1
|
Lepeule J, Broséus L, Jedynak P, Masdoumier C, Philippat C, Guilbert A, Nakamura A. [Environmental exposures and epigenome changes within the first 1000 days of life]. Med Sci (Paris) 2024; 40:947-954. [PMID: 39705565 DOI: 10.1051/medsci/2024178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Early environmental exposures can have long-term effects on child's development and health. Epigenetic modifications may partly explain these effects, and studying them could lead to significant advances in our understanding of the underlying mechanisms. This review summarises recent data on epigenetic and environmental epidemiology during the first 1000 days of life for several common exposures, including tobacco, phenols and phthalates, air pollutants, ambient temperature and vegetation.
Collapse
Affiliation(s)
- Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Lucile Broséus
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Paulina Jedynak
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Chloé Masdoumier
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Claire Philippat
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Ariane Guilbert
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| | - Aurélie Nakamura
- Université Grenoble Alpes, Inserm, CNRS, Team of environmental epidemiology applied to development and respiratory health, IAB, Grenoble, France
| |
Collapse
|
2
|
Irvine N, Bell RC, Subhan FB, Field CJ, Liu J, MacDonald AM, Kinniburgh DW, Martin JW, Dewey D, England-Mason G. Maternal pre-pregnancy BMI influences the associations between bisphenol and phthalate exposures and maternal weight changes and fat accumulation. ENVIRONMENTAL RESEARCH 2024; 257:119276. [PMID: 38830392 DOI: 10.1016/j.envres.2024.119276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Bisphenols and phthalates are two classes of endocrine-disrupting chemicals (EDCs) thought to influence weight and adiposity. Limited research has investigated their influence on maternal weight changes, and no prior work has examined maternal fat mass. We examined the associations between exposure to these chemicals during pregnancy and multiple maternal weight and fat mass outcomes. METHODS This study included a sample of 318 women enrolled in a Canadian prospective pregnancy cohort. Second trimester urinary concentrations of 2 bisphenols and 12 phthalate metabolites were quantified. Self-reported and measured maternal weights and measured skinfold thicknesses were used to calculate gestational weight gain, 3-months and 3- to 5-years postpartum weight retention, late pregnancy fat mass gain, total postpartum fat mass loss, and late postpartum fat mass retention. Adjusted robust regressions examined associations between chemicals and outcomes in the entire study population and sub-groups stratified by pre-pregnancy body mass index (BMI). Bayesian kernel machine regression examined chemical mixture effects. RESULTS Among women with underweight or normal pre-pregnancy BMIs, MBzP was negatively associated with weight retention at 3- to 5-years postpartum (B = -0.04, 95%CI: -0.07, -0.01). Among women with overweight or obese pre-pregnancy BMIs, MEHP and MMP were positively associated with weight retention at 3-months and 3- to 5-years postpartum, respectively (B's = 0.12 to 0.63, 95%CIs: 0.02, 1.07). DEHP metabolites and MCNP were positively associated with late pregnancy fat mass gain and late postpartum fat mass retention (B's = 0.04 to 0.18, 95%CIs: 0.001, 0.32). Further, the mixture of EDCs was positively associated with late pregnancy fat mass gain. CONCLUSION In this cohort, pre-pregnancy BMI was a key determinant of the associations between second trimester exposure to bisphenols and phthalates and maternal weight changes and fat accumulation. Investigations of underlying physiological mechanisms, windows of susceptibility, and impacts on maternal and infant health are needed.
Collapse
Affiliation(s)
- Nathalie Irvine
- Bachelor of Health Sciences Program, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rhonda C Bell
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Fatheema B Subhan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Department of Nutrition and Food Science, California State Polytechnic University, Pomona, California, United States
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary. Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary. Alberta, Canada.
| |
Collapse
|
3
|
Chang R, Zhang Y, Sun J, Xu K, Li C, Zhang J, Mei W, Zhang H, Zhang J. Maternal pre-pregnancy body mass index and offspring with overweight/obesity at preschool age: The possible role of epigenome-wide DNA methylation changes in cord blood. Pediatr Obes 2023; 18:e12969. [PMID: 36102013 DOI: 10.1111/ijpo.12969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Epigenome-wide association studies have identified some DNA methylation sites associated with body mass index (BMI) or obesity. Studies in the Asian population are lacking. OBJECTIVE To examine the association of cord blood genome-wide DNA methylation (GWDm) changes with maternal pre-pregnancy BMI and children's BMI-z score at preschool age. Additionally, we also explored the genome-wide differentially methylated regions and differentially methylated probes between preschoolers with overweight/obesity and normal-weight counterparts. METHODS This two-stage study design included (1) a GWDm analysis of 30 mother-child pairs from 633 participants of the Zhuhai birth cohort with data on newborn cord blood, maternal pre-pregnancy BMI, and children's BMI at 3 years of age; and (2) a targeted validation analysis of the cord blood of ten children with overweight/obesity and ten matched controls to validate the CpG sites. RESULTS In the first stage, no significant CpG sites were found to be associated with children's BMI-z score at preschool age after FDR correction with the p-values of the CpG sites in FOXN3 (cg23501836) and ZNF264 (cg27437574) being close to 1 × 10-6 . In the second stage, a significant difference of CpG sites in AHRR (chr5:355067-355068) and FOXN3 (chr14: 89630264-89630272 and chr14: 89630387-89630388) was found between the ten children with overweight/obesity and ten controls (p < 0.05). The CpG sites in FOXN3 (chr14:89630264-89630272 and chr14:89630295-89630296) and ZNF264 (chr19: 57703104-57703107 and chr19: 57703301-57703307) were associated with children's BMI-z score; and the CpG sites in FOXN3 (chr14: 89630264-89630272 and chr14: 89630387-89630388) were associated with maternal pre-pregnancy BMI. CONCLUSIONS DNA methylation in FOXN3 and AHRR is associated with overweight/obesity in preschool-aged children, and the methylation in FOXN3 and ZNF264 might be associated with children's BMI-z score. FOXN3 methylation may be associated with maternal pre-pregnancy BMI, suggesting its potential role in the children's BMI-z score or overweight/obesity. Our results provide novel insights into the mechanisms of children's obesity.
