requires precise control of protein folding and degradation. Failure to properly respond to stresses disrupts proteostasis, which is a hallmark of many diseases, including cataracts. Hibernators are natural cold-stress adaptors; however, little is known about how they keep a balanced proteome under conditions of drastic temperature shift. Intriguingly, we identified a reversible lens opacity phenotype in ground squirrels (GSs) associated with their hibernation-rewarming process. To understand this "cataract-reversing" phenomenon, we first established induced lens epithelial cells differentiated from GS-derived induced pluripotent stem cells, which helped us explore the molecular mechanism preventing the accumulation of protein aggregates in GS lenses. We discovered that the ubiquitin-proteasome system (UPS) played a vital role in minimizing the aggregation of the lens protein αA-crystallin (CRYAA) during rewarming. Such function was, for the first time to our knowledge, associated with an E3 ubiquitin ligase, RNF114, which appears to be one of the key mechanisms mediating the turnover and homeostasis of lens proteins. Leveraging this knowledge gained from hibernators, we engineered a deliverable RNF114 complex and successfully reduced lens opacity in rats with cold-induced cataracts and zebrafish with oxidative stress-related cataracts. These data provide new insights into the critical role of the UPS in maintaining proteostasis in cold and possibly other forms of stresses. The newly identified E3 ubiquitin ligase RNF114, related to CRYAA, offers a promising avenue for treating cataracts with protein aggregates.
Collapse
Affiliation(s)
- Hao Yang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiyuan Ping
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jiayue Zhou
- Department of Ophthalmology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hailaiti Ailifeire
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Wu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Francisco M Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kiyoharu J Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Bao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxin Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yilei Cui
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Xing
- College of Life Sciences, Peking University, Beijing, China
| | - Shiqiang Wang
- College of Life Sciences, Peking University, Beijing, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xingchao Shentu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Kadamani KL, Logan SM, Pamenter ME. Does hypometabolism constrain innate immune defense? Acta Physiol (Oxf) 2024; 240:e14091. [PMID: 38288574 DOI: 10.1111/apha.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/30/2023] [Accepted: 01/01/2024] [Indexed: 02/24/2024]
Abstract
Many animals routinely make energetic trade-offs to adjust to environmental demands and these trade-offs often have significant implications for survival. For example, environmental hypoxia is commonly experienced by many organisms and is an energetically challenging condition because reduced oxygen availability constrains aerobic energy production, which can be lethal. Many hypoxia-tolerant species downregulate metabolic demands when oxygen is limited; however, certain physiological functions are obligatory and must be maintained despite the need to conserve energy in hypoxia. Of particular interest is immunity (including both constitutive and induced immune functions) because mounting an immune response is among the most energetically expensive physiological processes but maintaining immune function is critical for survival in most environments. Intriguingly, physiological responses to hypoxia and pathogens share key molecular regulators such as hypoxia-inducible factor-1α, through which hypoxia can directly activate an immune response. This raises an interesting question: do hypoxia-tolerant species mount an immune response during periods of hypoxia-induced hypometabolism? Unfortunately, surprisingly few studies have examined interactions between immunity and hypometabolism in such species. Therefore, in this review, we consider mechanistic interactions between metabolism and immunity, as well as energetic trade-offs between these two systems, in hypoxia-tolerant animals but also in other models of hypometabolism, including neonates and hibernators. Specifically, we explore the hypothesis that such species have blunted immune responses in hypometabolic conditions and/or use alternative immune pathways when in a hypometabolic state. Evidence to date suggests that hypoxia-tolerant animals do maintain immunity in low oxygen conditions, but that the sensitivity of immune responses may be blunted.
Collapse
Affiliation(s)
- Karen L Kadamani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Samantha M Logan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Arni S, Necati C, Maeyashiki T, Opitz I, Inci I. Perfluorocarbon-Based Oxygen Carriers and Subnormothermic Lung Machine Perfusion Decrease Production of Pro-Inflammatory Mediators. Cells 2021; 10:cells10092249. [PMID: 34571898 PMCID: PMC8466246 DOI: 10.3390/cells10092249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
The quality of marginal donor lungs is clinically assessed with normothermic machine perfusion. Although subnormothermic temperature and perfluorocarbon-based oxygen carriers (PFCOC) have proven favourable for other organ transplants, their beneficial use for ex vivo lung perfusion (EVLP) still requires further investigation. In a rat model, we evaluated on a 4 h EVLP time the effects of PFCOC with either 28 °C or 37 °C perfusion temperatures. During EVLP at 28 °C with PFCOC, we recorded significantly lower lung pulmonary vascular resistance (PVR), higher dynamic compliance (Cdyn), significantly lower potassium and lactate levels, higher lung tissue ATP content, and significantly lower myeloperoxidase tissue activity when compared to the 37 °C EVLP with PFCOC. In the subnormothermic EVLP with or without PFCOC, the pro-inflammatory mediator TNFα, the cytokines IL-6 and IL-7, the chemokines MIP-3α, MIP-1α, MCP-1, GRO/KC as well as GM-CSF, G-CSF and the anti-inflammatory cytokines IL-4 and IL-10 were significantly lower. The 28 °C EVLP improved both Cdyn and PVR and decreased pro-inflammatory cytokines and pCO2 levels compared to the 37 °C EVLP. In addition, the 28 °C EVLP with PFCOC produced a significantly lower level of myeloperoxidase activity in lung tissue. Subnormothermic EVLP with PFCOC significantly improves lung donor physiology and ameliorates lung tissue biochemical and inflammatory parameters.
