1
|
Uehling JJ, Regnier E, Vitousek MN. Does Migration Constrain Glucocorticoid Phenotypes? Testing Corticosterone Levels during Breeding in Migratory Versus Resident Birds. Integr Comp Biol 2024; 64:1826-1835. [PMID: 38992259 DOI: 10.1093/icb/icae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Corticosterone, the main glucocorticoid in birds, is a major mediator of the incredible physiological feat of migration. Corticosterone plays important roles in migration, from preparation to in-flight energy mobilization to refueling, and corticosterone levels often show distinct elevations or depressions during certain stages of the migratory process. Here, we ask whether corticosterone's role in migration shapes its modulation during other life-history stages, as is the case with some other phenotypically flexible traits involved in migration. Specifically, we use a global dataset of corticosterone measures to test whether birds' migratory status (migrant versus resident) predicts corticosterone levels during breeding. Our results indicate that migratory status predicts neither baseline nor stress-induced corticosterone levels in breeding birds; despite corticosterone's role in migration, we find no evidence that migratory corticosterone phenotypes carry over to breeding. We encourage future studies to continue to explore corticosterone in migrants versus residents across the annual cycle. Additionally, future efforts should aim to disentangle the possible effects of environmental conditions and migratory status on corticosterone phenotypes; potentially fruitful avenues include focusing on regions where migrants and residents overlap during breeding. Overall, insights from work in this area could demonstrate whether migration shapes traits during other important life stages, identify tradeoffs or limitations associated with the migratory lifestyle, and ultimately shed light on the evolution of flexible traits and migration.
Collapse
Affiliation(s)
- Jennifer J Uehling
- Department of Biology, West Chester University, West Chester, PA, 19383, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY, 14850, USA
| | - Emma Regnier
- Cornell Lab of Ornithology, Ithaca, NY, 14850, USA
- Science Illustration Certificate Program, California State University Monterey Bay, Monterey, CA, 93955, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY, 14850, USA
| |
Collapse
|
2
|
Gross IP, Wilson AE, Wolak ME. The fitness consequences of wildlife conservation translocations: a meta-analysis. Biol Rev Camb Philos Soc 2024; 99:348-371. [PMID: 37844577 DOI: 10.1111/brv.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Conservation translocation is a common strategy to offset mounting rates of population declines through the transfer of captive- or wild-origin organisms into areas where conspecific populations are imperilled or completely extirpated. Translocations that supplement existing populations are referred to as reinforcements and can be conducted using captive-origin animals [ex situ reinforcement (ESR)] or wild-origin animals without any captive ancestry [in situ reinforcement (ISR)]. These programs have been criticized for low success rates and husbandry practices that produce individuals with genetic and performance deficits, but the post-release performance of captive-origin or wild-origin translocated groups has not been systematically reviewed to quantify success relative to wild-resident control groups. To assess the disparity in post-release performance of translocated organisms relative to wild-resident conspecifics and examine the association of performance disparity with organismal and methodological factors across studies, we conducted a systematic review and meta-analysis of 821 performance comparisons from 171 studies representing nine animal classes (101 species). We found that translocated organisms have 64% decreased odds of out-performing their wild-resident counterparts, supporting claims of systemic issues hampering conservation translocations. To help identify translocation practices that could maximize program success in the future, we further quantified the impact of broad organismal and methodological factors on the disparity between translocated and wild-resident conspecific performance. Pre-release animal enrichment significantly reduced performance disparities, whereas our results suggest no overall effects of taxonomic group, sex, captive generation time, or the type of fitness surrogate measured. This work is the most comprehensive systematic review to date of animal conservation translocations in which wild conspecifics were used as comparators, thereby facilitating an evaluation of the overall impact of this conservation strategy and identifying specific actions to increase success. Our review highlights the need for conservation managers to include both sympatric and allopatric wild-reference groups to ensure the post-release performance of translocated animals can be evaluated. Further, our analyses identify pre-release animal enrichment as a particular strategy for improving the outcomes of animal conservation translocations, and demonstrate how meta-analysis can be used to identify implementation choices that maximize translocated animal contributions to recipient population growth and viability.