Collapse
Affiliation(s)
- Ruixia Chang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Sun
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Xu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunan Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingli Zhang
- Traditional Chinese Medicine Hospital, Zhuhai, Guangdong, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, China
| | - Hongzhong Zhang
- Zhuhai Women and Children's Hospital, Zhuhai, Guangdong, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Hemmingsson E, Nowicka P, Ulijaszek S, Sørensen TIA. The social origins of obesity within and across generations. Obes Rev 2023; 24:e13514. [PMID: 36321346 PMCID: PMC10077989 DOI: 10.1111/obr.13514] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/10/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
We propose a model for obesity development that traces a considerable part of its origins to the social domain (mainly different forms of prolonged social adversity), both within and across generations, working in tandem with a genetic predisposition. To facilitate overview of social pathways, we place particular focus on three areas that form a cascading sequence: (A) social adversity within the family (parents having a low education, a low social position, poverty and financial insecurity; offspring being exposed to gestational stress, unmet social and emotional needs, abuse, maltreatment and other negative life events, social deprivation and relationship discord); (B) increasing levels of insecurity, negative emotions, chronic stress, and a disruption of energy homeostasis; and (C) weight gain and obesity, eliciting further social stress and weight stigma in both generations. Social adversity, when combined with genetic predisposition, thereby substantially contributes to highly effective transmission of obesity from parents to offspring, as well as to obesity development within current generations. Prevention efforts may benefit from mitigating multiple types of social adversity in individuals, families, and communities, notably poverty and financial strain, and by improving education levels.
Collapse
Affiliation(s)
- Erik Hemmingsson
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Paulina Nowicka
- Department of Food Studies, Nutrition, and Dietetics, Uppsala University, Uppsala, Sweden
| | - Stanley Ulijaszek
- Unit for Biocultural Variation and Obesity, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - Thorkild I A Sørensen
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Nakamura A, François O, Lepeule J. Epigenetic Alterations of Maternal Tobacco Smoking during Pregnancy: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5083. [PMID: 34064931 PMCID: PMC8151244 DOI: 10.3390/ijerph18105083] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
In utero exposure to maternal tobacco smoking is the leading cause of birth complications in addition to being associated with later impairment in child's development. Epigenetic alterations, such as DNA methylation (DNAm), miRNAs expression, and histone modifications, belong to possible underlying mechanisms linking maternal tobacco smoking during pregnancy and adverse birth outcomes and later child's development. The aims of this review were to provide an update on (1) the main results of epidemiological studies on the impact of in utero exposure to maternal tobacco smoking on epigenetic mechanisms, and (2) the technical issues and methods used in such studies. In contrast with miRNA and histone modifications, DNAm has been the most extensively studied epigenetic mechanism with regard to in utero exposure to maternal tobacco smoking. Most studies relied on cord blood and children's blood, but placenta is increasingly recognized as a powerful tool, especially for markers of pregnancy exposures. Some recent studies suggest reversibility in DNAm in certain genomic regions as well as memory of smoking exposure in DNAm in other regions, upon smoking cessation before or during pregnancy. Furthermore, reversibility could be more pronounced in miRNA expression compared to DNAm. Increasing evidence based on longitudinal data shows that maternal smoking-associated DNAm changes persist during childhood. In this review, we also discuss some issues related to cell heterogeneity as well as downstream statistical analyses used to relate maternal tobacco smoking during pregnancy and epigenetics. The epigenetic effects of maternal smoking during pregnancy have been among the most widely investigated in the epigenetic epidemiology field. However, there are still huge gaps to fill in, including on the impact on miRNA expression and histone modifications to get a better view of the whole epigenetic machinery. The consistency of maternal tobacco smoking effects across epigenetic marks and across tissues will also provide crucial information for future studies. Advancement in bioinformatic and biostatistics approaches is key to develop a comprehensive analysis of these biological systems.
Collapse
Affiliation(s)
- Aurélie Nakamura
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France;
| | - Olivier François
- Université Grenoble Alpes, Laboratoire TIMC, CNRS UMR 5525, 38000 Grenoble, France;
| | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France;
| |
Collapse
|
6
|
Vehmeijer FOL, Küpers LK, Sharp GC, Salas LA, Lent S, Jima DD, Tindula G, Reese S, Qi C, Gruzieva O, Page C, Rezwan FI, Melton PE, Nohr E, Escaramís G, Rzehak P, Heiskala A, Gong T, Tuominen ST, Gao L, Ross JP, Starling AP, Holloway JW, Yousefi P, Aasvang GM, Beilin LJ, Bergström A, Binder E, Chatzi L, Corpeleijn E, Czamara D, Eskenazi B, Ewart S, Ferre N, Grote V, Gruszfeld D, Håberg SE, Hoyo C, Huen K, Karlsson R, Kull I, Langhendries JP, Lepeule J, Magnus MC, Maguire RL, Molloy PL, Monnereau C, Mori TA, Oken E, Räikkönen K, Rifas-Shiman S, Ruiz-Arenas C, Sebert S, Ullemar V, Verduci E, Vonk JM, Xu CJ, Yang IV, Zhang H, Zhang W, Karmaus W, Dabelea D, Muhlhausler BS, Breton CV, Lahti J, Almqvist C, Jarvelin MR, Koletzko B, Vrijheid M, Sørensen TIA, Huang RC, Arshad SH, Nystad W, Melén E, Koppelman GH, London SJ, Holland N, Bustamante M, Murphy SK, Hivert MF, Baccarelli A, Relton CL, Snieder H, Jaddoe VWV, Felix JF. DNA methylation and body mass index from birth to adolescence: meta-analyses of epigenome-wide association studies. Genome Med 2020; 12:105. [PMID: 33239103 PMCID: PMC7687793 DOI: 10.1186/s13073-020-00810-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. METHODS We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. RESULTS DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7). CONCLUSIONS There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.
