1
|
Xu S, Emami A, Khaleghian M. Controlled Dry Adhesion of Bio-Inspired Fibrillar Polymers: Mechanics, Strategies, and Recent Advances. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1620. [PMID: 40271871 PMCID: PMC11990900 DOI: 10.3390/ma18071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/02/2025] [Accepted: 03/13/2025] [Indexed: 04/25/2025]
Abstract
Recent advancements in tunable adhesion technologies have broadened the scope of applications for bio-inspired fibrillar adhesives. This review highlights the latest developments in controlled adhesion mechanisms, with a focus on bio-inspired fibrillar systems. We examine key theoretical foundations and progress in controllable adhesion, including contact mechanics, contact splitting efficiency, fracture mechanics, and the interplay between adhesion and friction. Various factors influencing adhesion strength are discussed alongside optimization approaches and innovative designs that enhance performance. The review also covers recent research on switchable adhesion strategies, with an emphasis on methods for regulating surface contact, stress distribution, and shear force control. Finally, we identify the primary challenges and future directions in the field, outlining areas that require further exploration and technological development. This paper aims to provide a comprehensive overview of current advancements and offer insights to guide future research in the evolving field of tunable adhesion technologies.
Collapse
Affiliation(s)
- Shuo Xu
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA;
| | - Anahita Emami
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA;
| | - Meysam Khaleghian
- Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
2
|
Richhariya V, Tripathy A, Carvalho O, Gomes J, Nine MJ, Silva FS. Capillary-Enhanced Biomimetic Adhesion on Icy Surfaces for High-Performance Antislip Shoe-Soles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2450-2461. [PMID: 39722588 DOI: 10.1021/acsami.4c14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The World Health Organization (WHO) reports 684,000 deaths/year due to slips and falls (SFs), with ∼38 million people requiring medical attention per annum. In particular, SFs on ice surfaces account for 45% of all SF incidents, costing over $100 billion globally in healthcare, intensive care, and insurance expenses. Current antislip solutions focus on hydrophobicity to repel interfacial fluids, aiming to maintain solid-to-solid contact. However, these solutions often wear out quickly, clog, or become ineffective. Wet ice is particularly challenging due to its nanometer-thick quasi-liquid layer (QLL), which makes it extremely slippery. Inspired by the capillary suction adhesion observed in gecko footpads and the slip resistance of frog toepads on wet surfaces, we developed an innovative approach to regulate ice adhesion and deadhesion. The solution presented in this work mimics this mechanism by employing textured microcavities into silicone rubber (SR)/zirconia (ZrO2) closely mirroring the properties of gecko and frog toepads. Given the dynamics of walking, the surface exhibited hydrophilicity-induced capillary suction of the QLL, facilitating their rapid frost to achieve greater mechanical interlocking. The developed textures displayed capillary suction within 1.5 ms, resulting in a maximum friction coefficient of 3.46 on wet ice. This breakthrough outcome provides a robust, durable solution to significantly reduce SFs on ice surfaces, saving lives and livelihoods.
Collapse
Affiliation(s)
- Vipin Richhariya
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| | - Ashis Tripathy
- School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India
| | - Oscar Carvalho
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| | - Jose Gomes
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| | - Md Julker Nine
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Filipe Samuel Silva
- Centre for MicroElectroMechanical Systems (CMEMS), University of Minho, Azurem Campus, 4800-058 Guimaraes, Portugal
| |
Collapse
|
3
|
Eslami H, Materzok T, Müller-Plathe F. Molecular Structure and Dynamics in Wet Gecko β-Keratin. ACS Biomater Sci Eng 2023; 9:257-268. [PMID: 36525337 DOI: 10.1021/acsbiomaterials.2c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular dynamics simulations are performed to investigate the molecular picture of water sorption in gecko keratin and the influence of relative humidity (RH) on the local structure and dynamics in water-swollen keratin. At low RHs, water sorption occurs through hydrogen bonding of water with the hydrophilic groups of keratin. At high RHs (>80%), additional water molecules connect to the first "layer" of amide-connected water molecules (multimolecular sorption) through hydrogen bonds, giving rise to a sigmoidal shape of the sorption isotherm. This causes the formation of large chain-like clusters surrounding the hydrophilic groups of keratin, which upon a further increase of the RH form a percolating water network. An examination of the dynamics of water molecules sorbed in keratin demonstrates that there are two states, bound and free, for water. The dynamics of water in these states depends on the RH. At low RHs, large-scale translational motions of tightly bound water molecules to keratin are needed to remake the entire hydration shell of the keratin. At high RHs (>80%), the water molecules more quickly exchange between the two states. The center-of-mass mean-square displacement of water molecules indicates a hopping motion of water molecules in the keratin solvation shell. The hopping mechanism is more pronounced at RHs < 80%. At higher RHs, water translation through water clusters (water network) dominates. We have observed two regimes for the dependence of dynamical properties on the RH: a regime of gradual increase of the dynamics over 10% < RH < 80% and a regime of drastic dynamic acceleration at RH > 80%. The latter regime begins exactly where the water uptake and the volume swelling also increase much more and where a drastic change in the elastic properties of gecko keratin has been observed. A nearly linear relation between the relaxation times for all dynamical processes and the water content of gecko keratin is observed.