Collapse
Affiliation(s)
- Iwo P Gross
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 382 Mell Street, Auburn, AL, 36849, USA
| | - Matthew E Wolak
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Auburn, AL, 36849, USA
| |
Collapse
|
3
|
Fletcher LE, Martin LB, Downs CJ. Leukocyte Concentrations Are Isometric in Reptiles Unlike in Endotherms. Physiol Biochem Zool 2023; 96:405-417. [PMID: 38237194 DOI: 10.1086/727050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractHow do large and small reptiles defend against infections, given the consequences of body mass for physiology and disease transmission? Functionally equivalent mammalian and avian granulocytes increased disproportionately with body mass (i.e., scaled hypermetrically), such that large organisms had higher concentrations than expected by a prediction of proportional protection across sizes. However, as these scaling relationships were derived from endothermic animals, they do not necessarily inform the scaling of leukocyte concentration for ectothermic reptiles that have a different physiology and evolutionary history. Here, we asked whether and how lymphocyte and heterophil concentrations relate to body mass among more than 120 reptile species. We compared these relationships to those found in birds and mammals and to existing scaling frameworks (i.e., protecton, complexity, rate of metabolism, or safety factor hypotheses). Both lymphocyte and heterophil concentrations scaled almost isometrically among reptiles. In contrast, functionally equivalent granulocytes scaled hypermetrically and lymphocytes scaled isometrically in birds and mammals. Life history traits were also poor predictors of variation in reptilian heterophil and lymphocyte concentrations. Our results provide insight into differences in immune protection in birds and mammals relative to that in reptiles through a comparative lens. The shape of scaling relationships differs, which should be considered when modeling disease dynamics among these groups.
Collapse
|
4
|
Rubalcaba JG, Jimeno B. Body temperature and activity patterns modulate glucocorticoid levels across lizard species: A macrophysiological approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1032083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Environmental and intrinsic factors interact to determine energy requirements in vertebrates. Glucocorticoid hormones (GCs) are key mediators of this interaction, as they fluctuate with energetic demands and regulate physiological and behavioral responses to environmental challenges. While a great body of research has focused on GC variation among individuals, the mechanisms driving GC variation across species and at broad spatial scales remain largely unexplored. Here, we adopted a macrophysiological approach to investigate the environmental factors and life-history traits driving variation in baseline GCs across lizard species. We tested three hypotheses: (1) If GCs increase with body temperature to meet higher metabolic demand, we expect an association between average baseline GCs and the mean species’ body temperature in the field (GC-temperature dependence hypothesis); (2) If GCs mediate behavioral responses to avoid thermal extremes, we expect that individuals frequently exposed to extreme conditions exhibit higher baseline GC levels (Behavioral thermoregulation hypothesis); (3) If GCs increase to support higher energy demands in active foragers during their period of activity, we expect that active foraging species have higher baseline GCs than sit-and-wait foragers, and that GC levels increase in relation to the duration of daily activity windows (Activity hypothesis). We used biophysical models to calculate operative temperatures and the activity patterns of lizards in sun-exposed and shaded microenvironments. Then, we tested the association between baseline GCs, body temperature, operative temperatures, foraging mode, and activity windows across 37 lizard species, using data from HormoneBase. Our comparative analyses showed that variation in baseline GCs was primarily related to the mean field body temperature and foraging mode, with higher baseline GCs in active foragers with higher body temperatures. Our results suggest that body temperature and foraging mode drive GC variation through their effects on energy requirements across lizard species.