Collapse
Affiliation(s)
- Florianne O L Vehmeijer
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leanne K Küpers
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Lucas A Salas
- Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Samantha Lent
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dereje D Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Gwen Tindula
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Sarah Reese
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Cancan Qi
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Christian Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Faisal I Rezwan
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, UK
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Philip E Melton
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, Western Austalia, Australia
| | - Ellen Nohr
- Centre for Women's, Family and Child Health, University of South-Eastern Norway, Kongsberg, Norway
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Geòrgia Escaramís
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Research group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Anni Heiskala
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Tong Gong
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Samuli T Tuominen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lu Gao
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason P Ross
- CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paul Yousefi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Gunn Marit Aasvang
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Elisabeth Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eva Corpeleijn
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Natalia Ferre
- Pediatrics, Nutrition and Development Research Unit, Universitat Rovira i Virgili, IISPV, Reus, Spain
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Dariusz Gruszfeld
- Neonatal Department, Children's Memorial Health Institute, Warsaw, Poland
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Karen Huen
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | | | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Obstetrics and Gynecology, Duke University Medical Center, Raleigh, NC, USA
| | - Peter L Molloy
- CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | - Claire Monnereau
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, Australia
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sheryl Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carlos Ruiz-Arenas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, University of Milan, Milan, Italy
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
- Department of Gastroenterology, Hepatology and Endocrinology, CiiM, Centre for Individualised Infection Medicine, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Carrie V Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Marjo-Riitta Jarvelin
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Public Health, Section of Epidemiology, and The Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, Groningen, The Netherlands
- University Medical Center Groningen GRIAC Research Institute, University of Groningen, Groningen, the Netherlands
| | - Stephanie J London
- Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Nina Holland
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Raleigh, NC, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, QC, Canada
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Room Na-2918, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Reiband HK, Heitmann BL, Sørensen TIA. Adverse labour market impacts of childhood and adolescence overweight and obesity in Western societies-A literature review. Obes Rev 2020; 21:e13026. [PMID: 32431077 DOI: 10.1111/obr.13026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 01/26/2023]
Abstract
Overweight and obesity among children and adolescents are major health issues of today with both somatic and psychosocial consequences in childhood, adolescence and adulthood and potentially adverse effects for adult social life. We conducted a narrative review of the literature about the association of overweight and obesity in childhood and adolescence with possible adverse impact on labour market in adulthood. By PubMed and Google Scholar searches, we identified 12 original, prospective studies from Western countries and extracted data from these studies. We discuss the possible explanations of the associations and the conceptual and methodological challenges in these studies. Despite inherent difficulties in interpreting results, partly due to differences in outcome definitions, ages at exposure, measurements of overweight and obesity, confounder control and societal differences, the studies indicate adverse labour market impacts on adult wage and employment. Furthermore, penalties seemed present even if the excessive weight was lost before adulthood, and women seemed more affected than men, especially when weight persisted into adulthood. While both health and lower education might contribute to explain the adverse labour market outcomes, also discrimination, stigmatization and the development of cognitive and noncognitive skills seemed to influence the outcomes. Prevention of these adverse labour market impacts likely requires multilevel efforts.
Collapse
Affiliation(s)
- Hanna Kruse Reiband
- Socialmedicinsk Centre, Bispebjerg and Frederiksberg Hospital, The Capital Region, Denmark
| | - Berit L Heitmann
- The Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, The Capital Region, Denmark.,Department of Public Health (Section for general Practise), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research (Section of Metabolic Genetics) and Department of Public Health (Section of Epidemiology), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Cadiou S, Bustamante M, Agier L, Andrusaityte S, Basagaña X, Carracedo A, Chatzi L, Grazuleviciene R, Gonzalez JR, Gutzkow KB, Maitre L, Mason D, Millot F, Nieuwenhuijsen M, Papadopoulou E, Santorelli G, Saulnier PJ, Vives M, Wright J, Vrijheid M, Slama R. Using methylome data to inform exposome-health association studies: An application to the identification of environmental drivers of child body mass index. ENVIRONMENT INTERNATIONAL 2020; 138:105622. [PMID: 32179316 PMCID: PMC8713647 DOI: 10.1016/j.envint.2020.105622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The exposome is defined as encompassing all environmental exposures one undergoes from conception onwards. Challenges of the application of this concept to environmental-health association studies include a possibly high false-positive rate. OBJECTIVES We aimed to reduce the dimension of the exposome using information from DNA methylation as a way to more efficiently characterize the relation between exposome and child body mass index (BMI). METHODS Among 1,173 mother-child pairs from HELIX cohort, 216 exposures ("whole exposome") were characterized. BMI and DNA methylation from immune cells of peripheral blood were assessed in children at age 6-10 years. A priori reduction of the methylome to preselect BMI-relevant CpGs was performed using biological pathways. We then implemented a tailored Meet-in-the-Middle approach to identify from these CpGs candidate mediators in the exposome-BMI association, using univariate linear regression models corrected for multiple testing: this allowed to point out exposures most likely to be associated with BMI ("reduced exposome"). Associations of this reduced exposome with BMI were finally tested. The approach was compared to an agnostic exposome-wide association study (ExWAS) ignoring the methylome. RESULTS Among the 2284 preselected CpGs (0.6% of the assessed CpGs), 62 were associated with BMI. Four factors (3 postnatal and 1 prenatal) of the exposome were associated with at least one of these CpGs, among which postnatal blood level of copper and PFOS were directly associated with BMI, with respectively positive and negative estimated effects. The agnostic ExWAS identified 18 additional postnatal exposures, including many persistent pollutants, generally unexpectedly associated with decreased BMI. DISCUSSION Our approach incorporating a priori information identified fewer significant associations than an agnostic approach. We hypothesize that this smaller number corresponds to a higher specificity (and possibly lower sensitivity), compared to the agnostic approach. Indeed, the latter cannot distinguish causal relations from reverse causation, e.g. for persistent compounds stored in fat, whose circulating level is influenced by BMI.
Collapse
Affiliation(s)
- Solène Cadiou
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France
| | - Mariona Bustamante
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Lydiane Agier
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagaña
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Angel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS), IDIS, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | | | - Juan R Gonzalez
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Léa Maitre
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Frédéric Millot
- CHU Poitiers, Clinical Investigation Centre, CIC 1402, Poitiers, France; Poitiers University, Clinical Investigation Centre CIC 1402, Poitiers, France
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Gillian Santorelli
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Pierre-Jean Saulnier
- CHU Poitiers, Clinical Investigation Centre, CIC 1402, Poitiers, France; Poitiers University, Clinical Investigation Centre CIC 1402, Poitiers, France; INSERM, CIC 1402, F-86000 Poitiers, France; CHU Poitiers, Endocrinology, Diabetology, Nutrition Service, Poitiers, France
| | - Marta Vives
- CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Martine Vrijheid
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Rémy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
9
|
Jamieson E, Korologou-Linden R, Wootton RE, Guyatt AL, Battram T, Burrows K, Gaunt TR, Tobin MD, Munafò M, Davey Smith G, Tilling K, Relton C, Richardson TG, Richmond RC. Smoking, DNA Methylation, and Lung Function: a Mendelian Randomization Analysis to Investigate Causal Pathways. Am J Hum Genet 2020; 106:315-326. [PMID: 32084330 PMCID: PMC7058834 DOI: 10.1016/j.ajhg.2020.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Whether smoking-associated DNA methylation has a causal effect on lung function has not been thoroughly evaluated. We first investigated the causal effects of 474 smoking-associated CpGs on forced expiratory volume in 1 s (FEV1) in UK Biobank (n = 321,047) by using two-sample Mendelian randomization (MR) and then replicated this investigation in the SpiroMeta Consortium (n = 79,055). Second, we used two-step MR to investigate whether DNA methylation mediates the effect of smoking on FEV1. Lastly, we evaluated the presence of horizontal pleiotropy and assessed whether there is any evidence for shared causal genetic variants between lung function, DNA methylation, and gene expression by using a multiple-trait colocalization ("moloc") framework. We found evidence of a possible causal effect for DNA methylation on FEV1 at 18 CpGs (p < 1.2 × 10-4). Replication analysis supported a causal effect at three CpGs (cg21201401 [LIME1 and ZGPAT], cg19758448 [PGAP3], and cg12616487 [EML3 and AHNAK] [p < 0.0028]). DNA methylation did not clearly mediate the effect of smoking on FEV1, although DNA methylation at some sites might influence lung function via effects on smoking. By using "moloc", we found evidence of shared causal variants between lung function, gene expression, and DNA methylation. These findings highlight potential therapeutic targets for improving lung function and possibly smoking cessation, although larger, tissue-specific datasets are required to confirm these results.
