1
|
He X, Sun H, Zhao Y, Fu X, Wang M, Liu M, Su Y, Hu F, Qin P, Zhang M, Hu D. Association of environmental metallic and metalloid contaminants with cardiovascular and all-cause mortality: An umbrella review of systematic reviews and meta-analyses. Eur J Prev Cardiol 2025:zwaf118. [PMID: 40037379 DOI: 10.1093/eurjpc/zwaf118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 01/11/2025] [Indexed: 03/06/2025]
Abstract
AIM The aim was to examine the relationship between exposure to environmental metallic and metalloid pollutants and cardiovascular disease (CVD) and all-cause mortality by integrating the information currently available from systematic reviews and meta-analyses. METHOD PubMed, Embase, and Web of Science for systematic reviews and meta-analyses were thoroughly searched up to October 9, 2024. Systematic reviews and meta-analyses of various kinds that evaluated the relationship between exposure to ambient metallic and metalloid pollutants and CVD and all-cause mortality were included. The methodological quality and the evidence quality were assessed using AMSTAR2 and GRADE, respectively. RESULTS We identified 25 meta-analyses and 81 health outcomes-76 unique outcomes from observational studies and 5 unique outcomes from RCTs-from 8,841 independent publications. Exposure to non-essential metallic and metalloid pollutants, including arsenic, lead, and cadmium as well as essential metallic and metalloid contaminants like copper, has been associated with an elevated risk of CVD events and CVD mortality, according to moderate-quality evidence. According to low-quality evidence, exposure to arsenic, lead, and cadmium increases the risk of CHD, while exposure to lead, cadmium, and copper is strongly associated with an increased risk of stroke and all-cause mortality. Further, zinc and selenium may be protective factors for CVD and all-cause mortality. CONCLUSION Despite variations in evidence gradients, environmental metallic and metalloid contaminants like arsenic, lead, cadmium, mercury, and copper are linked to CVD events and mortality, whereas zinc and selenium may offer protection.
Collapse
Affiliation(s)
- Xinxin He
- Department of General Practice, The Affiliated Luohu Hospital Shenzhen University Medical School, Shenzhen, Guangdong, 518001
| | - Haohang Sun
- Cardiovascular Department, Zhengzhou Yihe Hospital Affiliated to Henan University, Zhengzhou, Henan, 450041, People's Republic of China
| | - Yang Zhao
- Department of General Practice, The Affiliated Luohu Hospital Shenzhen University Medical School, Shenzhen, Guangdong, 518001
| | - Xueru Fu
- Department of General Practice, The Affiliated Luohu Hospital Shenzhen University Medical School, Shenzhen, Guangdong, 518001
| | - Mengdi Wang
- Center for Clinical Epidemiology and Evidence-based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Mengna Liu
- Center for Clinical Epidemiology and Evidence-based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Yijia Su
- Center for Clinical Epidemiology and Evidence-based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, People's Republic of China
| | - Pei Qin
- Center for Clinical Epidemiology and Evidence-based Medicine, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, 518060, People's Republic of China
| | - Dongsheng Hu
- Department of General Practice, The Affiliated Luohu Hospital Shenzhen University Medical School, Shenzhen, Guangdong, 518001
| |
Collapse
|
2
|
Shen M, Zhang Y, Zhan R, Du T, Shen P, Lu X, Liu S, Guo R, Shen X. Predicting the risk of cardiovascular disease in adults exposed to heavy metals: Interpretable machine learning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117570. [PMID: 39721423 DOI: 10.1016/j.ecoenv.2024.117570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Machine learning exhibits excellent performance in terms of predictive power. We aimed to construct an interpretable machine learning model utilizing National Health and Nutrition Examination Survey data to investigate the relationship between heavy metal exposure and cardiovascular disease (CVD). A total of 4600 adults were included in the analysis. The Least Absolute Shrinkage and Selection Operator regression method was employed to select relevant feature variables. Subsequently, six machine learning models were constructed, including random forest, decision tree, gradient boosting decision tree, k-nearest neighbor, support vector machine, and AdaBoost algorithms. Feature importance analysis, partial dependence plot, and shapley additive explanations were integrated to enhance the interpretability of the CVD prediction model. Among all models, the random forest exhibited the best performance, with an accuracy of 90 %, an area under the curve of 0.85, and an F1 score of 0.86. Urine cadmium (Cd), blood lead (Pb), urine thallium (Tl), and urine tungsten (W) were identified as the most significant predictors of CVD, with importance scores of 0.062, 0.057, 0.051, and 0.050, respectively. At the overall level, higher levels of urine Cd, blood Pb, and urine W were associated with an increased risk of CVD, whereas a lower level of urine Tl was linked to a reduced CVD risk. Additionally, the analysis of synergistic effects revealed that Cd was the predominant determinant of CVD risk. The random forest-based CVD prediction model demonstrated excellent predictive power and provided valuable insights for personalized patient care and optimal resource allocation in populations exposed to heavy metals.