Collapse
Affiliation(s)
| | | | | | | | - Ilhan Inci
- Correspondence: ; Tel.: +41-(0)-44-255-85-43
| |
Collapse
|
5
|
Arni S, Maeyashiki T, Opitz I, Inci I. Subnormothermic ex vivo lung perfusion attenuates ischemia reperfusion injury from donation after circulatory death donors. PLoS One 2021; 16:e0255155. [PMID: 34339443 PMCID: PMC8328332 DOI: 10.1371/journal.pone.0255155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/10/2021] [Indexed: 01/28/2023] Open
Abstract
Use of normothermic ex vivo lung perfusion (EVLP) was adopted in clinical practice to assess the quality of marginal donor lungs. Subnormothermic perfusion temperatures are in use among other solid organs to improve biochemical, clinical and immunological parameters. In a rat EVLP model of donation after circulatory death (DCD) lung donors, we tested the effect of four subnormothermic EVLP temperatures that could further improve organ preservation. Warm ischemic time was of 2 hours. EVLP time was of 4 hours. Lung physiological data were recorded and metabolic parameters were assessed. Lung oxygenation at 21°C and 24°C were significantly improved whereas pulmonary vascular resistance and edema formation at 21°C EVLP were significantly worsened when compared to 37°C EVLP. The perfusate concentrations of potassium ions and lactate exiting the lungs with 28°C EVLP were significantly lower whereas sodium and chlorine ions with 32°C EVLP were significantly higher when compared to 37°C EVLP. Also compared to 37°C EVLP, the pro-inflammatory chemokines MIP2, MIP-1α, GRO-α, the cytokine IL-6 were significantly lower with 21°C, 24°C and 28°C EVLP, the IL-18 was significantly lower but only with 21°C EVLP and IL-1β was significantly lower at 21°C and 24°C EVLP. Compared to the 37°C EVLP, the lung tissue ATP content after 21°C, 24°C and 28°C EVLP were significantly higher, the carbonylated protein content after 28°C EVLP was significantly lower and we measured significantly higher myeloperoxidase activities in lung tissues with 21°C, 24°C and 32°C. The 28°C EVLP demonstrated acceptable physiological variables, significantly higher lung tissue ATP content and decreased tissue carbonylated proteins with reduced release of pro-inflammatory cytokines. In conclusion, the 28°C EVLP is a non inferior setting in comparison to the clinically approved 37°C EVLP and significantly improve biochemical, clinical and immunological parameters and may reduce I/R injuries of DCD lung donors.
Collapse
Affiliation(s)
- Stephan Arni
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Tatsuo Maeyashiki
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ilhan Inci
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Mainali R, Zabalawi M, Long D, Buechler N, Quillen E, Key CC, Zhu X, Parks JS, Furdui C, Stacpoole PW, Martinez J, McCall CE, Quinn MA. Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction. eLife 2021; 10:64611. [PMID: 33616039 PMCID: PMC7901874 DOI: 10.7554/elife.64611] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming between resistance and tolerance occurs within the immune system in response to sepsis. While metabolic tissues such as the liver are subjected to damage during sepsis, how their metabolic and energy reprogramming ensures survival is unclear. Employing comprehensive metabolomic, lipidomic, and transcriptional profiling in a mouse model of sepsis, we show that hepatocyte lipid metabolism, mitochondrial tricarboxylic acid (TCA) energetics, and redox balance are significantly reprogrammed after cecal ligation and puncture (CLP). We identify increases in TCA cycle metabolites citrate, cis-aconitate, and itaconate with reduced fumarate and triglyceride accumulation in septic hepatocytes. Transcriptomic analysis of liver tissue supports and extends the hepatocyte findings. Strikingly, the administration of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate reverses dysregulated hepatocyte metabolism and mitochondrial dysfunction. In summary, our data indicate that sepsis promotes hepatic metabolic dysfunction and that targeting the mitochondrial PDC/PDK energy homeostat rebalances transcriptional and metabolic manifestations of sepsis within the liver.
Collapse
Affiliation(s)
- Rabina Mainali
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Manal Zabalawi
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - David Long
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Nancy Buechler
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Ellen Quillen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Chia-Chi Key
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Xuewei Zhu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - John S Parks
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Cristina Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Peter W Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, United States
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, Bethesda, United States
| | - Charles E McCall
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| | - Matthew A Quinn
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States.,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, United States
| |
Collapse
|
7
|
Bertile F, Habold C, Le Maho Y, Giroud S. Body Protein Sparing in Hibernators: A Source for Biomedical Innovation. Front Physiol 2021; 12:634953. [PMID: 33679446 PMCID: PMC7930392 DOI: 10.3389/fphys.2021.634953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Proteins are not only the major structural components of living cells but also ensure essential physiological functions within the organism. Any change in protein abundance and/or structure is at risk for the proper body functioning and/or survival of organisms. Death following starvation is attributed to a loss of about half of total body proteins, and body protein loss induced by muscle disuse is responsible for major metabolic disorders in immobilized patients, and sedentary or elderly people. Basic knowledge of the molecular and cellular mechanisms that control proteostasis is continuously growing. Yet, finding and developing efficient treatments to limit body/muscle protein loss in humans remain a medical challenge, physical exercise and nutritional programs managing to only partially compensate for it. This is notably a major challenge for the treatment of obesity, where therapies should promote fat loss while preserving body proteins. In this context, hibernating species preserve their lean body mass, including muscles, despite total physical inactivity and low energy consumption during torpor, a state of drastic reduction in metabolic rate associated with a more or less pronounced hypothermia. The present review introduces metabolic, physiological, and behavioral adaptations, e.g., energetics, body temperature, and nutrition, of the torpor or hibernation phenotype from small to large mammals. Hibernating strategies could be linked to allometry aspects, the need for periodic rewarming from torpor, and/or the ability of animals to fast for more or less time, thus determining the capacity of individuals to save proteins. Both fat- and food-storing hibernators rely mostly on their body fat reserves during the torpid state, while minimizing body protein utilization. A number of them may also replenish lost proteins during arousals by consuming food. The review takes stock of the physiological, molecular, and cellular mechanisms that promote body protein and muscle sparing during the inactive state of hibernation. Finally, the review outlines how the detailed understanding of these mechanisms at play in various hibernators is expected to provide innovative solutions to fight human muscle atrophy, to better help the management of obese patients, or to improve the ex vivo preservation of organs.