Collapse
Affiliation(s)
- Emily Jamieson
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Roxanna Korologou-Linden
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Robyn E Wootton
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK; National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol National Health Service Foundation Trust and University of Bristol, Bristol, UK
| | - Anna L Guyatt
- Department of Health Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Thomas Battram
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Kimberley Burrows
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Tom R Gaunt
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol National Health Service Foundation Trust and University of Bristol, Bristol, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Marcus Munafò
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK; National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol National Health Service Foundation Trust and University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol National Health Service Foundation Trust and University of Bristol, Bristol, UK
| | - Kate Tilling
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Caroline Relton
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Tom G Richardson
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Rebecca C Richmond
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
| |
Collapse
|
10
|
Küpers LK, Monnereau C, Sharp GC, Yousefi P, Salas LA, Ghantous A, Page CM, Reese SE, Wilcox AJ, Czamara D, Starling AP, Novoloaca A, Lent S, Roy R, Hoyo C, Breton CV, Allard C, Just AC, Bakulski KM, Holloway JW, Everson TM, Xu CJ, Huang RC, van der Plaat DA, Wielscher M, Merid SK, Ullemar V, Rezwan FI, Lahti J, van Dongen J, Langie SAS, Richardson TG, Magnus MC, Nohr EA, Xu Z, Duijts L, Zhao S, Zhang W, Plusquin M, DeMeo DL, Solomon O, Heimovaara JH, Jima DD, Gao L, Bustamante M, Perron P, Wright RO, Hertz-Picciotto I, Zhang H, Karagas MR, Gehring U, Marsit CJ, Beilin LJ, Vonk JM, Jarvelin MR, Bergström A, Örtqvist AK, Ewart S, Villa PM, Moore SE, Willemsen G, Standaert ARL, Håberg SE, Sørensen TIA, Taylor JA, Räikkönen K, Yang IV, Kechris K, Nawrot TS, Silver MJ, Gong YY, Richiardi L, Kogevinas M, Litonjua AA, Eskenazi B, Huen K, Mbarek H, Maguire RL, Dwyer T, Vrijheid M, Bouchard L, Baccarelli AA, Croen LA, Karmaus W, Anderson D, de Vries M, Sebert S, Kere J, Karlsson R, Arshad SH, Hämäläinen E, Routledge MN, Boomsma DI, Feinberg AP, Newschaffer CJ, Govarts E, Moisse M, Fallin MD, Melén E, Prentice AM, et alKüpers LK, Monnereau C, Sharp GC, Yousefi P, Salas LA, Ghantous A, Page CM, Reese SE, Wilcox AJ, Czamara D, Starling AP, Novoloaca A, Lent S, Roy R, Hoyo C, Breton CV, Allard C, Just AC, Bakulski KM, Holloway JW, Everson TM, Xu CJ, Huang RC, van der Plaat DA, Wielscher M, Merid SK, Ullemar V, Rezwan FI, Lahti J, van Dongen J, Langie SAS, Richardson TG, Magnus MC, Nohr EA, Xu Z, Duijts L, Zhao S, Zhang W, Plusquin M, DeMeo DL, Solomon O, Heimovaara JH, Jima DD, Gao L, Bustamante M, Perron P, Wright RO, Hertz-Picciotto I, Zhang H, Karagas MR, Gehring U, Marsit CJ, Beilin LJ, Vonk JM, Jarvelin MR, Bergström A, Örtqvist AK, Ewart S, Villa PM, Moore SE, Willemsen G, Standaert ARL, Håberg SE, Sørensen TIA, Taylor JA, Räikkönen K, Yang IV, Kechris K, Nawrot TS, Silver MJ, Gong YY, Richiardi L, Kogevinas M, Litonjua AA, Eskenazi B, Huen K, Mbarek H, Maguire RL, Dwyer T, Vrijheid M, Bouchard L, Baccarelli AA, Croen LA, Karmaus W, Anderson D, de Vries M, Sebert S, Kere J, Karlsson R, Arshad SH, Hämäläinen E, Routledge MN, Boomsma DI, Feinberg AP, Newschaffer CJ, Govarts E, Moisse M, Fallin MD, Melén E, Prentice AM, Kajantie E, Almqvist C, Oken E, Dabelea D, Boezen HM, Melton PE, Wright RJ, Koppelman GH, Trevisi L, Hivert MF, Sunyer J, Munthe-Kaas MC, Murphy SK, Corpeleijn E, Wiemels J, Holland N, Herceg Z, Binder EB, Davey Smith G, Jaddoe VWV, Lie RT, Nystad W, London SJ, Lawlor DA, Relton CL, Snieder H, Felix JF. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat Commun 2019; 10:1893. [PMID: 31015461 PMCID: PMC6478731 DOI: 10.1038/s41467-019-09671-3] [Show More Authors] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (PBonferroni < 1.06 x 10-7). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10-74) and BMI in pregnancy (3/914, p = 1.13x10-3), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.