Collapse
Affiliation(s)
- Meiyue Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yine Zhang
- Ningxia Center for Disease Control and Prevention, Yinchuan, China
| | | | - Tingwei Du
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Peixuan Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaochuan Lu
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Shengnan Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, China; Ningxia Center for Disease Control and Prevention, Yinchuan, China; Qingdao Haici Hospital, Qingdao 266033, China
| | - Rongrong Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoli Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Ekholm L, Ljunggren S, Helmfrid I. Historical exposure to metals in contaminated areas and its impact on cardio- and cerebrovascular health. Int J Hyg Environ Health 2025; 263:114461. [PMID: 39277976 DOI: 10.1016/j.ijheh.2024.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Environmental pollution is of global concern. In Southeast Sweden, historical glass production has contaminated communities with toxic metals. Long-term residency in these communities and high consumption of local foods may constitute a risk for cardiovascular disease (CVD) or stroke. The current study investigates if residency in these contaminated sites and long-term consumption of local foods is associated with self-reported CVD and stroke. In addition, the body burden of the toxic metals arsenic, cadmium, and lead, as well as inflammatory protein markers, were studied for association with CVD and stroke. From an existing questionnaire cohort and biomonitoring sub cohort (n = 2290/882) of people living in the contaminated areas, self-reported CVD cases (n = 366/166) and stroke cases (n = 78/25) were identified. Individuals were grouped based on their residency within a 2 km radius of glassworks with historical high, moderate, or low air-borne lead emissions. Body burden of arsenic, cadmium, and lead was analyzed using ICP-MS. Inflammatory markers were investigated using electrochemiluminescence. Long-term residency near glassworks with historically high levels of lead emissions, and high consumption of local foods, were associated with CVD. The risk was increasing for each year of residency in high emission areas. Increased body burden of arsenic in blood, and lead in urine, were associated with stroke. Five and two inflammatory markers, respectively, were elevated in CVD and stroke cases after adjusting for confounders. An increased risk for CVD was found in areas with historically high emissions of lead but possibly also other toxic metals. Interestingly, there was an indication of a dose-response relationship with increasing risk for CVD per year of residency time. Inhalation and consumption of local food may constitute major pathways for this association. The study shows that long-term exposure to toxic metals in these contaminated areas is associated with CVD and that there is a need to limit exposure in the general population.
Collapse
Affiliation(s)
- Louise Ekholm
- Occupational and Environmental Medicine Center in Linköping, And Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, And Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Ingela Helmfrid
- Occupational and Environmental Medicine Center in Linköping, And Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
He J, Zhang W, Zhao F, Wang M, Wang Z, Liang C, Pan J, Jia J, Zhang M. Investigation of the relationship between lead exposure in heavy metals mixtures and the prevalence of stroke: a cross-sectional study. BMC Public Health 2024; 24:3474. [PMID: 39696280 DOI: 10.1186/s12889-024-21000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The adverse effects of environmental toxic metal exposure on human health are well-documented. However, the specific influence of heavy metal exposure on stroke prevalence remains underexplored. METHODS This study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2011 to 2018 to investigate the association between blood metal concentrations and the incidence of stroke. Four analytical approaches-logistic regression, Restricted Cubic Splines (RCS), Weighted Quantile Sum regression (WQS), and Bayesian Kernel Machine Regression (BKMR)-were employed to assess the relationship, with a mediation analysis conducted to explore the role of inflammatory markers in Pb exposure-induced stroke. RESULTS Among the 9,399 participants in this project, 421 (4.4%) were diagnosed with stroke. After adjusting for covariates, a multivariable logistic regression model identified a positive association between the logarithmic concentration of Pb and the incidence of stroke. Besides, the analysis conducted using both WQS and BKMR methodologies found a consistent positive association between the composite exposure to heavy metals and the frequency of stroke cases, with Pb emerging as the predominant factor in this relationship. An evident saturation phenomenon was noted in the correlation between lead exposure and the risk of stroke. Additionally, the interplay between Pb exposure and stroke manifestation was found to be partially mediated by inflammatory markers, which were responsible for 6.9% of the observed effect (95%CI:0.01, 0.24, P = 0.03). CONCLUSION These findings indicate a notable contribution of Pb exposure to stroke risk, highlighting inflammation as a significant intermediary mechanism in the Pb exposure-stroke association.
Collapse
Affiliation(s)
- Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Wen Zhang
- Department of Nephrology, Yiyang Central Hospital, University of South China, Yiyang, Hunan, P. R. China
| | - Fang Zhao
- Department of Rheumatology, The First Hospital, Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, P. R. China
| | - Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Zhuo Wang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Chen Liang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Jing Pan
- Department of Nephrology, Hengyang Central Hospital, University of South China, Hengyang, Hunan, P. R. China
| | - Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| |
Collapse
|
5
|
Medgyesi DN, Bangia K, Spielfogel ES, Fisher JA, Madrigal JM, Jones RR, Ward MH, Lacey JV, Sanchez TR. Long-Term Exposure to Arsenic in Community Water Supplies and Risk of Cardiovascular Disease among Women in the California Teachers Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107006. [PMID: 39440943 PMCID: PMC11498017 DOI: 10.1289/ehp14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Inorganic arsenic in drinking water (wAs) is linked to atherosclerosis and cardiovascular disease. However, risk is uncertain at lower levels present in US community water supplies (CWS), currently regulated at the federal maximum contaminant level of 10 μ g / L . OBJECTIVES We evaluated the relationship between long-term wAs exposure from CWS and cardiovascular disease in the California Teachers Study cohort. METHODS Using statewide health care administrative records from enrollment through follow-up (1995-2018), we identified fatal and nonfatal cases of ischemic heart disease (IHD) and cardiovascular disease (CVD). Participants' residential addresses were linked to a network of CWS boundaries and annual wAs concentrations (1990-2020). Most participants resided in areas served by a CWS (92%). Exposure was calculated as a time-varying, 10-year moving average up to a participant's event, death, or end of follow-up. Using Cox models, we estimated hazard ratios (HRs) and 95% confidence intervals (95% CIs) for the risk of IHD or CVD. We evaluated wAs exposure categorized by concentration thresholds relevant to regulation standards (< 1.00 , 1.00-2.99, 3.00-4.99, 5.00-9.99, ≥ 10 μ g / L ) and continuously using a log2-transformation (i.e., per doubling). Models were adjusted for baseline age, neighborhood socioeconomic status, race/ethnicity, body mass index (BMI), and smoking status. We also stratified analyses by age, BMI, and smoking status. RESULTS Our analysis included 98,250 participants, 6,119 IHD cases, and 9,936 CVD cases. The HRs for IHD at concentration thresholds (reference, < 1 μ g / L ) were 1.06 (95% CI: 1.00, 1.12), 1.05 (95% CI: 0.94, 1.17), 1.20 (95% CI: 1.02, 1.41), and 1.42 (95% CI: 1.10, 1.84) for 1.00 - 2.99 μ g / L , 3.00 - 4.99 μ g / L , 5.00 - 9.99 μ g / L , and ≥ 10 μ g / L , respectively. HRs for every doubling of wAs exposure were 1.04 (95% CI: 1.02, 1.06) for IHD and 1.02 (95% CI: 1.01, 1.04) for CVD. We observed statistically stronger risk among those ≤ 55 vs. > 55 years of age at enrollment (p interaction = 0.006 and 0.012 for IHD and CVD, respectively). DISCUSSION Long-term wAs exposure from CWS, at and below the regulatory limit, may increase cardiovascular disease risk, particularly IHD. https://doi.org/10.1289/EHP14410.