Collapse
Affiliation(s)
- Fabrice Bertile
- University of Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Spectrométrie de Masse Bio-Organique, Strasbourg, France
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
| | - Yvon Le Maho
- University of Strasbourg, CNRS, IPHC UMR 7178, Ecology, Physiology & Ethology Department, Strasbourg, France
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
8
|
Ebert T, Painer J, Bergman P, Qureshi AR, Giroud S, Stalder G, Kublickiene K, Göritz F, Vetter S, Bieber C, Fröbert O, Arnemo JM, Zedrosser A, Redtenbacher I, Shiels PG, Johnson RJ, Stenvinkel P. Insights in the regulation of trimetylamine N-oxide production using a comparative biomimetic approach suggest a metabolic switch in hibernating bears. Sci Rep 2020; 10:20323. [PMID: 33230252 PMCID: PMC7684304 DOI: 10.1038/s41598-020-76346-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Experimental studies suggest involvement of trimethylamine N-oxide (TMAO) in the aetiology of cardiometabolic diseases and chronic kidney disease (CKD), in part via metabolism of ingested food. Using a comparative biomimetic approach, we have investigated circulating levels of the gut metabolites betaine, choline, and TMAO in human CKD, across animal species as well as during hibernation in two animal species. Betaine, choline, and TMAO levels were associated with renal function in humans and differed significantly across animal species. Free-ranging brown bears showed a distinct regulation pattern with an increase in betaine (422%) and choline (18%) levels during hibernation, but exhibited undetectable levels of TMAO. Free-ranging brown bears had higher betaine, lower choline, and undetectable TMAO levels compared to captive brown bears. Endogenously produced betaine may protect bears and garden dormice during the vulnerable hibernating period. Carnivorous eating habits are linked to TMAO levels in the animal kingdom. Captivity may alter the microbiota and cause a subsequent increase of TMAO production. Since free-ranging bears seems to turn on a metabolic switch that shunts choline to generate betaine instead of TMAO, characterisation and understanding of such an adaptive switch could hold clues for novel treatment options in burden of lifestyle diseases, such as CKD.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Painer
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Göritz
- Leibniz Institute for Zoo and Wildlife Ecology, Berlin, Germany
| | - Sebastian Vetter
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Veterinary University Vienna, Savoyenstreet 1, 1160, Vienna, Austria
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| | - Jon M Arnemo
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Koppang, Norway.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway.,Institute for Wildlife Biology and Game Management, University for Natural Resources and Life Sciences, Vienna, Austria
| | | | - Paul G Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Richard J Johnson
- Division of Renal Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden. .,Department of Renal Medicine M99, Karolinska University Hospital, 141 86, Stockholm, Sweden.
| |
Collapse
|
9
|
Fischl H, McManus D, Oldenkamp R, Schermelleh L, Mellor J, Jagannath A, Furger A. Cold-induced chromatin compaction and nuclear retention of clock mRNAs resets the circadian rhythm. EMBO J 2020; 39:e105604. [PMID: 33034091 PMCID: PMC7667876 DOI: 10.15252/embj.2020105604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022] Open
Abstract
Cooling patients to sub‐physiological temperatures is an integral part of modern medicine. We show that cold exposure induces temperature‐specific changes to the higher‐order chromatin and gene expression profiles of human cells. These changes are particularly dramatic at 18°C, a temperature synonymous with that experienced by patients undergoing controlled deep hypothermia during surgery. Cells exposed to 18°C exhibit largely nuclear‐restricted transcriptome changes. These include the nuclear accumulation of mRNAs encoding components of the negative limbs of the core circadian clock, most notably REV‐ERBα. This response is accompanied by compaction of higher‐order chromatin and hindrance of mRNPs from engaging nuclear pores. Rewarming reverses chromatin compaction and releases the transcripts into the cytoplasm, triggering a pulse of negative limb gene proteins that reset the circadian clock. We show that cold‐induced upregulation of REV‐ERBα is sufficient to trigger this reset. Our findings uncover principles of the cellular cold response that must be considered for current and future applications involving therapeutic deep hypothermia.