Collapse
Affiliation(s)
- Leanne K Küpers
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Claire Monnereau
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - Paul Yousefi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatisitcs and Epidemology, Oslo University Hospital, Oslo, Norway
| | - Sarah E Reese
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Service, Research Triangle Park, Durham, NC, USA
| | - Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Service, Research Triangle Park, Durham, NC, USA
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexei Novoloaca
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Samantha Lent
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ritu Roy
- HDF Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Computational Biology and Informatics, UCSF, San Francisco, CA, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Carrie V Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Catherine Allard
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John W Holloway
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Todd M Everson
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Diana A van der Plaat
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Jari Lahti
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenny van Dongen
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sabine A S Langie
- VITO - Health, Mol, Belgium
- Theoretical Physics, Faculty of Sciences, Hasselt University, Hasselt, Belgium
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zongli Xu
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, NC, USA
| | - Weiming Zhang
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- MRC/PHE Centre for Environment and Health School of Public Health Imperial College London, St Mary's Campus, Norfolk Place, London, UK
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivia Solomon
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - Joosje H Heimovaara
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Lu Gao
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mariona Bustamante
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Patrice Perron
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, QC, Canada
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis MIND Institute, Sacramento, CA, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
| | | | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Anne K Örtqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Pia M Villa
- Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sophie E Moore
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
- Department of Women and Children's Health, King's College London, London, UK
| | - Gonneke Willemsen
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Service, Research Triangle Park, Durham, NC, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ivana V Yang
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Matt J Silver
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Yun Yun Gong
- School of Food Sciences and Nutrition, University of Leeds, Leeds, UK
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, Turin, Italy
- AOU Citta della Salute e della Sceinza, CPO Piemonte, Turin, Italy
| | - Manolis Kogevinas
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brenda Eskenazi
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research and Children's Health, School of Public Health, University of California, Berkeley, CA, USA
| | - Karen Huen
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Hamdi Mbarek
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Community and Family Medicine, Duke University Medical Center, Raleigh, NC, USA
| | - Terence Dwyer
- The George Institute for Global Health, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Martine Vrijheid
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- ECOGENE-21 Biocluster, Chicoutimi Hospital, Saguenay, QC, Canada
| | - Andrea A Baccarelli
- Laboratory of Precision Environmental Biosciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Sylvain Sebert
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department for Genomics of Common Diseases, School of Public Health, Imperial College London, London, UK
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - Esa Hämäläinen
- HUSLAB and the Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | | | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | | | | | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - M Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children's Hospital, Stockholm, Sweden
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki and Oulu, Oulu, Finland
- Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, and Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - H Marike Boezen
- University of Groningen, University Medical Center Groningen, Department of Epidemiology and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Phillip E Melton
- Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, University of Western Australia, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Letizia Trevisi
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Marie-France Hivert
- Department of Medicine, Universite de Sherbrooke, Sherbrooke, QC, Canada
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Jordi Sunyer
- ISGlobal, Bacelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Monica C Munthe-Kaas
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Pediatric Oncology and Hematology, Oslo University Hospital, Oslo, Norway
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Eva Corpeleijn
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Joseph Wiemels
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Nina Holland
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Altanta, GA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rolv T Lie
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Wenche Nystad
- Department for Non-Communicable Diseases, Norwegian Institute for Public Health, Oslo, Norway
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Service, Research Triangle Park, Durham, NC, USA
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Bellavia A, James-Todd T, Williams PL. Approaches for incorporating environmental mixtures as mediators in mediation analysis. ENVIRONMENT INTERNATIONAL 2019; 123:368-374. [PMID: 30572168 PMCID: PMC6367715 DOI: 10.1016/j.envint.2018.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 05/21/2023]
Abstract
Mediation analysis offers an essential and rapidly expanding tool in environmental health studies to investigate the contribution of environmental factors towards observed associations between risk factors and health outcomes. When evaluating environmental factors, there may be particular interest in quantifying the impact of exposure to environmental mixtures on human health. In this context, evaluating the joint effect of multiple chemicals or pollutants, rather than individual examination, allows accurate identification of risk factors, assessment of interactions, and ultimately development of more targeted public health interventions. While mediation analysis has been extended to incorporate several methodological complexities specific to environmental factors, little attention has been given to integrating the analysis of environmental mixtures. The aim of this review is to present some of the available methods for environmental mixtures, and discuss how these methods can be integrated within a mediation analysis framework. By incorporating these methods into a mediation framework, investigators will be able to evaluate the contribution of environmental mixtures as mediators of exposure-outcome associations, based on methodologies that are currently available. While standard regression-based methods for multiple mediators can be used, these can easily become unstable as the number of mixture components increases. Summary and classification methods, or hierarchical modeling, can reduce the number of mediators by creating scores or possibly uncorrelated subgroups. This approach allows retrieving indirect effects due to the mixture or to a specific subgroup, but makes identification of component-specific effects and interactions complicated. Finally, one can use various approaches for analyzing mixtures in a two-stage fashion, selecting relevant mediators to be included in the final model. We focused this review on techniques that have been presented to the environmental health community and that can be conducted with major statistical software. We encourage researchers to move beyond the evaluation of one environmental factor at a time to the assessment of the joint effects of environmental mixtures when a mediation model is of interest. Available methods target different aspects related to environmental mixtures and the choice of the suitable approach will depend on data structures and the research question of interest.
Collapse
Affiliation(s)
- Andrea Bellavia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States of America.
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States of America; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States of America; Division of Women's Health, Department of Medicine, Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02120, United States of America
| | - Paige L Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States of America; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States of America
| |
Collapse
|
12
|
Effects of SCFA on the DNA methylation pattern of adiponectin and resistin in high-fat-diet-induced obese male mice. Br J Nutr 2018; 120:385-392. [PMID: 29925443 DOI: 10.1017/s0007114518001526] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specific adipokines, such as adiponectin and resistin, are secreted from adipose tissue and are associated with the development of obesity. Supplementation of dietary SCFA can prevent and reverse high-fat-diet (HFD)-induced obesity. However, it is not clear whether SCFA ameliorate abnormal expression of adiponectin and resistin in the obese state. The aim of this study was to investigate the effects of SCFA on adiponectin and resistin's expressions in diet-induced obese mice, as well as the potential mechanisms associated with DNA methylation. C57BL/6J male mice were fed for 16 weeks with five types of HFD (34·9 % fat by wt., 60 % kJ) - a control HFD and four HFD with acetate (HFD-A), propionate (HFD-P), butyrate (HFD-B) and their admixture (HFD-SCFA). Meanwhile, a low-fat diet (4·3 % fat by wt., 10 % kJ) was used as the control group. The reduced mRNA levels of adiponectin and resistin in the adipose tissue of the HFD-fed mice were significantly reversed by dietary supplementation of acetate, propionate, butyrate or their admixture to the HFD. Moreover, the expressional changes of adiponectin and resistin induced by SCFA were associated with alterations in DNA methylation at their promoters, which was mediated by reducing the expressions of enzyme-catalysed DNA methyltransferase (DNMT1, 3a, 3b) and the methyl-CpG-binding domain protein 2 (MBD2) and suppressing the binding of these enzymes to the promoters of adiponectin and resistin. Our results indicate that SCFA may correct aberrant expressions of adiponectin and resistin in obesity by epigenetic regulation.