Collapse
|
5
|
Taff CC, Wingfield JC, Vitousek MN. The relative speed of the glucocorticoid stress response varies independently of scope and is predicted by environmental variability and longevity across birds. Horm Behav 2022; 144:105226. [PMID: 35863083 DOI: 10.1016/j.yhbeh.2022.105226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023]
Abstract
The acute glucocorticoid response is a key mediator of the coordinated vertebrate response to unpredictable challenges. Rapid glucocorticoid increases initiate changes that allow animals to cope with stressors. The scope of the glucocorticoid response - defined here as the absolute increase in glucocorticoids - is associated with individual differences in performance and varies across species with environment and life history. In addition to varying in scope, responses can differ enormously in speed; however, relatively little is known about whether speed and absolute glucocorticoid levels covary, how selection shapes speed, or what aspects of speed are important. We used corticosterone samples collected at 5 time points from 1750 individuals of 60 species of birds to ask i) how the speed and scope of the glucocorticoid response covary and ii) whether variation in absolute or relative speed is predicted by environmental context or life history. Among species, faster absolute glucocorticoid responses were strongly associated with a larger scope. Despite this covariation, the relative speed of the glucocorticoid response (standardized within species) varied independently of absolute scope, suggesting that selection could operate on both features independently. Species with faster relative glucocorticoid responses lived in locations with more variable temperature and had shorter lifespans. Our results suggest that rapid changes associated with the speed of the glucocorticoid response, such as those occurring through non-genomic receptors, might be an important determinant of coping ability and we emphasize the need for studies designed to measure speed independently of absolute glucocorticoid levels.
Collapse
Affiliation(s)
- Conor C Taff
- Department of Ecology & Evolutionary Biology and Lab of Ornithology, Cornell University, United States of America.
| | - John C Wingfield
- Department of Neurobiology, Physiology, and Behavior, University of California-Davis, United States of America
| | - Maren N Vitousek
- Department of Ecology & Evolutionary Biology and Lab of Ornithology, Cornell University, United States of America
| |
Collapse
|
6
|
Schwanz LE, Gunderson A, Iglesias-Carrasco M, Johnson MA, Kong JD, Riley J, Wu NC. Best practices for building and curating databases for comparative analyses. J Exp Biol 2022; 225:274297. [PMID: 35258608 DOI: 10.1242/jeb.243295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Comparative analyses have a long history of macro-ecological and -evolutionary approaches to understand structure, function, mechanism and constraint. As the pace of science accelerates, there is ever-increasing access to diverse types of data and open access databases that are enabling and inspiring new research. Whether conducting a species-level trait-based analysis or a formal meta-analysis of study effect sizes, comparative approaches share a common reliance on reliable, carefully curated databases. Unlike many scientific endeavors, building a database is a process that many researchers undertake infrequently and in which we are not formally trained. This Commentary provides an introduction to building databases for comparative analyses and highlights challenges and solutions that the authors of this Commentary have faced in their own experiences. We focus on four major tips: (1) carefully strategizing the literature search; (2) structuring databases for multiple use; (3) establishing version control within (and beyond) your study; and (4) the importance of making databases accessible. We highlight how one's approach to these tasks often depends on the goal of the study and the nature of the data. Finally, we assert that the curation of single-question databases has several disadvantages: it limits the possibility of using databases for multiple purposes and decreases efficiency due to independent researchers repeatedly sifting through large volumes of raw information. We argue that curating databases that are broader than one research question can provide a large return on investment, and that research fields could increase efficiency if community curation of databases was established.