Collapse
Affiliation(s)
- Danielle N. Medgyesi
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Komal Bangia
- Community and Environmental Epidemiology Research Branch, Office of Environmental Health Hazard Assessment, Oakland, California, USA
| | - Emma S. Spielfogel
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Jared A. Fisher
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Jessica M. Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Rena R. Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Mary H. Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - James V. Lacey
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Tiffany R. Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
6
|
Cohen A, Rasheduzzaman M, O'Connell B, Brown T, Taniuchi M, Krometis LA, Hubbard A, Scheuerman P, Edwards M, Darling A, Pennala B, Price S, Lytton B, Wettstone E, Pholwat S, Ward H, Hallinger DR, Simmons SO, Griffin SM, Kobylanski J, Egorov AI, Wade TJ. Drinking water sources, quality, and associated health outcomes in Appalachian Virginia: A risk characterization study in two counties. Int J Hyg Environ Health 2024; 260:114390. [PMID: 38772087 DOI: 10.1016/j.ijheh.2024.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES In the US, violations of drinking water regulations are highest in lower-income rural areas overall, and particularly in Central Appalachia. However, data on drinking water use, quality, and associated health outcomes in rural Appalachia are limited. We sought to assess public and private drinking water sources and associated risk factors for waterborne pathogen exposures for individuals living in rural regions of Appalachian Virginia. METHODS We administered surveys and collected tap water, bottled water, and saliva samples in lower-income households in two adjacent rural counties in southwest Virginia (bordering Kentucky and Tennessee). Water samples were tested for pH, temperature, conductivity, total coliforms, E. coli, free chlorine, nitrate, fluoride, heavy metals, and specific pathogen targets. Saliva samples were analyzed for antibody responses to potentially waterborne infections. We also shared water analysis results with households. RESULTS We enrolled 33 households (83 individuals), 82% (n = 27) with utility-supplied water and 18% with private wells (n = 3) or springs (n = 3). 58% (n = 19) reported household incomes of <$20,000/year. Total coliforms were detected in water samples from 33% (n = 11) of homes, E. coli in 12%, all with wells or springs (n = 4), and Aeromonas, Campylobacter, and Enterobacter in 9%, all spring water (n = 3). Diarrhea was reported for 10% of individuals (n = 8), but was not associated with E. coli detection. 34% (n = 15) of saliva samples had detectable antibody responses for Cryptosporidium spp., C. jejuni, and Hepatitis E. After controlling for covariates and clustering, individuals in households with septic systems and straight pipes had significantly higher likelihoods of antibody detection (risk ratios = 3.28, 95%CI = 1.01-10.65). CONCLUSIONS To our knowledge, this is the first study to collect and analyze drinking water samples, saliva samples, and reported health outcome data from low-income households in Central Appalachia. Our findings indicate that utility-supplied water in this region was generally safe, and individuals in low-income households without utility-supplied water or sewerage have higher exposures to waterborne pathogens.
Collapse
Affiliation(s)
- Alasdair Cohen
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| | - Md Rasheduzzaman
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Bethesda O'Connell
- Department of Community and Behavioral Health, East Tennessee State University, Johnson City, TN, USA
| | - Teresa Brown
- Department of Natural Sciences, University of Virginia's College at Wise, Wise, VA, USA
| | - Mami Taniuchi
- Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA, USA; Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Alan Hubbard
- Department of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Phillip Scheuerman
- Department of Environmental and Occupational Health and Safety Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Marc Edwards
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Amanda Darling
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Blaine Pennala
- Department of Community and Behavioral Health, East Tennessee State University, Johnson City, TN, USA
| | - Sarah Price
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Breanna Lytton
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Erin Wettstone
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Suporn Pholwat
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Daniel R Hallinger
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Steven O Simmons
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shannon M Griffin
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Jason Kobylanski
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Andrey I Egorov
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Timothy J Wade
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Jasper AA, Shah KH, Karim H, Gujral S, Miljkovic I, Rosano C, Barchowsky A, Sahu A. Regenerative rehabilitation measures to restore tissue function after arsenic exposure. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 30:100529. [PMID: 40191583 PMCID: PMC11970924 DOI: 10.1016/j.cobme.2024.100529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Environmental exposure of arsenic impairs the cardiometabolic profile, skeletal muscle health, and neurological function. Such declining tissue health is observed as early as in one's childhood, where the exposure is prevalent, thereby accelerating the effect of time's arrow. Despite the known deleterious effects of arsenic exposure, there is a paucity of specific treatment plans for restoring tissue function in exposed individuals. In this review, we propose to harness the untapped potential of existing regenerative rehabilitation programs, such as stem cell therapeutics with rehabilitation, acellular therapeutics, and artificial intelligence/robotics technologies, to address this critical gap in environmental toxicology. With regenerative rehabilitation techniques showing promise in other injury paradigms, fostering collaboration between these scientific realms offers an effective means of mitigating the detrimental effects of arsenic on tissue function.