Collapse
|
13
|
Affiliation(s)
- Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Copenhagen, Denmark. .,Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, Arshad H, Baïz N, Bakermans-Kranenburg MJ, Bakulski KM, Binder EB, Bouchard L, Breton CV, Brunekreef B, Brunst KJ, Burchard EG, Bustamante M, Chatzi L, Cheng Munthe-Kaas M, Corpeleijn E, Czamara D, Dabelea D, Davey Smith G, De Boever P, Duijts L, Dwyer T, Eng C, Eskenazi B, Everson TM, Falahi F, Fallin MD, Farchi S, Fernandez MF, Gao L, Gaunt TR, Ghantous A, Gillman MW, Gonseth S, Grote V, Gruzieva O, Håberg SE, Herceg Z, Hivert MF, Holland N, Holloway JW, Hoyo C, Hu D, Huang RC, Huen K, Järvelin MR, Jima DD, Just AC, Karagas MR, Karlsson R, Karmaus W, Kechris KJ, Kere J, Kogevinas M, Koletzko B, Koppelman GH, Küpers LK, Ladd-Acosta C, Lahti J, Lambrechts N, Langie SAS, Lie RT, Liu AH, Magnus MC, Magnus P, Maguire RL, Marsit CJ, McArdle W, Melén E, Melton P, Murphy SK, Nawrot TS, Nisticò L, Nohr EA, Nordlund B, Nystad W, Oh SS, Oken E, Page CM, Perron P, Pershagen G, Pizzi C, Plusquin M, Raikkonen K, Reese SE, Reischl E, Richiardi L, Ring S, Roy RP, Rzehak P, Schoeters G, Schwartz DA, Sebert S, Snieder H, Sørensen TIA, Starling AP, et alFelix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, Arshad H, Baïz N, Bakermans-Kranenburg MJ, Bakulski KM, Binder EB, Bouchard L, Breton CV, Brunekreef B, Brunst KJ, Burchard EG, Bustamante M, Chatzi L, Cheng Munthe-Kaas M, Corpeleijn E, Czamara D, Dabelea D, Davey Smith G, De Boever P, Duijts L, Dwyer T, Eng C, Eskenazi B, Everson TM, Falahi F, Fallin MD, Farchi S, Fernandez MF, Gao L, Gaunt TR, Ghantous A, Gillman MW, Gonseth S, Grote V, Gruzieva O, Håberg SE, Herceg Z, Hivert MF, Holland N, Holloway JW, Hoyo C, Hu D, Huang RC, Huen K, Järvelin MR, Jima DD, Just AC, Karagas MR, Karlsson R, Karmaus W, Kechris KJ, Kere J, Kogevinas M, Koletzko B, Koppelman GH, Küpers LK, Ladd-Acosta C, Lahti J, Lambrechts N, Langie SAS, Lie RT, Liu AH, Magnus MC, Magnus P, Maguire RL, Marsit CJ, McArdle W, Melén E, Melton P, Murphy SK, Nawrot TS, Nisticò L, Nohr EA, Nordlund B, Nystad W, Oh SS, Oken E, Page CM, Perron P, Pershagen G, Pizzi C, Plusquin M, Raikkonen K, Reese SE, Reischl E, Richiardi L, Ring S, Roy RP, Rzehak P, Schoeters G, Schwartz DA, Sebert S, Snieder H, Sørensen TIA, Starling AP, Sunyer J, Taylor JA, Tiemeier H, Ullemar V, Vafeiadi M, Van Ijzendoorn MH, Vonk JM, Vriens A, Vrijheid M, Wang P, Wiemels JL, Wilcox AJ, Wright RJ, Xu CJ, Xu Z, Yang IV, Yousefi P, Zhang H, Zhang W, Zhao S, Agha G, Relton CL, Jaddoe VWV, London SJ. Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. Int J Epidemiol 2018; 47:22-23u. [PMID: 29025028 PMCID: PMC5837319 DOI: 10.1093/ije/dyx190] [Show More Authors] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Janine F Felix
- Department of Epidemiology, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bonnie R Joubert
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Isabella Annesi-Maesano
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), Epidemiology of Allergic and Respiratory diseases department (EPAR), Medical School Saint-Antoine, Paris, France
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nour Baïz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), Epidemiology of Allergic and Respiratory diseases department (EPAR), Medical School Saint-Antoine, Paris, France
| | | | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Elisabeth B Binder
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Universiteit Utrecht, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kelly J Brunst
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Monica Cheng Munthe-Kaas
- Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Norwegian Institute of Public Health, Oslo, Norway
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darina Czamara
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Patrick De Boever
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Liesbeth Duijts
- Department of Epidemiology, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Terence Dwyer
- The George Institute for Global Health, Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research on Children's Health, University of California, Berkeley, CA, USA
| | - Todd M Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Fahimeh Falahi
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - M Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Sara Farchi
- Department of Epidemiology, Regional Health Service, Lazio Region, Rome, Italy
| | - Mariana F Fernandez
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, San Cecilio University Hospital, Granada, Spain
| | - Lu Gao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Matthew W Gillman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Semira Gonseth
- University of California, Berkeley, School of Public Health, Berkeley, USA
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Nina Holland
- Center for Environmental Research on Children's Health, University of California, Berkeley, CA, USA
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Karen Huen
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA
| | - Marjo-Riitta Järvelin
- Center For Lifecourse Health Research, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Allan C Just
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, USA
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, USA
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Gerard H Koppelman
- University of Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, GRIAC Research Institute Groningen, The Netherlands
| | - Leanne K Küpers
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Jari Lahti
- Department of Psychology and Logopedics, Faulty of Medicine, University of Helsinki, Helsinki, Finland
- Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Nathalie Lambrechts
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Sabine AS Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Andrew H Liu
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Children's Hospital Colorado, Aurora, CO, USA
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Department for Non-Communicable Diseases, Domain for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Wendy McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Sachs Children’s Hospital, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Phillip Melton
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University and Faculty of Medicine Dentistry & Health Sciences, The University of Western Australia, Perth, Australia
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Lorenza Nisticò
- National Center of Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Björn Nordlund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sam S Oh
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Patrice Perron
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Costanza Pizzi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- MRC/PHE Centre for Environment and Health School of Public Health, Imperial College London, London, UK
| | - Katri Raikkonen
- Department of Psychology and Logopedics, Faulty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sarah E Reese