Collapse
Affiliation(s)
- Harry Fischl
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David McManus
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Roel Oldenkamp
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Aarti Jagannath
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - André Furger
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. EBioMedicine 2020; 60:103014. [PMID: 32979838 PMCID: PMC7519249 DOI: 10.1016/j.ebiom.2020.103014] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial succinate accumulation has been suggested as key event for ischemia reperfusion injury in mice. No specific data are however available on behavior of liver mitochondria during ex situ machine perfusion in clinical transplant models. METHODS We investigated mitochondrial metabolism of isolated perfused rat livers before transplantation. Livers were exposed to warm and cold ischemia to simulate donation after circulatory death (DCD) and organ transport. Subsequently, livers were perfused with oxygenated Belzer-MPS for 1h, at hypothermic or normothermic conditions. Various experiments were performed with supplemented succinate and/or mitochondrial inhibitors. The perfusate, liver tissues, and isolated mitochondria were analyzed by mass-spectroscopy and fluorimetry. Additionally, rat DCD livers were transplanted after 1h hypothermic or normothermic oxygenated perfusion. In parallel, perfusate samples were analysed during HOPE-treatment of human DCD livers before transplantation. FINDINGS Succinate exposure during rat liver perfusion triggered a dose-dependent release of mitochondrial Flavin-Mononucleotide (FMN) and NADH in perfusates under normothermic conditions. In contrast, perfusate FMN was 3-8 fold lower under hypothermic conditions, suggesting less mitochondrial injury during cold re-oxygenation compared to normothermic conditions. HOPE-treatment induced a mitochondrial reprogramming with uploading of the nucleotide pool and effective succinate metabolism. This resulted in a clear superiority after liver transplantation compared to normothermic perfusion. Finally, the degree of mitochondrial injury during HOPE of human DCD livers, quantified by perfusate FMN and NADH, was predictive for liver function. INTERPRETATION Mitochondrial injury determines outcome of transplanted rodent and human livers. Hypothermic oxygenated perfusion improves mitochondrial function, and allows viability assessment of liver grafts before implantation. FUNDING detailed information can be found in Acknowledgments.
Collapse
|
11
|
Horii Y, Shiina T, Uehara S, Nomura K, Shimaoka H, Horii K, Shimizu Y. Hypothermia induces changes in the alternative splicing pattern of cold-inducible RNA-binding protein transcripts in a non-hibernator, the mouse. Biomed Res 2020; 40:153-161. [PMID: 31413236 DOI: 10.2220/biomedres.40.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cold-inducible RNA-binding protein (CIRBP) plays important roles in protection against harmful effects of cold temperature. We previously found that several splicing variants of CIRBP mRNA are constitutively expressed in the heart of non-hibernating euthermic hamsters and that one of the variants is predominantly expressed with remarkable reduction in the expression of other variants in hibernating hypothermic hamsters. The aim of this study was to determine whether the regulation of alternative splicing is a common function in a non-hibernator, the mouse. The expression of CIRBP mRNA was assessed by RT-PCR. In euthermic control mice, several splicing variants of CIRBP mRNA were detected in various organs. When hypothermia was induced in mice by using isoflurane anesthesia, the short form variant, which encodes full-length functional CIRBP, was predominantly detected. Keeping body temperature of anesthetized mice at 37°C prevented changes in the splicing pattern. Exposure of mice to a low temperature did not change the splicing pattern, suggesting that endogenous neuronal and/or humoral pathways activated in response to cold stimuli applied to the body surface play minor roles. In agreement with this, the shift in alternative splicing was reproduced in isolated leukocytes in vitro when they were incubated at 28°C. Since application of a TRPM8 or TRPA1 agonist at 37°C failed to promote the shift in the splicing pattern, it seems likely that cold-sensitive channels are not involved in the splicing regulation. Therefore, it is probable that a substantial reduction of temperature is a major cause of the regulation of alternative splicing of CIRBP transcripts. The regulatory system of CIRBP expression at the level of alternative splicing, which was originally discovered in the hibernating hamster, commonly exists in non-hibernators such as mice.
Collapse
Affiliation(s)
- Yuuki Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University.,Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University
| | - Saki Uehara
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University
| | - Kanako Nomura
- Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University
| | - Hiroki Shimaoka
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University
| | - Kazuhiro Horii
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University.,Laboratory of Veterinary Physiology, Faculty of Applied Biological Sciences, Gifu University.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University
| |
Collapse
|
12
|
Thyroxine Alleviates Energy Failure, Prevents Myocardial Cell Apoptosis, and Protects against Doxorubicin-Induced Cardiac Injury and Cardiac Dysfunction via the LKB1/AMPK/mTOR Axis in Mice. DISEASE MARKERS 2019; 2019:7420196. [PMID: 31929843 PMCID: PMC6935797 DOI: 10.1155/2019/7420196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
Background Previous studies have demonstrated that energy failure is closely associated with cardiac injury. Doxorubicin (DOX) is a commonly used clinical chemotherapy drug that can mediate cardiac injury through a variety of mechanisms. Thyroxine is well known to play a critical role in energy generation; thus, this study is aimed at investigating whether thyroxine can attenuate DOX-induced cardiac injury by regulating energy generation. Methods First, the effect of DOX on adenosine diphosphate (ADP) and adenosine triphosphate (ATP) ratios in mice was assessed. In addition, thyroxine was given to mice before they were treated with DOX to investigate the effects of thyroxine on DOX-induced cardiac injury. Furthermore, to determine whether the liver kinase b1 (LKB1)/adenosine 5′-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) axis mediated the effect of thyroxine on DOX-induced cardiac injury, thyroxine was given to DOX-treated LKB1 knockout (KO) mice. Results DOX treatment time- and dose-dependently increased the ADP/ATP ratio. Thyroxine treatment also reduced lactate dehydrogenase (LDH) and creatine kinase myocardial band (CK-MB) levels in both serum and heart tissue and alleviated cardiac dysfunction in DOX-treated mice. Furthermore, thyroxine reversed DOX-induced reductions in LKB1 and AMPK phosphorylation; mitochondrial complex I, III, and IV activity; and mitochondrial swelling and reversed DOX-induced increases in mTOR pathway phosphorylation and myocardial cell apoptosis. These effects of thyroxine on DOX-treated mice were significantly attenuated by LKB1 KO. Conclusions Thyroxine alleviates energy failure, reduces myocardial cell apoptosis, and protects against DOX-induced cardiac injury via the LKB1/AMPK/mTOR axis in mice. Thyroxine may be a new agent for the clinical prevention of cardiac injury in tumor patients undergoing chemotherapy with DOX.