Collapse
Affiliation(s)
- Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt64287, Germany.,Department of Chemistry, College of Sciences, Persian Gulf University, Boushehr75168, Iran
| | - Tobias Materzok
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt64287, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, Darmstadt64287, Germany
| |
Collapse
|
4
|
Melrose J. High Performance Marine and Terrestrial Bioadhesives and the Biomedical Applications They Have Inspired. Molecules 2022; 27:molecules27248982. [PMID: 36558114 PMCID: PMC9783952 DOI: 10.3390/molecules27248982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study has reviewed the naturally occurring bioadhesives produced in marine and freshwater aqueous environments and in the mucinous exudates of some terrestrial animals which have remarkable properties providing adhesion under difficult environmental conditions. These bioadhesives have inspired the development of medical bioadhesives with impressive properties that provide an effective alternative to suturing surgical wounds improving closure and healing of wounds in technically demanding tissues such as the heart, lung and soft tissues like the brain and intestinal mucosa. The Gecko has developed a dry-adhesive system of exceptional performance and has inspired the development of new generation re-usable tapes applicable to many medical procedures. The silk of spider webs has been equally inspiring to structural engineers and materials scientists and has revealed innovative properties which have led to new generation technologies in photonics, phononics and micro-electronics in the development of wearable biosensors. Man made products designed to emulate the performance of these natural bioadhesive molecules are improving wound closure and healing of problematic lesions such as diabetic foot ulcers which are notoriously painful and have also found application in many other areas in biomedicine. Armed with information on the mechanistic properties of these impressive biomolecules major advances are expected in biomedicine, micro-electronics, photonics, materials science, artificial intelligence and robotics technology.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, The University of Sydney, St. Leonards, NSW 2065, Australia
| |
Collapse
|
5
|
Gecko-Inspired Adhesive Mechanisms and Adhesives for Robots—A Review. ROBOTICS 2022. [DOI: 10.3390/robotics11060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small living organisms such as lizards possess naturally built functional surface textures that enable them to walk or climb on versatile surface topographies. Bio-mimicking the surface characteristics of these geckos has enormous potential to improve the accessibility of modern robotics. Therefore, gecko-inspired adhesives have significant industrial applications, including robotic endoscopy, bio-medical cleaning, medical bandage tapes, rock climbing adhesives, tissue adhesives, etc. As a result, synthetic adhesives have been developed by researchers, in addition to dry fibrillary adhesives, elastomeric adhesives, electrostatic adhesives, and thermoplastic adhesives. All these adhesives represent significant contributions towards robotic grippers and gloves, depending on the nature of the application. However, these adhesives often exhibit limitations in the form of fouling, wear, and tear, which restrict their functionalities and load-carrying capabilities in the natural environment. Therefore, it is essential to summarize the state of the art attributes of contemporary studies to extend the ongoing work in this field. This review summarizes different adhesion mechanisms involving gecko-inspired adhesives and attempts to explain the parameters and limitations which have impacts on adhesion. Additionally, different novel adhesive fabrication techniques such as replica molding, 3D direct laser writing, dip transfer processing, fused deposition modeling, and digital light processing are encapsulated.