Collapse
Affiliation(s)
- Lisa E Schwanz
- Evolution and Ecology Research Centre, and the School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2035, Australia
| | - Alex Gunderson
- School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Maider Iglesias-Carrasco
- Ecology and Evolution of Sexual Interactions group, Doñana Biological Station-CSIC, Sevilla 41001, Spain
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Jacinta D Kong
- School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Julia Riley
- Department of Biology, Mount Allison University, Sackville, New Brunswick, E4L 1E4, Canada
| | - Nicholas C Wu
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Rubalcaba JG, Jimeno B. Biophysical models unravel associations between glucocorticoids and thermoregulatory costs across avian species. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Juan G. Rubalcaba
- Department of Biology McGill University Montreal QC Canada
- Department of Biology, Geology, Physics, and Inorganic Chemistry Rey Juan Carlos University Madrid Spain
| | - Blanca Jimeno
- Division of Biological Sciences University of Montana Missoula MT USA
- Institute for Game and Wildlife Research University of Castilla La Mancha Ciudad Real Spain
| |
Collapse
|
8
|
Husak JF, Fuxjager MJ, Johnson MA, Vitousek MN, Donald JW, Francis CD, Goymann W, Hau M, Kircher BK, Knapp R, Martin LB, Miller ET, Schoenle LA, Williams TD. Life history and environment predict variation in testosterone across vertebrates. Evolution 2021; 75:1003-1010. [PMID: 33755201 DOI: 10.1111/evo.14216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Endocrine systems act as key intermediaries between organisms and their environments. This interaction leads to high variability in hormone levels, but we know little about the ecological factors that influence this variation within and across major vertebrate groups. We study this topic by assessing how various social and environmental dynamics influence testosterone levels across the entire vertebrate tree of life. Our analyses show that breeding season length and mating system are the strongest predictors of average testosterone concentrations, whereas breeding season length, environmental temperature, and variability in precipitation are the strongest predictors of within-population variation in testosterone. Principles from small-scale comparative studies that stress the importance of mating opportunity and competition on the evolution of species differences in testosterone levels, therefore, likely apply to the entire vertebrate lineage. Meanwhile, climatic factors associated with rainfall and ambient temperature appear to influence variability in plasma testosterone, within a given species. These results, therefore, reveal how unique suites of ecological factors differentially explain scales of variation in circulating testosterone across mammals, birds, reptiles, amphibians, and fishes.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
| | | | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Cornell Lab of Ornithology, Ithaca, New York, USA
| | | | - Clinton D Francis
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | | | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, 82319, Germany.,Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Rosemary Knapp
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Lynn B Martin
- Department of Global and Planetary Health, University of South Florida, Tampa, Florida, USA
| | | | - Laura A Schoenle
- Department of Global and Planetary Health, University of South Florida, Tampa, Florida, USA.,Office of Undergraduate Biology, Cornell University, Ithaca, New York, USA
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
9
|
Schoenle LA, Zimmer C, Miller ET, Vitousek MN. Does variation in glucocorticoid concentrations predict fitness? A phylogenetic meta-analysis. Gen Comp Endocrinol 2021; 300:113611. [PMID: 32950580 DOI: 10.1016/j.ygcen.2020.113611] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/07/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Glucocorticoid hormones (GCs) are central mediators of metabolism and the response to challenges. Because circulating GC levels increase in response to challenges, within-population variation in GCs could reflect among-individual variation in condition or experience. At the same time, individual variation in GC regulation could have causal effects on energetic balance or stress coping capacity in ways that influence fitness. Although a number of studies in vertebrates have tested whether variation in GCs among individuals predicts components of fitness, it is not clear whether there are consistent patterns across taxa. Here we present the first phylogenetic meta-analysis testing whether variation in GCs is associated with survival and reproductive success across vertebrates. At the same time, we introduce and test predictions about a potentially important mediator of GC-fitness relationships: life history context. We suggest that strong context-dependence in the fitness benefit of maintaining elevated GCs could obscure consistent patterns between GCs and fitness across taxa. Meta-analyses revealed that baseline and stress-induced GCs were consistently negatively correlated with reproductive success. This relationship did not differ depending on life history context. In contrast, the relationships between GCs and survival were highly context dependent, differing according to life history strategy. Both baseline and stress-induced GCs were more strongly negatively associated with survival in longer-lived populations and species. Stress-induced GCs were also more positively associated with survival in organisms that engage in relatively more valuable reproductive attempts. Fecal GCs did not correlate with survival or reproductive success. We also found that experimental increases in GCs reduced both survival and reproductive success; however, evidence of publication bias and the small sample size suggest that more data is required to confirm this conclusion. Overall, these results support the prediction that GC-fitness relationships can be strongly context dependent, and suggest that incorporating life history may be particularly important for understanding GC-survival relationships.