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, USA
| | - Eva Reischl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Muenchen, Munich, Germany
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, Turin, Italy
- AOU Città della Salute e della Sceinza, CPO Piemonte, Turin, Italy
| | - Susan Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Ritu P Roy
- Helen Diller Family Comprehensive Cancer Center (HDFCCC), UCSF, San Francisco, CA, USA
- Computational Biology Core, UCSF, San Francisco, CA, USA
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Greet Schoeters
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - David A Schwartz
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sylvain Sebert
- Center For Lifecourse Health Research, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Genomics of Complex Diseases, School of Public Health, Imperial College London, London, United Kingdom
| | - Harold Snieder
- Generation R Study Group Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thorkild IA Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, and Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Epidemiology (formerly Institute of Preventive Medicine), Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordi Sunyer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Jack A Taylor
- National Institute of Environmental Health Sciences, Epidemiology Branch, Durham, NC, USA
| | - Henning Tiemeier
- Department of Epidemiology, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marinus H Van Ijzendoorn
- Centre for Child and Family Studies, Leiden University, Leiden, The Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, GRIAC Research Institute Groningen, the Netherlands
| | - Annette Vriens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Martine Vrijheid
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
- Department of Neurosurgery, UCSF, San Francisco, CA, USA
| | - Allen J Wilcox
- National Institute of Environmental Health Sciences, Epidemiology Branch, Durham, NC, USA
| | - Rosalind J Wright
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, GRIAC Research Institute Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Zongli Xu
- National Institute of Environmental Health Sciences, Epidemiology Branch, Durham, NC, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul Yousefi
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, USA
| | - Weiming Zhang
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Shanshan Zhao
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, USA
| | - Golareh Agha
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Vincent WV Jaddoe
- Department of Epidemiology, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Stephanie J London
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, USA
| |
Collapse
|
15
|
Tobi EW, Slieker RC, Luijk R, Dekkers KF, Stein AD, Xu KM, Slagboom PE, van Zwet EW, Lumey LH, Heijmans BT. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. SCIENCE ADVANCES 2018; 4:eaao4364. [PMID: 29399631 PMCID: PMC5792223 DOI: 10.1126/sciadv.aao4364] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/03/2018] [Indexed: 05/05/2023]
Abstract
Although it is assumed that epigenetic mechanisms, such as changes in DNA methylation (DNAm), underlie the relationship between adverse intrauterine conditions and adult metabolic health, evidence from human studies remains scarce. Therefore, we evaluated whether DNAm in whole blood mediated the association between prenatal famine exposure and metabolic health in 422 individuals exposed to famine in utero and 463 (sibling) controls. We implemented a two-step analysis, namely, a genome-wide exploration across 342,596 cytosine-phosphate-guanine dinucleotides (CpGs) for potential mediators of the association between prenatal famine exposure and adult body mass index (BMI), serum triglycerides (TG), or glucose concentrations, which was followed by formal mediation analysis. DNAm mediated the association of prenatal famine exposure with adult BMI and TG but not with glucose. DNAm at PIM3 (cg09349128), a gene involved in energy metabolism, mediated 13.4% [95% confidence interval (CI), 5 to 28%] of the association between famine exposure and BMI. DNAm at six CpGs, including TXNIP (cg19693031), influencing β cell function, and ABCG1 (cg07397296), affecting lipid metabolism, together mediated 80% (95% CI, 38.5 to 100%) of the association between famine exposure and TG. Analyses restricted to those exposed to famine during early gestation identified additional CpGs mediating the relationship with TG near PFKFB3 (glycolysis) and METTL8 (adipogenesis). DNAm at the CpGs involved was associated with gene expression in an external data set and correlated with DNAm levels in fat depots in additional postmortem data. Our data are consistent with the hypothesis that epigenetic mechanisms mediate the influence of transient adverse environmental factors in early life on long-term metabolic health. The specific mechanism awaits elucidation.
Collapse
Affiliation(s)
- Elmar W. Tobi
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Division of Human Nutrition, Wageningen University and Research, 6708 WE Wageningen, Netherlands
| | - Roderick C. Slieker
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - René Luijk
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Koen F. Dekkers
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Aryeh D. Stein
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kate M. Xu
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Faculty of Psychology and Educational Sciences, Welten Institute, Open University of the Netherlands, 6419 AT Heerlen, Netherlands
| | | | - P. Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Erik W. van Zwet
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - L. H. Lumey
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| |
Collapse
|
16
|
Huang JY, Siscovick DS, Hochner H, Friedlander Y, Enquobahrie DA. Maternal gestational weight gain and DNA methylation in young women: application of life course mediation methods. Epigenomics 2017; 9:1559-1571. [PMID: 29106309 PMCID: PMC5704089 DOI: 10.2217/epi-2017-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022] Open
Abstract
AIM To investigate the role of maternal gestational weight gain (GWG) and prepregnancy BMI on programming offspring DNA methylation. METHODS Among 589 adult (age = 32) women participants of the Jerusalem Perinatal Study, we quantified DNA methylation in five candidate genes. We used inverse probability-weighting and parametric g-formula to estimate direct effects of maternal prepregnancy BMI and GWG on methylation. RESULTS Higher maternal GWG, but not prepregnancy BMI, was inversely related to offspring ABCA1 methylation (β = -1.1% per quartile; 95% CI: -2.0, -0.3) after accounting for ancestry, parental and offspring exposures. Total and controlled direct effects were nearly identical suggesting included offspring exposures did not mediate this relationship. Results were robust to sensitivity analyses for missing data and model specification. CONCLUSION We find some support for epigenetic programming and highlight strengths and limitations of these methods relative to other prevailing approaches.