Collapse
Affiliation(s)
- Adam A Jasper
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | - Kush H Shah
- The Lake Erie College of Osteopathic Medicine (LECOM), Erie, PA, USA
| | - Helmet Karim
- Department of Psychiatry, University of Pittsburgh, USA
- Department of Bioengineering, University of Pittsburgh, USA
| | - Swathi Gujral
- Department of Psychiatry, University of Pittsburgh, USA
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh, USA
| | | | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, USA
| | - Amrita Sahu
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, USA
| |
Collapse
|
8
|
Shen M, Xu X, Li W, Wang X, Peng R, Liu X, Wang Q, You X, Long P, Wang H, Niu R, Yin Y, Yang H, Zhang X, He M, Wu T, Yuan Y. Prospective findings from the Dongfeng-Tongji cohort: Exposure to various metals, the expression of microRNA-4286, and the incidence of acute coronary syndrome. ENVIRONMENTAL RESEARCH 2024; 250:118322. [PMID: 38360166 DOI: 10.1016/j.envres.2024.118322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Mounting evidence suggests that metal/metalloid exposure is related to the adverse health effects. Our prior investigation revealed a positive relation between the plasma level of microRNA-4286 (miR-4286) and an increased risk of developing acute coronary syndrome (ACS). However, it is a lack of studies evaluating the connection between metal/metalloid exposure and miRNA expression on ACS. In the prospective Dongfeng-Tongji cohort, we performed a nested case-control study. A total of 480 ACS and 480 controls were carefully selected based on similar age, sex, and blood collection time. Using inductively coupled plasma mass spectrometry, we assessed the plasma concentrations of 24 different metals. Quantitative real-time polymerase chain reaction was used to analyze the plasma miR-4286. We examined the relations of plasma metals with miR-4286 levels, the incidence of ACS, and the potential interactions. Using the multivariate conditional logistic regression models, we observed that the adjusted odds ratios (95% confidence intervals [CI]) for incident ACS were 1.79 (1.03, 3.12; P-trend = 0.03), 0.60 (0.41, 0.87; P-trend = 0.008), and 0.66 (0.46, 0.93; P-trend = 0.02), when comparing the extreme tertiles of aluminum, rubidium, and selenium, respectively. There was a relation between the concentration of rubidium in plasma and a decrease in the level of plasma miR-4286 (percent difference [95% CI]: -13.36% [-22.74%, -2.83%]; P-trend = 0.01). Both multiplicative (P interaction = 0.009) and additive interactions (relative excess risk due to interaction [95% CI]: 0.82 [0.59, 1.06]) were noted in our observation regarding the relationship between plasma aluminum and miR-4286 in incident ACS. The findings indicated that plasma aluminum was positively while plasma rubidium and selenium were negatively linked to an increased risk of developing ACS. Plasma aluminum exposure and plasma miR-4286 expression might synergistically affect the incident ACS risk. Controlling aluminum exposure was important for ACS prevention, especially for individuals with high expression of plasma miR-4286.
Collapse
Affiliation(s)
- Miaoyan Shen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Disease Surveillance, Institute of Chronic Disease Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Peng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuezhen Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuhong Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin You
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rundong Niu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yin
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Li M, Boisson-Dernier A, Bertoldi D, Ardini F, Larcher R, Grotti M, Varotto C. Elucidation of arsenic detoxification mechanism in Marchantia polymorpha: The role of ACR3. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134088. [PMID: 38555672 DOI: 10.1016/j.jhazmat.2024.134088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
The arsenic-specific ACR3 transporter plays pivotal roles in As detoxification in yeast and a group of ancient tracheophytes, the ferns. Despite putative ACR3 genes being present in the genomes of bryophytes, whether they have the same relevance also in this lineage is currently unknown. In this study, we characterized the MpACR3 gene from the bryophyte Marchantia polymorpha L. through a multiplicity of functional approaches ranging from phylogenetic reconstruction, expression analysis, loss- and gain-of-function as well as genetic complementation with an MpACR3 gene tagged with a fluorescent protein. Genetic complementation demonstrates that MpACR3 plays a pivotal role in As tolerance in M. polymorpha, with loss-of-function Mpacr3 mutants being hypersensitive and MpACR3 overexpressors more tolerant to As. Additionally, MpACR3 activity regulates intracellular As concentration, affects its speciation and controls the levels of intracellular oxidative stress. The MpACR3::3xCitrine appears to localize at the plasma membrane and possibly in other endomembrane systems. Taken together, these results demonstrate the pivotal function of ACR3 detoxification in both sister lineages of land plants, indicating that it was present in the common ancestor to all embryophytes. We propose that Mpacr3 mutants could be used in developing countries as low-cost and low-technology visual bioindicators to detect As pollution in water.
Collapse
Affiliation(s)
- Mingai Li
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, 38098 Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Aurélien Boisson-Dernier
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 400 Route des Chappes, BP167, 06903 Sophia Antipolis Cedex, France
| | - Daniela Bertoldi
- Department of Food and Transformation, Technology Transfer Centre of Fondazione Edmund Mach, E. Mach 1, San Michele all'Adige, 38098 TN, Italy
| | - Francisco Ardini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Roberto Larcher
- Department of Food and Transformation, Technology Transfer Centre of Fondazione Edmund Mach, E. Mach 1, San Michele all'Adige, 38098 TN, Italy
| | - Marco Grotti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Claudio Varotto
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, 38098 Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
10
|
Rizzo M, Bordignon M, Bertoli P, Biasiol G, Crosera M, Magnano GC, Marussi G, Negro C, Larese Filon F. Exposure to gallium arsenide nanoparticles in a research facility: a case study using molecular beam epitaxy. Nanotoxicology 2024; 18:259-271. [PMID: 38647006 DOI: 10.1080/17435390.2024.2341893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
We evaluated GaAs nanoparticle-concentrations in the air and on skin and surfaces in a research facility that produces thin films, and to monitored As in the urine of exposed worker. The survey was over a working week using a multi-level approach. Airborne personal monitoring was implemented using a miniature diffusion size classifier (DiSCMini) and IOM sampler. Environmental monitoring was conducted using the SKC Sioutas Cascade Impactor to evaluate dimensions and nature of particles collected. Surfaces contamination were assessed analyzing As and Ga in ghost wipes. Skin contamination was monitored using tape strips. As and Ga were analyzed in urines collected every day at the beginning and end of the shift. The greatest airborne exposure occurred during the cutting operations of the GaAs Sample (88883 np/cm3). The highest levels of contamination were found inside the hood (As max = 1418 ng/cm2) and on the laboratory floor (As max = 251 ng/cm2). The average concentration on the worker's skin at the end of the work shift (3.36 ng/cm2) was more than 14 times higher than before the start of the shift. In weekly urinary biomonitoring an average As concentration of 19.5 µg/L, which was above the Società Italiana Valori di Riferimento (SIVR) reference limit for the non-occupational population (2.0 - 15 µg/L), but below the ACGIH limit (30 µg/L). Overall, airborne monitoring, surface sampling, skin sampling, and biomonitoring of worker confirmed the exposure to As of workers. Systematic cleaning operations, hood implementation and correct PPE management are needed to improve worker protection.