Collapse
Affiliation(s)
- Laura A Schoenle
- Office of Undergraduate Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, Ithaca NY 14850, USA
| |
Collapse
|
10
|
Edwards PD, Sookhan N, Boonstra R. The role of herbivory in the macroevolution of vertebrate hormone dynamics. Ecol Lett 2020; 23:1340-1348. [PMID: 32510838 DOI: 10.1111/ele.13536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 11/27/2022]
Abstract
Vertebrates have high species-level variation in circulating hormone concentrations, and the functional significance of this variation is largely unknown. We tested the hypothesis that interspecific differences in hormone concentrations are partially driven by plant consumption, based on the prediction that herbivores should have higher basal hormone levels to 'outcompete' plant endocrine disruptors. We compared levels of glucocorticoids (GCs), the hormones with the most available data, across 166 species. Using phylogenetically informed comparisons, we found that herbivores had higher GC levels than carnivores. Furthermore, we found that the previously described negative relationship between GC levels and body mass only held in herbivores, not carnivores, and that the effect of diet was greatest at extreme body sizes. These findings demonstrate the far-reaching effects of diet on animal physiology, and provide evidence that herbivory influences circulating hormone concentrations. We urge future direct testing of the relationship between phytochemical load and GC levels.
Collapse
Affiliation(s)
- Phoebe D Edwards
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Nicholas Sookhan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Rudy Boonstra
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
11
|
Cox RM. Sex steroids as mediators of phenotypic integration, genetic correlations, and evolutionary transitions. Mol Cell Endocrinol 2020; 502:110668. [PMID: 31821857 DOI: 10.1016/j.mce.2019.110668] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
In recent decades, endocrinologists have increasingly adopted evolutionary methods and perspectives to characterize the evolution of the vertebrate endocrine system and leverage it as a model for developing and testing evolutionary theories. This review summarizes recent research on sex steroids (androgens and estrogens) to illustrate three ways in which a detailed understanding of the molecular and cellular architecture of hormonally mediated gene expression can enhance our understanding of general evolutionary principles. By virtue of their massively pleiotropic effects on the expression of genes and phenotypes, sex steroids and their receptors can (1) structure the patterns of phenotypic variance and covariance that are available to natural selection, (2) alter the underlying genetic correlations that determine a population's evolutionary response to selection, and (3) facilitate evolutionary transitions in fitness-related phenotypes via subtle regulatory shifts in underlying tissues and genes. These principles are illustrated by the author's research on testosterone and sexual dimorphism in lizards, and by recent examples drawn from other vertebrate systems. Mechanistically, these examples call attention to the importance of evolutionary changes in (1) androgen- and estrogen-mediated gene expression, (2) androgen and estrogen receptor expression, and (3) the distribution of androgen and estrogen response elements in target genes throughout the genome. A central theme to emerge from this review is that the rapidly increasing availability of genomic and transcriptomic data from non-model organisms places evolutionary endocrinologist in an excellent position to address the hormonal regulation of the key evolutionary interface between genes and phenotypes.
Collapse
Affiliation(s)
- Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|
12
|
Jimenez AG, O'Connor ES, Tobin KJ, Anderson KN, Winward JD, Fleming A, Winner C, Chinchilli E, Maya A, Carlson K, Downs CJ. Does Cellular Metabolism from Primary Fibroblasts and Oxidative Stress in Blood Differ between Mammals and Birds? The (Lack-thereof) Scaling of Oxidative Stress. Integr Comp Biol 2020; 59:953-969. [PMID: 30924869 DOI: 10.1093/icb/icz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of mitonuclear communication, retrograde and anterograde signaling helps maintain homeostasis under basal conditions. Basal conditions, however, vary across phylogeny. At the cell-level, some mitonuclear retrograde responses can be quantified by measuring the constitutive components of oxidative stress, the balance between reactive oxygen species (ROS) and antioxidants. ROS are metabolic by-products produced by the mitochondria that can damage macromolecules by structurally altering proteins and inducing mutations in DNA, among other processes. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. ROS are also considered to be regulated through a retrograde signaling cascade from the mitochondria to the nucleus. These cellular pathways may have implications at the whole-animal level as well. For example, birds have higher basal metabolic rates, higher blood glucose concentration, and longer lifespans than similar sized mammals, however, the literature is divergent on whether oxidative stress is higher in birds compared with mammals. Herein, we collected literature values for whole-animal metabolism of birds and mammals. Then, we collected cellular metabolic rate data from primary fibroblast cells isolated from birds and mammals and we collected blood from a phylogenetically diverse group of birds and mammals housed at zoos and measured several parameters of oxidative stress. Additionally, we reviewed the literature on basal-level oxidative stress parameters between mammals and birds. We found that mass-specific metabolic rates were higher in birds compared with mammals. Our laboratory results suggest that cellular basal metabolism, total antioxidant capacity, circulating lipid damage, and catalase activity were significantly lower in birds compared with mammals. We found no body-size correlation on cellular metabolism or oxidative stress. We also found that most oxidative stress parameters significantly correlate with increasing age in mammals, but not in birds; and that correlations with reported maximum lifespans show different results compared with correlations with known aged birds. Our literature review revealed that basal levels of oxidative stress measurements for birds were rare, which made it difficult to draw conclusions.