Collapse
Affiliation(s)
- Jonathan Y Huang
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, Biostatistics and Occupational Health; Institute for Health & Social Policy; McGill University, Montreal, QC, Canada
| | | | - Hagit Hochner
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | | |
Collapse
|
17
|
DNA methylation in blood from neonatal screening cards and the association with BMI and insulin sensitivity in early childhood. Int J Obes (Lond) 2017; 42:28-35. [PMID: 29064478 DOI: 10.1038/ijo.2017.228] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/13/2017] [Accepted: 08/27/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES There is increasing evidence that metabolic diseases originate in early life, and epigenetic changes have been implicated as key drivers of this early life programming. This led to the hypothesis that epigenetic marks present at birth may predict an individual's future risk of obesity and type 2 diabetes. In this study, we assessed whether epigenetic marks in blood of newborn children were associated with body mass index (BMI) and insulin sensitivity later in childhood. SUBJECTS/METHODS DNA methylation was measured in neonatal blood spot samples of 438 children using the Illumina Infinium 450 k BeadChip. Associations were assessed between DNA methylation at birth and BMI z-scores, body fat mass, fasting plasma glucose, insulin and homeostatic model assessment of insulin resistance (HOMA-IR) at age 5 years, as well as birth weight, maternal BMI and smoking status. RESULTS No individual methylation sites at birth were associated with obesity or insulin sensitivity measures at 5 years. DNA methylation in 69 genomic regions at birth was associated with BMI z-scores at age 5 years, and in 63 regions with HOMA-IR. The methylation changes were generally small (<5%), except for a region near the non-coding RNA nc886 (VTRNA2-1) where a clear link between methylation status at birth and BMI in childhood was observed (P=0.001). Associations were also found between DNA methylation, maternal smoking and birth weight. CONCLUSIONS We identified a number of DNA methylation regions at birth that were associated with obesity or insulin sensitivity measurements in childhood. These findings support the mounting evidence on the role of epigenetics in programming of metabolic health. Whether many of these small changes in DNA methylation are causally related to the health outcomes, and of clinical relevance, remains to be determined, but the nc886 region represents a promising obesity risk marker that warrants further investigation.
Collapse
|
18
|
Huang JY, Gavin AR, Richardson TS, Rowhani-Rahbar A, Siscovick DS, Hochner H, Friedlander Y, Enquobahrie DA. Accounting for Life-Course Exposures in Epigenetic Biomarker Association Studies: Early Life Socioeconomic Position, Candidate Gene DNA Methylation, and Adult Cardiometabolic Risk. Am J Epidemiol 2016; 184:520-531. [PMID: 27651384 DOI: 10.1093/aje/kww014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies suggest that epigenetic programming may mediate the relationship between early life environment, including parental socioeconomic position, and adult cardiometabolic health. However, interpreting associations between early environment and adult DNA methylation may be difficult because of time-dependent confounding by life-course exposures. Among 613 adult women (mean age = 32 years) of the Jerusalem Perinatal Study Family Follow-up (2007-2009), we investigated associations between early life socioeconomic position (paternal occupation and parental education) and mean adult DNA methylation at 5 frequently studied cardiometabolic and stress-response genes (ABCA1, INS-IGF2, LEP, HSD11B2, and NR3C1). We used multivariable linear regression and marginal structural models to estimate associations under 2 causal structures for life-course exposures and timing of methylation measurement. We also examined whether methylation was associated with adult cardiometabolic phenotype. Higher maternal education was consistently associated with higher HSD11B2 methylation (e.g., 0.5%-point higher in 9-12 years vs. ≤8 years, 95% confidence interval: 0.1, 0.8). Higher HSD11B2 methylation was also associated with lower adult weight and total and low-density lipoprotein cholesterol. We found that associations with early life socioeconomic position measures were insensitive to different causal assumption; however, exploratory analysis did not find evidence for a mediating role of methylation in socioeconomic position-cardiometabolic risk associations.
Collapse
|
19
|
Savitsky B, Manor O, Friedlander Y, Burger A, Lawrence G, Calderon-Margalit R, Siscovick DS, Enquobahrie DA, Williams MA, Hochner H. Associations of socioeconomic position in childhood and young adulthood with cardiometabolic risk factors: the Jerusalem Perinatal Family Follow-Up Study. J Epidemiol Community Health 2016; 71:43-51. [PMID: 27417428 DOI: 10.1136/jech-2014-204323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/30/2015] [Accepted: 06/29/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Several stages in the life course have been identified as important to the development of cardiovascular disease. This study aimed to assess the associations of childhood and adulthood socioeconomic position (SEP) and social mobility with cardiometabolic risk factors (CMRs) later in life. METHODS We conducted follow-up examinations of 1132 offspring, aged 32, within a population-based cohort of all births in Jerusalem from 1974 to 1976. SEP was indicated by parents' occupation and education, and adulthood SEP was based on offspring's occupation and education recorded at age 32. Linear regression models were used to investigate the associations of SEP and social mobility with CMRs. RESULTS Childhood-occupational SEP was negatively associated with body mass index (BMI; β=-0.29, p=0.031), fat percentage (fat%; β=-0.58, p=0.005), insulin (β=-0.01, p=0.031), triglycerides (β=-0.02, p=0.024) and low-density lipoprotein cholesterol (LDL-C; β=-1.91, p=0.015), independent of adulthood SEP. Adulthood-occupational SEP was negatively associated with waist-to-hip ratio (WHR; β=-0.01, p=0.002), and positively with high-density lipoprotein cholesterol (HDL-C; β=0.87, p=0.030). Results remained similar after adjustment for smoking and inactivity. Childhood-educational SEP was associated with decreased WHR and LDL-C level (p=0.0002), and adulthood-educational SEP was inversely associated with BMI (p=0.001), waist circumference (p=0.008), WHR (p=0.001) and fat% (p=0.0002) and positively associated with HDL-C (p=0.030). Additionally, social mobility (mainly upward) was shown to have adverse cardiometabolic outcomes. CONCLUSIONS Both childhood and adulthood SEP contribute independently to CMR. The match-mismatch hypothesis may explain the elevated CMRs among participants experiencing social mobility. Identification of life-course SEP-related aspects that translate into social inequality in cardiovascular risk may facilitate efforts for improving health and for reducing disparities in cardiovascular disease.
Collapse
Affiliation(s)
- B Savitsky
- The Braun School of Public Health, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - O Manor
- The Braun School of Public Health, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Y Friedlander
- The Braun School of Public Health, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - A Burger
- The Braun School of Public Health, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - G Lawrence
- The Braun School of Public Health, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - R Calderon-Margalit
- The Braun School of Public Health, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - D S Siscovick
- Cardiovascular Health Research Unit, Department of Medicine and Epidemiology, University of Washington, Seattle, Washington, USA
| | - D A Enquobahrie
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - M A Williams
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - H Hochner
- The Braun School of Public Health, The Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|