Collapse
|
13
|
Do critical care patients hibernate? Theoretical support for less is more. Intensive Care Med 2019; 46:495-497. [PMID: 31705167 DOI: 10.1007/s00134-019-05813-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
|
14
|
Horii Y, Shimaoka H, Horii K, Shiina T, Shimizu Y. Mild hypothermia causes a shift in the alternative splicing of cold-inducible RNA-binding protein transcripts in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 2019; 317:R240-R247. [PMID: 31188649 DOI: 10.1152/ajpregu.00012.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cold-shock proteins are thought to participate in the cold-tolerant nature of hibernating animals. We previously demonstrated that an alternative splicing may allow rapid induction of functional cold-inducible RNA-binding protein (CIRBP) in the hamster heart. The purpose of the present study was to determine the major cause of the alternative splicing in Syrian hamsters. RT-PCR analysis revealed that CIRBP mRNA is constitutively expressed in the heart, brain, lung, liver, and kidney of nonhibernating euthermic hamsters with several alternative splicing variants. In contrast, the short variant containing an open-reading frame for functional CIRBP was dominantly found in the hibernating animals. Keeping the animals in a cold and dark environment did not cause a shift in the alternative splicing. Induction of hypothermia by central administration of an adenosine A1-receptor agonist reproduced the shift in the splicing pattern. However, the agonist failed to shift the pattern when body temperature was kept at 37°C, suggesting that central adenosine A1 receptors are not directly linked to the shift of the alternative splicing. Rapid reduction of body temperature to 10°C by isoflurane anesthesia combined with cooling did not alter the splicing pattern, but maintenance of mild hypothermia (~28°C) for 2 h elicited the shift in the pattern. The results suggest that animals need to be maintained at mild hypothermia for an adequate duration to induce the shift in the alternative splicing. This is applicable to natural hibernation because hamsters entering hibernation show a gradual decrease in body temperature, being maintained at mild hypothermia for several hours.
Collapse
Affiliation(s)
- Yuuki Horii
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University , Gifu , Japan
| | - Hiroki Shimaoka
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University , Gifu , Japan
| | - Kazuhiro Horii
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University , Gifu , Japan
| | - Takahiko Shiina
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University , Gifu , Japan
| | - Yasutake Shimizu
- Laboratory of Physiology, Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University , Gifu , Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University , Gifu , Japan
| |
Collapse
|
15
|
Ganeshan K, Nikkanen J, Man K, Leong YA, Sogawa Y, Maschek JA, Van Ry T, Chagwedera DN, Cox JE, Chawla A. Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance. Cell 2019; 177:399-413.e12. [PMID: 30853215 DOI: 10.1016/j.cell.2019.01.050] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 01/08/2023]
Abstract
Host defenses against pathogens are energetically expensive, leading ecological immunologists to postulate that they might participate in energetic trade-offs with other maintenance programs. However, the metabolic costs of immunity and the nature of physiologic trade-offs it engages are largely unknown. We report here that activation of immunity causes an energetic trade-off with the homeothermy (the stable maintenance of core temperature), resulting in hypometabolism and hypothermia. This immunity-induced physiologic trade-off was independent of sickness behaviors but required hematopoietic sensing of lipopolysaccharide (LPS) via the toll-like receptor 4 (TLR4). Metabolomics and genome-wide expression profiling revealed that distinct metabolic programs supported entry and recovery from the energy-conserving hypometabolic state. During bacterial infections, hypometabolic states, which could be elicited by competition for energy between maintenance programs or energy restriction, promoted disease tolerance. Together, our findings suggest that energy-conserving hypometabolic states, such as dormancy, might have evolved as a mechanism of tissue tolerance.