Collapse
Affiliation(s)
- A G Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - E S O'Connor
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K J Tobin
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K N Anderson
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - J D Winward
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - A Fleming
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - C Winner
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - E Chinchilli
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - A Maya
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - K Carlson
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - C J Downs
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
13
|
Injaian AS, Francis CD, Ouyang JQ, Dominoni DM, Donald JW, Fuxjager MJ, Goymann W, Hau M, Husak JF, Johnson MA, Kircher BK, Knapp R, Martin LB, Miller ET, Schoenle LA, Williams TD, Vitousek MN. Baseline and stress-induced corticosterone levels across birds and reptiles do not reflect urbanization levels. CONSERVATION PHYSIOLOGY 2020; 8:coz110. [PMID: 31993201 PMCID: PMC6978728 DOI: 10.1093/conphys/coz110] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/10/2019] [Accepted: 12/03/2019] [Indexed: 05/21/2023]
Abstract
Rates of human-induced environmental change continue increasing with human population size, potentially altering animal physiology and negatively affecting wildlife. Researchers often use glucocorticoid concentrations (hormones that can be associated with stressors) to gauge the impact of anthropogenic factors (e.g. urbanization, noise and light pollution). Yet, no general relationships between human-induced environmental change and glucocorticoids have emerged. Given the number of recent studies reporting baseline and stress-induced corticosterone (the primary glucocorticoid in birds and reptiles) concentrations worldwide, it is now possible to conduct large-scale comparative analyses to test for general associations between disturbance and baseline and stress-induced corticosterone across species. Additionally, we can control for factors that may influence context, such as life history stage, environmental conditions and urban adaptability of a species. Here, we take a phylogenetically informed approach and use data from HormoneBase to test if baseline and stress-induced corticosterone are valid indicators of exposure to human footprint index, human population density, anthropogenic noise and artificial light at night in birds and reptiles. Our results show a negative relationship between anthropogenic noise and baseline corticosterone for birds characterized as urban avoiders. While our results potentially indicate that urban avoiders are more sensitive to noise than other species, overall our study suggests that the relationship between human-induced environmental change and corticosterone varies across species and contexts; we found no general relationship between human impacts and baseline and stress-induced corticosterone in birds, nor baseline corticosterone in reptiles. Therefore, it should not be assumed that high or low levels of exposure to human-induced environmental change are associated with high or low corticosterone levels, respectively, or that closely related species, or even individuals, will respond similarly. Moving forward, measuring alternative physiological traits alongside reproductive success, health and survival may provide context to better understand the potential negative effects of human-induced environmental change.