Collapse
Affiliation(s)
- Marco Rizzo
- Inter-University Degree Course in Prevention Techniques in the Environment and Workplaces, University of Udine and Trieste, Trieste, Italy
| | - Michele Bordignon
- Inter-University Degree Course in Prevention Techniques in the Environment and Workplaces, University of Udine and Trieste, Trieste, Italy
| | - Paolo Bertoli
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | | | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Greta Camilla Magnano
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | - Giovanna Marussi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Corrado Negro
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | - Francesca Larese Filon
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| |
Collapse
|
11
|
Martinez-Morata I, Parvez F, Wu H, Eunus M, Goldsmith J, Ilievski V, Slavkovich V, Balac O, Izuchukwu C, Glabonjat RA, Ellis T, Nasir Uddin M, Islam T, Sadat Arif A, van Geen A, Navas-Acien A, Graziano JH, Gamble MV. Influence of folic acid and vitamin B12 supplementation on arsenic methylation: A double-blinded, placebo-controlled trial in Bangladeshi children. ENVIRONMENT INTERNATIONAL 2024; 187:108715. [PMID: 38728816 PMCID: PMC11316459 DOI: 10.1016/j.envint.2024.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Inorganic arsenic is metabolized to monomethyl- (MMAs) and dimethyl- (DMAs) species via one-carbon metabolism (OCM); this facilitates urinary arsenic elimination. OCM is influenced by folate and vitamin B12 and previous randomized control trials (RCTs) showed that folic acid (FA) supplementation increases arsenic methylation in adults. This RCT investigated the effects of FA + B12 supplementation on arsenic methylation in children, a key developmental stage where OCM supports growth. METHODS A total of 240 participants (8-11 years, 53 % female) drinking from wells with arsenic concentrations > 50 μg/L, were encouraged to switch to low arsenic wells and were randomized to receive 400 μg FA + 5 μg B12 or placebo daily for 12-weeks. Urine and blood samples were collected at baseline, week 1 (only urine) and week 12. Generalized estimated equation (GEE) models were used to assess treatment effects on arsenic species in blood and urine. RESULTS At baseline, the mean ± SD total blood and urinary arsenic were 5.3 ± 2.9 μg/L and 91.2 ± 89.5 μg/L. Overall, total blood and urine arsenic decreased by 11.7% and 17.6%, respectively, at the end of follow up. Compared to placebo, the supplementation group experienced a significant increase in the concentration of blood DMAs by 14.0% (95% CI 5.0, 25.0) and blood secondary methylation index (DMAs/MMAs) by 0.19 (95% CI: 0.09, 0.35) at 12 weeks. Similarly, there was a 1.62% (95% CI: 0.43, 20.83) significantly higher urinary %DMAs and -1.10% (95% CI: -1.73, -0.48) significantly lower urinary %MMAs in the supplementatio group compared to the placebo group after 1 week. The direction of the changes in the urinary %iAs, %MMAs, and %DMAs at week 12 were consistent with those at week 1, though estimates were not significant. Treatment effects were stronger among participants with higher baseline blood arsenic concentrations. Results were consistent across males and females, and participants with higher and lower folate and B12 status at baseline. CONCLUSION This RCT confirms that FA + B12 supplementation increases arsenic methylation in children as reflected by decreased MMAs and increased DMAs in blood and urine. Nutritional interventions may improve arsenic methylation and elimination in children, potentially reducing arsenic toxicity while also improving nutritional status.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Faruque Parvez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Mahbubul Eunus
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, NY, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Chiugo Izuchukwu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Tyler Ellis
- Lamont-Doherty Earth Observatory, Columbia University, NY, USA; Minnesota Pollution Control Agency, St. Paul, MN, USA
| | - Mohammad Nasir Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Anwar Sadat Arif
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA
| | - Mary V Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, NY, USA.
| |
Collapse
|
12
|
Irvin VL, Kile ML, Lucas-Woodruff C, Cude C, Anderson L, Baylog K, Hovell MF, Choun S, Kaplan RM. An overview of the Be Well Home Health Navigator Program to reduce contaminants in well water: Design and methods. Contemp Clin Trials 2024; 140:107497. [PMID: 38471641 PMCID: PMC11065571 DOI: 10.1016/j.cct.2024.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND The Be Well Home Health Navigator Program is a prospective, randomized controlled trial (RCT) implemented to compare a community health navigator program to usual care program to reduce contaminants in drinking water. DESIGN AND SETTING This 4-year two-armed RCT will involve well owners in Oregon that have private drinking water wells that contain arsenic, nitrate, or lead above maximum contaminant levels. INTERVENTION The intervention leverages the trusted relationship between Cooperative Extension Service (CES) Community Educators and rural well owners to educate, assist and motivate to make decisions and set actionable steps to mitigate water contamination. In this study, CES will serve as home health navigators to deliver: 1) individualized feedback, 2) positive reinforcement, 3) teach-back moments, 4) decision-making skills, 5) navigation to resources, 6) self-management, and 7) repeated contact for shaping and maintenance of behaviors. Usual care includes information only with no access to individual meetings with CES. MEASURABLE OUTCOMES Pre-specified primary outcomes include 1) adoption of treatment to reduce exposure to arsenic, nitrate, or lead in water which may include switching to bottled water and 2) engagement with well stewardship behaviors assessed at baseline, and post-6 and 12 months follow-up. Water quality will be measured at baseline and 12-month through household water tests. Secondary outcomes include increased health literacy scores and risk perception assessed at baseline and 6-month surveys. IMPLICATIONS The results will demonstrate the efficacy of a domestic well water safety program to disseminate to other CES organizations. TRIAL REGISTRATION NUMBER NCT05395663.