Collapse
Affiliation(s)
- Kirthana Ganeshan
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joni Nikkanen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin Man
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yew Ann Leong
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Yoshitaka Sogawa
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - J Alan Maschek
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Tyler Van Ry
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - D Nyasha Chagwedera
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Ajay Chawla
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Physiology and Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
16
|
Watts AJ, Storey KB. Hibernation impacts lysine methylation dynamics in the 13-lined ground squirrel, Ictidomys tridecemlineatus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:234-244. [PMID: 30767414 DOI: 10.1002/jez.2259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 11/11/2022]
Abstract
During winter hibernation in mammals, body temperature falls to near-ambient levels, metabolism shifts to favor lipid oxidation, and metabolic rate is strongly suppressed by inhibiting many ATP-expensive processes (e.g., transcription, translation) for animals in order to survive for many months on limited reserves of body fuels. Regulation of such profound changes (i.e., metabolic rate depression) requires rapid and reversible controls provided by protein posttranslational modifications. Protein lysine methylation provides one mechanism by which the functionality, activity, and stability of cellular proteins and enzymes can be modified for the needs of the hibernator. The present study reports the responses of seven lysine methyltransferases (SMYD2, SUV39H1, SET8, SET7/9, G9a, ASH2L, and RBBP5) in skeletal muscle and liver over seven stages of the torpor/arousal cycle in 13-lined ground squirrels (Ictidomys tridecemlineatus). A tissue-specific and stage-specific analysis revealed significant changes in the protein levels of lysine methyltransferases, methylation patterns on histone H3, histone methyltransferase activity, and methylation of the p53 transcription factor. Enzymes typically increased in protein amount in either torpor, arousal, or the transitory periods. Methylation of histone H3 and p53 typically followed the patterns of the methyltransferase enzymes. Overall, these data show that protein lysine methylation is an important regulator of the mammalian hibernation phenotype.
Collapse
Affiliation(s)
- Alexander J Watts
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, Canada
| |
Collapse
|
17
|
Hibernating astronauts-science or fiction? Pflugers Arch 2018; 471:819-828. [PMID: 30569200 PMCID: PMC6533228 DOI: 10.1007/s00424-018-2244-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
For long-duration manned space missions to Mars and beyond, reduction of astronaut metabolism by torpor, the metabolic state during hibernation of animals, would be a game changer: Water and food intake could be reduced by up to 75% and thus reducing payload of the spacecraft. Metabolic rate reduction in natural torpor is linked to profound changes in biochemical processes, i.e., shift from glycolysis to lipolysis and ketone utilization, intensive but reversible alterations in organs like the brain and kidney, and in heart rate control via Ca2+. This state would prevent degenerative processes due to organ disuse and increase resistance against radiation defects. Neuro-endocrine factors have been identified as main targets to induce torpor although the exact mechanisms are not known yet. The widespread occurrence of torpor in mammals and examples of human hypometabolic states support the idea of human torpor and its beneficial applications in medicine and space exploration.
Collapse
|
18
|
Majd S, Power JHT, Chataway TK, Grantham HJM. A comparison of LKB1/AMPK/mTOR metabolic axis response to global ischaemia in brain, heart, liver and kidney in a rat model of cardiac arrest. BMC Cell Biol 2018; 19:7. [PMID: 29921218 PMCID: PMC6010165 DOI: 10.1186/s12860-018-0159-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/12/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cellular energy failure in high metabolic rate organs is one of the underlying causes for many disorders such as neurodegenerative diseases, cardiomyopathies, liver and renal failures. In the past decade, numerous studies have discovered the cellular axis of LKB1/AMPK/mTOR as an essential modulator of cell homeostasis in response to energy stress. Through regulating adaptive mechanisms, this axis adjusts the energy availability to its demand by a systematized control on metabolism. Energy stress, however, could be sensed at different levels in various tissues, leading to applying different strategies in response to hypoxic insults. METHODS Here the immediate strategies of high metabolic rate organs to time-dependent short episodes of ischaemia were studied by using a rat model (n = 6/group) of cardiac arrest (CA) (15 and 30 s, 1, 2, 4 and 8 min CA). Using western blot analysis, we examined the responses of LKB1/AMPK/mTOR pathway in brain, heart, liver and kidney from 15 s up to 8 min of global ischaemia. The ratio of ADP/ATP was assessed in all ischemic and control groups, using ApoSENSOR bioluminescent assay kit. RESULTS Brain, followed by kidney showed the early dephosphorylation response in AMPK (Thr172) and LKB1 (Ser431); in the absence of ATP decline (ADP/ATP elevation). Dephosphorylation of AMPK was followed by rephosphorylation and hyperphosphorylation, which was associated with a significant ATP decline. While heart's activity of AMPK and LKB1 remained at the same level during short episodes of ischaemia, liver's LKB1 was dephosphorylated after 2 min. AMPK response to ischaemia in liver was mainly based on an early alternative and a late constant hyperphosphorylation. No significant changes was observed in mTOR activity in all groups. CONCLUSION Together our results suggest that early AMPK dephosphorylation followed by late hyperphosphorylation is the strategy of brain and kidney in response to ischaemia. While the liver seemed to get benefit of its AMPK system in early ischameia, possibly to stabilize ATP, the level of LKB1/AMPK activity in heart remained unchanged in short ischaemic episodes up to 8 min. Further researches must be conducted to elucidate the molecular mechanism underlying LKB1/AMPK response to oxygen supply.