Collapse
|
6
|
Li W, Yang X, Lai P, Shang L. Bio-inspired adhesive hydrogel for biomedicine-principles and design strategies. SMART MEDICINE 2022; 1:e20220024. [PMID: 39188733 PMCID: PMC11235927 DOI: 10.1002/smmd.20220024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 08/28/2024]
Abstract
The adhesiveness of hydrogels is urgently required in various biomedical applications such as medical patches, tissue sealants, and flexible electronic devices. However, biological tissues are often wet, soft, movable, and easily damaged. These features pose difficulties for the construction of adhesive hydrogels for medical use. In nature, organisms adhere to unique strategies, such as reversible sucker adhesion in octopuses and nontoxic and firm catechol chemistry in mussels, which provide many inspirations for medical hydrogels to overcome the above challenges. In this review, we systematically classify bioadhesion strategies into structure-related and molecular-related ones, which cover almost all known bioadhesion paradigms. We outline the principles of these strategies and summarize the corresponding designs of medical adhesive hydrogels inspired by them. Finally, conclusions and perspectives concerning the development of this field are provided. For the booming bio-inspired adhesive hydrogels, this review aims to summarize and analyze the various existing theories and provide systematic guidance for future research from an innovative perspective.
Collapse
Affiliation(s)
- Wenzhao Li
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Xinyuan Yang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Puxiang Lai
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
- The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| | - Luoran Shang
- Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Wang X, Guo Y, Li J, You M, Yu Y, Yang J, Qin G, Chen Q. Tough Wet Adhesion of Hydrogen-Bond-Based Hydrogel with On-Demand Debonding and Efficient Hemostasis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36166-36177. [PMID: 35899775 DOI: 10.1021/acsami.2c10202] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels have been widely used in wet tissues. However, the insufficient adhesion of hydrogels for wound hemostasis remains a grand challenge. Herein, a facile yet effective strategy is developed to fabricate tough wet adhesion of hydrogen-bond-based hydrogel (PAAcVI hydrogel) using copolymerization of acrylic acid and 1-vinylimidazole in dimethyl sulfoxide followed by solvent exchange with water. The PAAcVI hydrogel shows equally robust adhesion (>400 J m-2) to both wet and dry tissues. Moreover, the PAAcVI hydrogel also exhibits strong long-term stable adhesion underwater and in various wet environments. Meanwhile, the adhesion of PAAcVI hydrogel can be adjusted through Zn2+-ion-mediated on-demand debonding, which makes it easy to peel off from the tissue reducing pain during dressing removal and avoiding secondary injury. The PAAcVI hydrogel displays efficient hemostasis in the mice-tail docking model and mice-liver bleeding model. This hydrogen-bond-based hydrogel shows tough wet adhesion, and its adhesion is controllable, demonstrating its promising application in moisture-resistant adhesives, medical adhesives, and hemostatic materials.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Yaxin Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Jiangfeng Li
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 40038, P. R. China
| | - Min You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, P. R. China
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 40038, P. R. China
| | - Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, P. R. China
| |
Collapse
|
8
|
Palecek AM, Garner AM, Klittich MR, Stark AY, Scherger JD, Bernard C, Niewiarowski PH, Dhinojwala A. An investigation of gecko attachment on wet and rough substrates leads to the application of surface roughness power spectral density analysis. Sci Rep 2022; 12:11556. [PMID: 35798824 PMCID: PMC9262901 DOI: 10.1038/s41598-022-15698-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
The roughness and wettability of surfaces exploited by free-ranging geckos can be highly variable and attachment to these substrates is context dependent (e.g., presence or absence of surface water). Although previous studies focus on the effect of these variables on attachment independently, geckos encounter a variety of conditions in their natural environment simultaneously. Here, we measured maximum shear load of geckos in air and when their toes were submerged underwater on substrates that varied in both surface roughness and wettability. Gecko attachment was greater in water than in air on smooth and rough hydrophobic substrates, and attachment to rough hydrophilic substrates did not differ when tested in air or water. Attachment varied considerably with surface roughness and characterization revealed that routine measurements of root mean square height can misrepresent the complexity of roughness, especially when measured with single instruments. We used surface roughness power spectra to characterize substrate surface roughness and examined the relationship between gecko attachment performance across the power spectra. This comparison suggests that roughness wavelengths less than 70 nm predominantly dictate gecko attachment. This study highlights the complexity of attachment in natural conditions and the need for comprehensive surface characterization when studying biological adhesive system performance.