Collapse
Affiliation(s)
| | - Molly L Kile
- Oregon State University, College of Health, Corvallis, OR, USA
| | | | | | - Lilly Anderson
- Oregon State University, College of Health, Corvallis, OR, USA
| | - Kara Baylog
- Oregon State University, Extension Service, Southern Oregon Research and Extension Center, OR, USA
| | | | - Soyoung Choun
- Oregon State University, College of Health, Corvallis, OR, USA
| | - Robert M Kaplan
- Clinical Excellence Research Center, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
13
|
Khatun M, Haque N, Siddique AE, Wahed AS, Islam MS, Khan S, Jubayar AM, Sadi J, Kabir E, Shila TT, Islam Z, Sarker MK, Banna HU, Hossain S, Sumi D, Saud ZA, Barchowsky A, Himeno S, Hossain K. Arsenic Exposure-Related Hypertension in Bangladesh and Reduced Circulating Nitric Oxide Bioavailability. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47003. [PMID: 38573329 PMCID: PMC10993991 DOI: 10.1289/ehp13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Hypertension is a major cause of death worldwide. Although arsenic exposure has been associated with the risk of hypertension, this association appears nonuniform due to inconsistent results from studies conducted in different populations. Moreover, hypertension is a complex condition with multiple underlying mechanisms and factors. One factor is impaired production and bioavailability of vascular nitric oxide (NO). However, the implications of the effects of arsenic exposure on circulating NO and its association with hypertension in humans are largely unknown. OBJECTIVE We investigated the dose-response relationship between arsenic exposure and hypertension with vascular NO levels as a potential mediator of arsenic-related hypertension in individuals exposed to a broad range of arsenic. METHODS A total of 828 participants were recruited from low- and high-arsenic exposure areas in Bangladesh. Participants' drinking water, hair, and nail arsenic concentrations were measured by inductively coupled plasma mass spectroscopy. Hypertension was defined as a systolic blood pressure (SBP) value of ≥ 140 and a diastolic (DBP) value of ≥ 90 mmHg . Serum NO levels reflected by total serum nitrite concentrations were measured by immunoassay. A formal causal mediation analysis was used to assess NO as a mediator of the association between arsenic level and hypertension. RESULTS Increasing concentrations of arsenic measured in drinking water, hair, and nails were associated with the increasing levels of SBP and DBP. The odds of hypertension were dose-dependently increased by arsenic even in participants exposed to relatively low to moderate levels (10 - 50 μ g / L ) of water arsenic [odds ratios (ORs) and 95% confidence intervals (CIs): 2.87 (95% CI: 1.28, 6.44), 2.67 (95% CI: 1.27, 5.60), and 5.04 (95% CI: 2.71, 9.35) for the 10 - 50 μ g / L , 50.01 - 150 μ g / L , and > 150 μ g / L groups, respectively]. Causal mediation analysis showed a significant mediating effect of NO on arsenic-related SBP, DBP, and hypertension. CONCLUSION Increasing exposure to arsenic was associated with increasing odds of hypertension. The association was mediated through the reduction of vascular NO bioavailability, suggesting that impaired NO bioavailability was a plausible underlying mechanism of arsenic-induced hypertension in this Bangladeshi population. https://doi.org/10.1289/EHP13018.
Collapse
Affiliation(s)
- Moriom Khatun
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Nazmul Haque
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Abu Eabrahim Siddique
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa, USA
| | - Abdus S. Wahed
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - Md. Shofikul Islam
- Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, Bangladesh
| | - Shuchismita Khan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Ahsanul Mahbub Jubayar
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Junayed Sadi
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Ehsanul Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Tasnim Tabassum Shila
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Zohurul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Hasan Ul Banna
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Daigo Sumi
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seiichiro Himeno
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
- Division of Health Chemistry, School of Pharmacy, Showa University, Tokyo, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
14
|
Mohd Nor Ihsan NS, Abdul Sani SF, Looi LM, Pathmanathan D, Cheah PL, Chiew SF, Bradley DA. EDXRF and the relative presence of K, Ca, Fe and as in amyloidogenic tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123743. [PMID: 38113556 DOI: 10.1016/j.saa.2023.123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Trace and minor elements play crucial roles in a variety of biological processes, including amyloid fibrils formation. Mechanisms include activation or inhibition of enzymatic reactions, competition between elements and metal proteins for binding positions, also changes to the permeability of cellular membranes. These may influence carcinogenic processes, with trace and minor element concentrations in normal and amyloid tissues potentially aiding in cancer diagnosis and etiology. With the analytical capability of the spectroscopic technique X-ray fluorescence (XRF), this can be used to detect and quantify the presence of elements in amyloid characterization, two of the trace elements known to be associated with amyloid fibrils. In present work, involving samples from a total of 22 subjects, samples of normal and amyloid-containing tissues of heart, kidney, thyroid, and other tissue organs were obtained, analyzed via energy-dispersive X-ray fluorescence (EDXRF). The elemental distribution of potassium (K), calcium (Ca), arsenic (As), and iron (Fe) was examined in both normal and amyloidogenic tissues using perpetual thin slices. In amyloidogenic tissues the levels of K, Ca, and Fe were found to be less than in corresponding normal tissues. Moreover, the presence of As was only observed in amyloidogenic samples; in a few cases in which there was an absence of As, amyloid samples were found to contain Fe. Analysis of arsenic in amyloid plaques has previously been difficult, often producing contradictory results. Using the present EDXRF facility we could distinguish between amyloidogenic and normal samples, with potential correlations in respect of the presence or concentration of specific elements.