Collapse
Affiliation(s)
- Shohreh Majd
- Centre for Neuroscience, Neuronal Injury and Repair Laboratory, College of Medicine and Health Sciences, Flinders University, Adelaide, SA 5042 Australia
- Centre for Neuroscience, Neuronal Injury and Repair Laboratory, College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA 5042 Australia
| | - John H. T. Power
- Centre for Neuroscience, Neuronal Injury and Repair Laboratory, College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA 5042 Australia
| | - Timothy K. Chataway
- Proteomics Facility, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042 Australia
| | - Hugh J. M. Grantham
- Centre for Neuroscience, Neuronal Injury and Repair Laboratory, College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA 5042 Australia
| |
Collapse
|
19
|
Dugbartey GJ, Bouma HR, Saha MN, Lobb I, Henning RH, Sener A. A Hibernation-Like State for Transplantable Organs: Is Hydrogen Sulfide Therapy the Future of Organ Preservation? Antioxid Redox Signal 2018; 28:1503-1515. [PMID: 28747071 DOI: 10.1089/ars.2017.7127] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Renal transplantation is the treatment of choice for end-stage renal disease, during which renal grafts from deceased donors are routinely cold stored to suppress metabolic demand and thereby limit ischemic injury. However, prolonged cold storage, followed by reperfusion, induces extensive tissue damage termed cold ischemia/reperfusion injury (IRI) and puts the graft at risk of both early and late rejection. Recent Advances: Deep hibernators constitute a natural model of coping with cold IRI as they regularly alternate between 4°C and 37°C. Recently, endogenous hydrogen sulfide (H2S), a gas with a characteristic rotten egg smell, has been implicated in organ protection in hibernation. CRITICAL ISSUES In renal transplantation, H2S also seems to confer cytoprotection by lowering metabolism, thereby creating a hibernation-like environment, and increasing preservation time while allowing cellular processes of preservation of homeostasis and tissue remodeling to take place, thus increasing renal graft survival. FUTURE DIRECTIONS Although the underlying cellular and molecular mechanisms of organ protection during hibernation have not been fully explored, mammalian hibernation may offer a great clinical promise to safely cold store and reperfuse donor organs. In this review, we first discuss mammalian hibernation as a natural model of cold organ preservation with reference to the kidney and highlight the involvement of H2S during hibernation. Next, we present recent developments on the protective effects and mechanisms of exogenous and endogenous H2S in preclinical models of transplant IRI and evaluate the potential of H2S therapy in organ preservation as great promise for renal transplant recipients in the future. Antioxid. Redox Signal. 28, 1503-1515.
Collapse
Affiliation(s)
- George J Dugbartey
- 1 Department of Medicine, Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,2 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Hjalmar R Bouma
- 2 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Manujendra N Saha
- 3 Matthew Mailing Center for Translational Transplant Studies, Western University , London, Canada .,4 Department of Surgery, Division of Urology, London Health Sciences Center, Western University , London, Canada .,5 Department of Microbiology and Immunology, London Health Sciences Center, Western University , London, Canada
| | - Ian Lobb
- 3 Matthew Mailing Center for Translational Transplant Studies, Western University , London, Canada
| | - Robert H Henning
- 2 Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen , Groningen, Netherlands
| | - Alp Sener
- 3 Matthew Mailing Center for Translational Transplant Studies, Western University , London, Canada .,4 Department of Surgery, Division of Urology, London Health Sciences Center, Western University , London, Canada .,5 Department of Microbiology and Immunology, London Health Sciences Center, Western University , London, Canada .,6 London Health Sciences Center, Western University , London, Canada
| |
Collapse
|
20
|
Ou J, Ball JM, Luan Y, Zhao T, Miyagishima KJ, Xu Y, Zhou H, Chen J, Merriman DK, Xie Z, Mallon BS, Li W. iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell 2018; 173:851-863.e16. [PMID: 29576452 DOI: 10.1016/j.cell.2018.03.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/12/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022]
Abstract
Hibernating mammals survive hypothermia (<10°C) without injury, a remarkable feat of cellular preservation that bears significance for potential medical applications. However, mechanisms imparting cold resistance, such as cytoskeleton stability, remain elusive. Using the first iPSC line from a hibernating mammal (13-lined ground squirrel), we uncovered cellular pathways critical for cold tolerance. Comparison between human and ground squirrel iPSC-derived neurons revealed differential mitochondrial and protein quality control responses to cold. In human iPSC-neurons, cold triggered mitochondrial stress, resulting in reactive oxygen species overproduction and lysosomal membrane permeabilization, contributing to microtubule destruction. Manipulations of these pathways endowed microtubule cold stability upon human iPSC-neurons and rat (a non-hibernator) retina, preserving its light responsiveness after prolonged cold exposure. Furthermore, these treatments significantly improved microtubule integrity in cold-stored kidneys, demonstrating the potential for prolonging shelf-life of organ transplants. Thus, ground squirrel iPSCs offer a unique platform for bringing cold-adaptive strategies from hibernators to humans in clinical applications. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jingxing Ou
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John M Ball
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yizhao Luan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tantai Zhao
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Ophthalmology, The Second Xiang-Ya Hospital, Central South University, Changsha 410011, China
| | - Kiyoharu J Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yufeng Xu
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Huizhi Zhou
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinguo Chen
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dana K Merriman
- Department of Biology, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Barbara S Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Singer M. Critical illness and flat batteries. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:309. [PMID: 29297363 PMCID: PMC5751585 DOI: 10.1186/s13054-017-1913-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An exaggerated, dysregulated host response to insults such as infection (i.e. sepsis), trauma and ischaemia-reperfusion injury can result in multiple organ dysfunction and death. While the focus of research in this area has largely centred on inflammation and immunity, a crucial missing link is the precise identification of mechanisms at the organ level that cause this physiological-biochemical failure. Any hypothesis must reconcile this functional organ failure with minimal signs of cell death, availability of oxygen, and (often) minimal early local inflammatory cell infiltrate. These failed organs also retain the capacity to usually recover, even those that are poorly regenerative. A metabolic-bioenergetic shutdown, akin to hibernation or aestivation, is the most plausible explanation currently advanced. This shutdown appears driven by a perfect storm of compromised mitochondrial oxidative phosphorylation related to inhibition by excessive inflammatory mediators, direct oxidant stress, a tissue oxygen deficit in the unresuscitated phase, altered hormonal drive, and downregulation of genes encoding mitochondrial proteins. In addition, the efficiency of oxidative phosphorylation may be affected by a substrate shift towards fat metabolism and increased uncoupling. A lack of sufficient ATP provision to fuel normal metabolic processes will drive downregulation of metabolism, and thus cellular functionality. In turn, a decrease in metabolism will provide negative feedback to the mitochondrion, inducing a bioenergetic shutdown. Arguably, these processes may offer protection against a prolonged inflammatory hit by sparing the cell from initiation of death pathways, thereby explaining the lack of significant morphological change. A narrow line may exist between adaptation and maladaptation. This places a considerable challenge on any therapeutic modulation to provide benefit rather than harm.