Collapse
Affiliation(s)
- Amanda M Palecek
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA. .,Department of Biology, The University of Akron, Akron, OH, USA. .,Department of Biological Sciences, Clemson University, Clemson, SC, USA.
| | - Austin M Garner
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA.,Department of Biology, Villanova University, Villanova, PA, USA
| | - Mena R Klittich
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Department of Polymer Science, The University of Akron, Akron, OH, USA.,Avery Dennison, Oegstgeest, The Netherlands
| | - Alyssa Y Stark
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA.,Department of Biology, Villanova University, Villanova, PA, USA
| | - Jacob D Scherger
- Department of Polymer Science, The University of Akron, Akron, OH, USA
| | - Craig Bernard
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA
| | - Peter H Niewiarowski
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Biology, The University of Akron, Akron, OH, USA
| | - Ali Dhinojwala
- Gecko Adhesion Research Group, The University of Akron, Akron, OH, USA.,Integrated Bioscience Program, The University of Akron, Akron, OH, USA.,Department of Polymer Science, The University of Akron, Akron, OH, USA
| |
Collapse
|
9
|
Mérai L, Deák Á, Dékány I, Janovák L. Fundamentals and utilization of solid/ liquid phase boundary interactions on functional surfaces. Adv Colloid Interface Sci 2022; 303:102657. [PMID: 35364433 DOI: 10.1016/j.cis.2022.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
The affinity of macroscopic solid surfaces or dispersed nano- and bioparticles towards liquids plays a key role in many areas from fluid transport to interactions of the cells with phase boundaries. Forces between solid interfaces in water become especially important when the surface texture or particles are in the colloidal size range. Although, solid-liquid interactions are still prioritized subjects of materials science and therefore are extensively studied, the related literature still lacks in conclusive approaches, which involve as much information on fundamental aspects as on recent experimental findings related to influencing the wetting and other wetting-related properties and applications of different surfaces. The aim of this review is to fill this gap by shedding light on the mechanism-of-action and design principles of different, state-of-the-art functional macroscopic surfaces, ranging from self-cleaning, photoreactive or antimicrobial coatings to emulsion separation membranes, as these surfaces are gaining distinguished attention during the ongoing global environmental and epidemic crises. As there are increasing numbers of examples for stimulus-responsive surfaces and their interactions with liquids in the literature, as well, this overview also covers different external stimulus-responsive systems, regarding their mechanistic principles and application possibilities.
Collapse
|
10
|
Lazarus BS, Chadha C, Velasco-Hogan A, Barbosa JD, Jasiuk I, Meyers MA. Engineering with keratin: A functional material and a source of bioinspiration. iScience 2021; 24:102798. [PMID: 34355149 PMCID: PMC8319812 DOI: 10.1016/j.isci.2021.102798] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Keratin is a highly multifunctional biopolymer serving various roles in nature due to its diverse material properties, wide spectrum of structural designs, and impressive performance. Keratin-based materials are mechanically robust, thermally insulating, lightweight, capable of undergoing reversible adhesion through van der Waals forces, and exhibit structural coloration and hydrophobic surfaces. Thus, they have become templates for bioinspired designs and have even been applied as a functional material for biomedical applications and environmentally sustainable fiber-reinforced composites. This review aims to highlight keratin's remarkable capabilities as a biological component, a source of design inspiration, and an engineering material. We conclude with future directions for the exploration of keratinous materials.
Collapse
Affiliation(s)
- Benjamin S. Lazarus
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Charul Chadha
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Audrey Velasco-Hogan
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | | | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Marc A. Meyers
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
11
|
Ringenwald BE, Bogacki EC, Narvaez CA, Stark AY. The effect of variable temperature, humidity, and substrate wettability on Gecko (Gekko gecko) locomotor performance and behavior. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:454-463. [PMID: 33830673 DOI: 10.1002/jez.2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/07/2022]
Abstract
Adhesive and locomotor performances of geckos are inherently linked by specialized morphological and biomechanical features. As such, we predict that conditions that lead to poor adhesive performance (i.e., low resistance to applied force while clinging) also lead to poor locomotor performance and behavior (i.e., slowed running speed, increased frequency and duration of stops, more failed or incomplete runs). In this study, we test the prediction that running speed changes as a function of adhesive performance in variable temperature (12 and 32°C), humidity (30, 55, 70, 80% relative humidity), and substrate wettability (hydrophilic glass, intermediately wetting plexiglass). We also expect other locomotor performance traits and behaviors, such as stopping and avoiding treatment conditions, to change as a function of adhesive performance. The results of this study do not fully support our prediction: gecko locomotor performance does not change as a function of humidity or substrate wettability, unlike adhesive performance. As an anticipated result of ectothermy, geckos run significantly slower and stop more frequently and longer at 12°C than 32°C. At high temperature, geckos required significantly more running attempts on hydrophilic glass than plexiglass to complete the experimental procedure, suggesting that this treatment condition is unfavorable. The results of this study highlight the robust locomotive response of geckos to variation in adhesive performance and environmental conditions, and have significant implications for predictions about habitat use and behavior in their natural environment.