Collapse
Affiliation(s)
- N S Mohd Nor Ihsan
- Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - S F Abdul Sani
- Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - L M Looi
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dharini Pathmanathan
- Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - P L Cheah
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - S F Chiew
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - D A Bradley
- Sunway University, Centre for Applied Physics and Radiation Technologies, Jalan Universiti, 46150 PJ, Malaysia; School of Mathematics and Physics, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
15
|
Boffetta P, Sambati L, Sassano M. Systematic review of studies on exposure to arsenic in drinking water and cognitive and neurobehavioral effects. Crit Rev Toxicol 2024; 54:174-193. [PMID: 38533692 DOI: 10.1080/10408444.2023.2297751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 03/28/2024]
Abstract
An association between exposure to arsenic (As) and neurologic and behavioral effects has been reported in some studies, but no systematic review is available of the evidence linking As in drinking water and neurobehavioral effects after consideration of study quality and potential confounding, with focus on low-level circumstances of exposure. We conducted a systematic review and reported it in compliance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, through a search of the databases PubMed, Web of Science, Scopus, and Embase. We included in the review the studies reporting results based on exposure from drinking water in humans. Endpoints were heterogeneous across studies, so we classified them into eight broad domains and developed an ad-hoc system to evaluate their methodological quality, based on three tiers. It was not possible to conduct meta-analysis because of the heterogeneity in exposure assessment and in the definition and assessment of outcomes. The search identified 18,518 articles. After elimination of duplicates and irrelevant articles, we retained 106 articles which reported results on As exposure and neurobehavioral effects, of which 22 reported risk estimates from exposure in drinking water (six among adults and 16 among children). None of the studies was conducted blindly. Among the studies in adults, two, which were conducted in highly exposed populations, were classified as high quality. These two studies were broadly consistent in reporting an association between exposure to As and decline in cognitive function; however, they provide no evidence of an association for exposure below 75 μg/L. The four lower-quality studies were based on populations with low exposure; these studies reported associations with inconsistent outcomes, few of which remained statistically significant after adjustment for multiple comparisons. Among the five high-quality studies of children, one reported an association between As in drinking water and intellectual function, whereas none of the other studies reported an association with different neurobehavioral indicators, after adjusting for potential confounders and multiple comparisons. Out of seven intermediate-quality studies, three reported an association with cognitive function or other outcomes; but sources of bias were not adequately controlled. The remaining studies were negative. The four low-quality studies did not contribute to the overall evidence because of methodological limitations. Our assessment of the available literature showed a lack of evidence for a causal association between exposure to As in drinking water and neurobehavioral effects. To clarify whether such an association exists, further studies prospectively evaluating changes in both the concentration of As in drinking water during the life course, and neurobehavioral outcomes, as well as appropriately controlling for potential confounders, are needed.
Collapse
Affiliation(s)
- Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michele Sassano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Han Y, Gao T, Li X, Wāng Y. Didactical approaches and insights into environmental processes and cardiovascular hazards of arsenic contaminants. CHEMOSPHERE 2024; 352:141381. [PMID: 38360414 DOI: 10.1016/j.chemosphere.2024.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Arsenic, as a metalloid, has the ability to move and transform in different environmental media. Its widespread contamination has become a significant environmental problem and public concern. Arsenic can jeopardize multiple organs through various pathways, influenced by environmental bioprocesses. This article provides a comprehensive overview of current research on the cardiovascular hazards of arsenic. A bibliometric analysis revealed that there are 376 papers published in 145 journals, involving 40 countries, 631 institutions, and 2093 authors, all focused on arsenic-related concerns regarding cardiovascular health. China and the U.S. have emerged as the central hubs of collaborative relationships and have the highest number of publications. Hypertension and atherosclerosis are the most extensively studied topics, with redox imbalance, apoptosis, and methylation being the primary mechanistic clues. Cardiovascular damage caused by arsenic includes arrhythmia, cardiac remodeling, vascular leakage, and abnormal angiogenesis. However, the current understanding is still inadequate over cardiovascular impairments, underlying mechanisms, and precautionary methods of arsenic, thus calling an urgent need for further studies to bridge the gap between environmental processes and arsenic hazards.
Collapse
Affiliation(s)
- Yapeng Han
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Tiantian Gao
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiaozhi Li
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Koomson AA, Delaney P, Khan N, Sadler KC. Sustained effects of developmental exposure to inorganic arsenic on hepatic gsto2 expression and mating success in zebrafish. Biol Open 2024; 13:bio060094. [PMID: 38446164 PMCID: PMC10941348 DOI: 10.1242/bio.060094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
The impacts of exposure to the pervasive environmental toxicant, inorganic arsenic (iAs), on human and fish health are well characterized and several lines of evidence suggest that some impacts can manifest years after exposure cessation. Using a developmental exposure protocol whereby zebrafish embryos were exposed to 0.5 and 1.5 mM iAs from 4-120 hours post fertilization (hpf) and then removed, we investigated the sustained effects of iAs on gene expression in the liver, survival, reproductive success, and susceptibility to iAs toxicity in the subsequent generation. Persistent exposure to iAs during development had substantial effects on the hepatic transcriptome, with 23% of all expressed genes significantly changed following developmental exposure. The gsto2 gene is involved in iAs metabolism and this gene was significantly downregulated in female livers 9 months after iAs was removed. Developmental exposure to 1.5 mM iAs, but not 0.5 mM, decreased survival by over 50% at 3 months of age. Adults that were developmentally exposed to 0.5 mM iAs had reduced mating success, but their offspring had no differences in observable aspects of development or their susceptibility to iAs toxicity. This demonstrates that developmental exposure of zebrafish to iAs reduces long-term survival, reproductive success and causes sustained changes to gsto2 expression in the liver.
Collapse
Affiliation(s)
- Abigail Ama Koomson
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C. Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| |
Collapse
|
18
|
Schmidt S. Marking Time: Epigenetic Aging May Partially Explain the Arsenic-Cardiovascular Disease Link. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:24001. [PMID: 38319882 PMCID: PMC10846676 DOI: 10.1289/ehp14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
New epigenetic clocks point to DNA methylation as a mechanism in the well-known link between arsenic exposure and cardiovascular disease risk. The results validate the use of these clocks in Native American populations.