Collapse
Affiliation(s)
- Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Cruciform Building, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
22
|
Salzman MM, Cheng Q, Deklotz RJ, Dulai GK, Douglas HF, Dikalova AE, Weihrauch D, Barnes BM, Riess ML. Lipid emulsion enhances cardiac performance after ischemia-reperfusion in isolated hearts from summer-active arctic ground squirrels. J Comp Physiol B 2017; 187:715-724. [PMID: 28364393 PMCID: PMC6145465 DOI: 10.1007/s00360-017-1071-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/24/2016] [Accepted: 02/26/2017] [Indexed: 10/19/2022]
Abstract
Hibernating mammals, like the arctic ground squirrel (AGS), exhibit robust resistance to myocardial ischemia/reperfusion (IR) injury. Regulated preference for lipid over glucose to fuel metabolism may play an important role. We tested whether providing lipid in an emulsion protects hearts from summer-active AGS better than hearts from Brown Norway (BN) rats against normothermic IR injury. Langendorff-prepared AGS and BN rat hearts were perfused with Krebs solution containing 7.5 mM glucose with or without 1% Intralipid™. After stabilization and cardioplegia, hearts underwent 45-min global ischemia and 60-min reperfusion. Coronary flow, isovolumetric left ventricular pressure, and mitochondrial redox state were measured continuously; infarct size was measured at the end of the experiment. Glucose-only AGS hearts functioned significantly better on reperfusion than BN rat hearts. Intralipid™ administration resulted in additional functional improvement in AGS compared to glucose-only and BN rat hearts. Infarct size was not different among groups. Even under non-hibernating conditions, AGS hearts performed better after IR than the best-protected rat strain. This, however, appears to strongly depend on metabolic fuel: Intralipid™ led to a significant improvement in return of function in AGS, but not in BN rat hearts, suggesting that year-round endogenous mechanisms are involved in myocardial lipid utilization that contributes to improved cardiac performance, independent of the metabolic rate decrease during hibernation. Comparative lipid analysis revealed four candidates as possible cardioprotective lipid groups. The improved function in Intralipid™-perfused AGS hearts also challenges the current paradigm that increased glucose and decreased lipid metabolism are favorable during myocardial IR.
Collapse
Affiliation(s)
- Michele M Salzman
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qunli Cheng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard J Deklotz
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gurpreet K Dulai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hunter F Douglas
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA
| | - Anna E Dikalova
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Matthias L Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA.
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- TVHS VA Medical Center, Nashville, TN, USA.
| |
Collapse
|
23
|
Ignat’ev DA, Andreeva LA, Amerkhanov ZG, Anufriev AI, Alekseev AE, Nakipova OV. The effect of insulin on the heart rate and temperature of the ground squirrel Spermofilus undulatus during arousal from hibernation. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Schieber AMP, Ayres JS. Thermoregulation as a disease tolerance defense strategy. Pathog Dis 2016; 74:ftw106. [PMID: 27815313 PMCID: PMC5975229 DOI: 10.1093/femspd/ftw106] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/03/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
Physiological responses that occur during infection are most often thought of in terms of effectors of microbial destruction through the execution of resistance mechanisms, due to a direct action of the microbe, or are maladaptive consequences of host-pathogen interplay. However, an examination of the cellular and organ-level consequences of one such response, thermoregulation that leads to fever or hypothermia, reveals that these actions cannot be readily explained within the traditional paradigms of microbial killing or maladaptive consequences of host-pathogen interactions. In this review, the concept of disease tolerance is applied to thermoregulation during infection, inflammation and trauma, and we discuss the physiological consequences of thermoregulation during disease including tissue susceptibility to damage, inflammation, behavior and toxin neutralization.
Collapse
Affiliation(s)
- Alexandria M Palaferri Schieber
- The Salk Institute for Biological Studies, Immunobiology and Microbial Pathogenesis, 10010 North Torrey Pines Road, San DIego CA, USA
| | - Janelle S Ayres
- The Salk Institute for Biological Studies, Immunobiology and Microbial Pathogenesis, 10010 North Torrey Pines Road, San DIego CA, USA
| |
Collapse
|
25
|
Martin SL, Yoder AD. Theme and Variations: Heterothermy in Mammals. Integr Comp Biol 2014; 54:439-42. [DOI: 10.1093/icb/icu085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|