Collapse
Affiliation(s)
| | - Erin C Bogacki
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Carla A Narvaez
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| |
Collapse
|
12
|
Mitchell CT, Dayan CB, Drotlef DM, Sitti M, Stark AY. The effect of substrate wettability and modulus on gecko and gecko-inspired synthetic adhesion in variable temperature and humidity. Sci Rep 2020; 10:19748. [PMID: 33184356 PMCID: PMC7665207 DOI: 10.1038/s41598-020-76484-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
Gecko adhesive performance increases as relative humidity increases. Two primary mechanisms can explain this result: capillary adhesion and increased contact area via material softening. Both hypotheses consider variable relative humidity, but neither fully explains the interactive effects of temperature and relative humidity on live gecko adhesion. In this study, we used live tokay geckos (Gekko gecko) and a gecko-inspired synthetic adhesive to investigate the roles of capillary adhesion and material softening on gecko adhesive performance. The results of our study suggest that both capillary adhesion and material softening contribute to overall gecko adhesion, but the relative contribution of each depends on the environmental context. Specifically, capillary adhesion dominates on hydrophilic substrates, and material softening dominates on hydrophobic substrates. At low temperature (12 °C), both capillary adhesion and material softening likely produce high adhesion across a range of relative humidity values. At high temperature (32 °C), material softening plays a dominant role in adhesive performance at an intermediate relative humidity (i.e., 70% RH).
Collapse
Affiliation(s)
- Christopher T Mitchell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA
| | - Cem Balda Dayan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Dirk-M Drotlef
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA, 19085, USA.
| |
Collapse
|
13
|
Pillai R, Nordberg E, Riedel J, Schwarzkopf L. Geckos cling best to, and prefer to use, rough surfaces. Front Zool 2020; 17:32. [PMID: 33088332 PMCID: PMC7566132 DOI: 10.1186/s12983-020-00374-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Fitness is strongly related to locomotor performance, which can determine success in foraging, mating, and other critical activities. Locomotor performance on different substrates is likely to require different abilities, so we expect alignment between species' locomotor performance and the habitats they use in nature. In addition, we expect behaviour to enhance performance, such that animals will use substrates on which they perform well. METHODS We examined the associations between habitat selection and performance in three species of Oedura geckos, including two specialists, (one arboreal, and one saxicolous), and one generalist species, which used both rocks and trees. First, we described their microhabitat use in nature (tree and rock type) for these species, examined the surface roughnesses they encountered, and selected materials with comparable surface microtopographies (roughness measured as peak-to-valley heights) to use as substrates in lab experiments quantifying behavioural substrate preferences and clinging performance. RESULTS The three Oedura species occupied different ecological niches and used different microhabitats in nature, and the two specialist species used a narrower range of surface roughnesses compared to the generalist. In the lab, Oedura geckos preferred substrates (coarse sandpaper) with roughness characteristics similar to substrates they use in nature. Further, all three species exhibited greater clinging performance on preferred (coarse sandpaper) substrates, although the generalist used fine substrates in nature and had good performance capabilities on fine substrates as well. CONCLUSION We found a relationship between habitat use and performance, such that geckos selected microhabitats on which their performance was high. In addition, our findings highlight the extensive variation in surface roughnesses that occur in nature, both among and within microhabitats.