Collapse
Affiliation(s)
- Allison S Injaian
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA
- Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Ithaca NY 14850, USA
| | - Clinton D Francis
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Davide M Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology, Wageningen, Netherlands
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jeremy W Donald
- Coates Library, Trinity University, San Antonio, TX 78212, USA
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence RI 02912, USA
| | | | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen 82319, Germany
- University of Konstanz, 78457 Konstanz, Germany
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, FL 32608, USA
| | - Rosemary Knapp
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Lynn B Martin
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | | | - Laura A Schoenle
- Office of Undergraduate Biology, Cornell University, Ithaca NY 14853, USA
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA
- Cornell Lab of Ornithology, Ithaca NY 14850, USA
| |
Collapse
|
14
|
Vitousek MN, Johnson MA, Downs CJ, Miller ET, Martin LB, Francis CD, Donald JW, Fuxjager MJ, Goymann W, Hau M, Husak JF, Kircher BK, Knapp R, Schoenle LA, Williams TD. Macroevolutionary Patterning in Glucocorticoids Suggests Different Selective Pressures Shape Baseline and Stress-Induced Levels. Am Nat 2019; 193:866-880. [DOI: 10.1086/703112] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Martin LB, Vitousek M, Donald JW, Flock T, Fuxjager MJ, Goymann W, Hau M, Husak J, Johnson MA, Kircher B, Knapp R, Miller ET, Schoenle LA, Williams T, Francis CD. IUCN Conservation Status Does Not Predict Glucocorticoid Concentrations in Reptiles and Birds. Integr Comp Biol 2019; 58:800-813. [PMID: 30052988 DOI: 10.1093/icb/icy102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating glucocorticoids (GCs) are the most commonly used biomarkers of stress in wildlife. However, their utility as a tool for identifying and/or managing at-risk species has varied. Here, we took a very broad approach to conservation physiology, asking whether International Union for the Conservation of Nature (IUCN) listing status (concern versus no obvious concern) and/or location within a geographic range (edge versus non-edge) predicted baseline and post-restraint concentrations of corticosterone (CORT) among many species of birds and reptiles. Even though such an approach can be viewed as coarse, we asked in this analysis whether CORT concentrations might be useful to implicate species at risk. Indeed, our effort, relying on HormoneBase, a repository of data on wildlife steroids, complements several other large-scale efforts in this issue to describe and understand GC variation. Using a phylogenetically informed Bayesian approach, we found little evidence that either IUCN status or edge/non-edge location in a geographic distribution were related to GC levels. However, we did confirm patterns described in previous studies, namely that breeding condition and evolutionary relatedness among species predicted some GC variation. Given the broad scope of our work, we are reluctant to conclude that IUCN status and location within a range are unrelated to GC regulation. We encourage future more targeted efforts on GCs in at-risk populations to reveal how factors leading to IUCN listing or the environmental conditions at range edges impact individual performance and fitness, particularly in the mammals, amphibians, and fish species we could not study here because data are currently unavailable.
Collapse
Affiliation(s)
- Lynn B Martin
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | - Maren Vitousek
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy W Donald
- Coates Library, Trinity University, San Antonio, TX 78212, USA
| | - Travis Flock
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | - Michaela Hau
- Max Planck Institute for Ornithology, 82319 Starnberg, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Jerry Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Bonnie Kircher
- Department of Biology, University of Florida, Gainesville, FL 32608, USA
| | - Rosemary Knapp
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | | | - Laura A Schoenle
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA.,Department of Biology, Hamilton College, Clinton, NY 13323, USA
| | - Tony Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Clinton D Francis
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
16
|
Vitousek MN, Johnson MA, Husak JF. Illuminating Endocrine Evolution: The Power and Potential of Large-Scale Comparative Analyses. Integr Comp Biol 2018; 58:712-719. [DOI: 10.1093/icb/icy098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St. Paul, MN 55105, USA
| |
Collapse
|
17
|
Francis CD, Donald JW, Fuxjager MJ, Goymann W, Hau M, Husak JF, Johnson MA, Kircher BK, Knapp R, Martin LB, Miller ET, Schoenle LA, Vitousek MN, Williams TD, Downs CJ. Metabolic Scaling of Stress Hormones in Vertebrates. Integr Comp Biol 2018; 58:729-738. [DOI: 10.1093/icb/icy063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Clinton D Francis
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Jeremy W Donald
- Coates Library, Trinity University, San Antonio, TX 78212, USA
| | - Matthew J Fuxjager
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Wolfgang Goymann
- Max Planck Institute for Ornithology, Seewiesen, 82319 Starnberg, Germany
| | - Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, 82319 Starnberg, Germany
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, FL 32608, USA
| | - Rosemary Knapp
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Lynn B Martin
- Department of Global Health, University of South Florida, Tampa, FL 33620, USA
| | | | - Laura A Schoenle
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Maren N Vitousek
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Cynthia J Downs
- Department of Biology, Hamilton College, Clinton, NY 13323, USA
| |
Collapse
|