Collapse
Affiliation(s)
- Rishab Pillai
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Eric Nordberg
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Jendrian Riedel
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| |
Collapse
|
14
|
Riedel J, Vucko MJ, Blomberg SP, Schwarzkopf L. Skin hydrophobicity as an adaptation for self-cleaning in geckos. Ecol Evol 2020; 10:4640-4651. [PMID: 32551049 PMCID: PMC7297746 DOI: 10.1002/ece3.6218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Hydrophobicity is common in plants and animals, typically caused by high relief microtexture functioning to keep the surface clean. Although the occurrence and physical causes of hydrophobicity are well understood, ecological factors promoting its evolution are unclear. Geckos have highly hydrophobic integuments. We predicted that, because the ground is dirty and filled with pathogens, high hydrophobicity should coevolve with terrestrial microhabitat use. Advancing contact-angle (ACA) measurements of water droplets were used to quantify hydrophobicity in 24 species of Australian gecko. We reconstructed the evolution of ACA values, in relation to microhabitat use of geckos. To determine the best set of structural characteristics associated with the evolution of hydrophobicity, we used linear models fitted using phylogenetic generalized least squares (PGLS), and then model averaging based on AICc values. All species were highly hydrophobic (ACA > 132.72°), but terrestrial species had significantly higher ACA values than arboreal ones. The evolution of longer spinules and smaller scales was correlated with high hydrophobicity. These results suggest that hydrophobicity has coevolved with terrestrial microhabitat use in Australian geckos via selection for long spinules and small scales, likely to keep their skin clean and prevent fouling and disease.
Collapse
Affiliation(s)
- Jendrian Riedel
- College of Science and EngineeringJames Cook UniversityTownsvilleQld.Australia
| | - Matthew John Vucko
- College of Science and EngineeringJames Cook UniversityTownsvilleQld.Australia
| | - Simone P. Blomberg
- School of Biological SciencesUniversity of QueenslandSt. LuciaQld.Australia
| | - Lin Schwarzkopf
- College of Science and EngineeringJames Cook UniversityTownsvilleQld.Australia
| |
Collapse
|
15
|
|
16
|
Huang Z, Nazifi S, Jafari P, Karim A, Ghasemi H. Networked Zwitterionic Durable Antibacterial Surfaces. ACS APPLIED BIO MATERIALS 2020; 3:911-919. [DOI: 10.1021/acsabm.9b00982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zixu Huang
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Sina Nazifi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Parham Jafari
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Hadi Ghasemi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| |
Collapse
|
17
|
Naylor ER, Higham TE. Attachment Beyond the Adhesive System: The Contribution of Claws to Gecko Clinging and Locomotion. Integr Comp Biol 2019; 59:168-181. [DOI: 10.1093/icb/icz027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Attachment is imperative for many biological functions, such as holding position and climbing, but can be challenged by natural conditions. Adhesive toe pads and claws have evolved in multiple terrestrial lineages as important dynamic attachment mechanisms, and some clades (e.g., geckos) exhibit both features. The functional relationship of these features that comprise a complex attachment system is not well-understood, particularly within lizards (i.e., if pads and claws are redundant or multifunctional). Geckos exhibit highly adept frictional adhesive toe pads that continue to fuel biological inquiry and inspiration. However, gecko claws (the ancestral lizard clinging condition) have received little attention in terms of their functional or evolutionary significance. We assessed claw function in Thecadactylus rapicauda using assays of clinging performance and locomotor trials on different surfaces (artificial and natural) and inclines with claws intact, then partially removed. Area root mean square height (Sq), a metric of 3D surface roughness, was later quantified for all test surfaces, including acrylic, sandpaper, and two types of leaves (smooth and hairy). Maximum clinging force significantly declined on all non-acrylic surfaces after claw removal, indicating a substantial contribution to static clinging on rough and soft surfaces. With and without claws, clinging force exhibited a negative relationship with Sq. However, claw removal had relatively little impact on locomotor function on surfaces of different roughness at low inclines (≤30°). High static and dynamic safety factor estimates support these observations and demonstrate the species’ robust frictional adhesive system. However, maximum station-holding capacity significantly declined on the rough test surface after partial claw removal, showing that geckos rely on their claws to maintain purchase on rough, steeply inclined surfaces. Our results point to a context-dependent complex attachment system within geckos, in which pads dominate on relatively smooth surfaces and claws on relatively rough surfaces, but also that these features function redundantly, possibly synergistically, on surfaces that allow attachment of both the setae and the claw (as in some insects). Our study provides important novel perspectives on gecko attachment, which we hope will spur future functional studies, new evolutionary hypotheses, and biomimetic innovation, along with collaboration and integration of perspectives across disciplines.
Collapse
Affiliation(s)
- Emily R Naylor
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|