Collapse
|
19
|
Sagheer U, Al-Kindi S, Abohashem S, Phillips CT, Rana JS, Bhatnagar A, Gulati M, Rajagopalan S, Kalra DK. Environmental Pollution and Cardiovascular Disease: Part 2 of 2: Soil, Water, and Other Forms of Pollution. JACC. ADVANCES 2024; 3:100815. [PMID: 38939394 PMCID: PMC11198458 DOI: 10.1016/j.jacadv.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 06/29/2024]
Abstract
With a growing body of evidence that now links environmental pollution to adverse cardiovascular disease (CVD) outcomes, pollution has emerged as an important risk factor for CVD. There is thus an urgent need to better understand the role of pollution in CVD, key pathophysiological mechanisms, and to raise awareness among health care providers, the scientific community, the general population, and regulatory authorities about the CV impact of pollution and strategies to reduce it. This article is part 2 of a 2-part state-of-the-art review on the topic of pollution and CVD-herein we discuss major environmental pollutants and their effects on CVD, highlighting pathophysiological mechanisms, and strategies to reduce CVD risk.
Collapse
Affiliation(s)
- Usman Sagheer
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Sadeer Al-Kindi
- Division of Cardiology, Department of Medicine, University Hospitals, Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shady Abohashem
- Divison of Cardiovascular Imaging, Radiology Department, Massachusetts General Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Colin T. Phillips
- Department of Cardiology, Maine Medical Center, Portland, Maine, USA
| | - Jamal S. Rana
- The Permanente Medical Group, Department of Cardiology, Oakland Medical Center, Oakland, California, USA
| | - Aruni Bhatnagar
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Martha Gulati
- Department of Cardiology, Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sanjay Rajagopalan
- Division of Cardiology, Department of Medicine, University Hospitals, Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dinesh K. Kalra
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
20
|
Obluchinskaya ED, Pozharitskaya ON, Gorshenina EV, Daurtseva AV, Flisyuk EV, Generalova YE, Terninko II, Shikov AN. Ascophyllum nodosum (Linnaeus) Le Jolis from Arctic: Its Biochemical Composition, Antiradical Potential, and Human Health Risk. Mar Drugs 2024; 22:48. [PMID: 38276650 PMCID: PMC10820375 DOI: 10.3390/md22010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Ascophyllum nodosum is a brown seaweed common in Arctic tidal waters. We have collected A. nodosum samples from the Barents Sea (BS), Irminger Sea (IS), and Norwegian Sea (NS) in different reproductive stages and have evaluated their biochemical composition, radical scavenging potential, and health risks. The total content of dominating carbohydrates (fucoidan, mannitol, alginate, and laminaran) ranged from 347 mg/g DW in NS to 528 mg/g DW in BS. The proportion of two main structural monosaccharides of fucoidan (fucose and xylose) differed significantly between the seas and reproductive phase, reaching a maximum at the fertile phase in the BS sample. Polyphenols and flavonoids totals were highest in NS A. nodosum samples and increased on average in the following order: BS < IS < NS. A positive correlation of free radical scavenging activity for seaweed extracts with polyphenols content was observed. The concentration of elements in A. nodosum from the Arctic seas region was in the following order: Ca > Mg > Sr > Fe > Al > Zn > As total > Rb > Mn > Ba > Cu > Co. Seaweeds from BS had the lowest metal pollution index (MPI) of 38.4. A. nodosum from IS had the highest MPI of 83. According to the calculated target hazard quotient (THQ) and hazard index (HI) values, Arctic A. nodosum samples pose no carcinogenic risk to adult and child health and are safe for regular consumption. Our results suggest that the Arctic A. nodosum has a remarkable potential for food and pharmaceutical industries as an underestimated source of polysaccharides, polyphenols, and flavonoids.
Collapse
Affiliation(s)
- Ekaterina D. Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia; (O.N.P.); (E.V.G.); (A.V.D.); (A.N.S.)
| | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia; (O.N.P.); (E.V.G.); (A.V.D.); (A.N.S.)
| | - Elena V. Gorshenina
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia; (O.N.P.); (E.V.G.); (A.V.D.); (A.N.S.)
| | - Anna V. Daurtseva
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia; (O.N.P.); (E.V.G.); (A.V.D.); (A.N.S.)
| | - Elena V. Flisyuk
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia;
| | - Yuliya E. Generalova
- Core Shared Research Facilities “Analytical Center”, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia; (Y.E.G.)
| | - Inna I. Terninko
- Core Shared Research Facilities “Analytical Center”, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia; (Y.E.G.)
| | - Alexander N. Shikov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia; (O.N.P.); (E.V.G.); (A.V.D.); (A.N.S.)
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia;
| |
Collapse
|
21
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
22
|
Dashner-Titus EJ, Schilz JR, Alvarez SA, Wong CP, Simmons K, Ho E, Hudson LG. Zinc supplementation alters tissue distribution of arsenic in Mus musculus. Toxicol Appl Pharmacol 2023; 478:116709. [PMID: 37797845 PMCID: PMC10729601 DOI: 10.1016/j.taap.2023.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Arsenic occurs naturally in the environment and humans can be exposed through food, drinking water and inhalation of air-borne particles. Arsenic exposure is associated with cardiovascular, pulmonary, renal, immunologic, and developmental toxicities as well as carcinogenesis. Arsenic displays dose-depen toxicities in target organs or tissues with elevated levels of arsenic. Zinc is an essential micronutrient with proposed protective benefits due to its antioxidant properties, integration into zinc-containing proteins and zinc-related immune signaling. In this study, we tested levels of arsenic and zinc in plasma, kidney, liver, and spleen as model tissues after chronic (42-day) treatment with either arsenite, zinc, or in combination. Arsenite exposure had minimal impact on tissue zinc levels with the exception of the kidney. Conversely, zinc supplementation of arsenite-exposed mice reduced the amount of arsenic detected in all tissues tested. Expression of transporters associated with zinc or arsenic influx and efflux were evaluated under each treatment condition. Significant effects of arsenite exposure on zinc transporter expression displayed tissue selectivity for liver and kidney, and was restricted to Zip10 and Zip14, respectively. Arsenite also interacted with zinc co-exposure for Zip10 expression in liver tissue. Pairwise comparisons show neither arsenite nor zinc supplementation alone significantly altered expression of transporters utilized by arsenic. However, significant interactions between arsenite and zinc were evident for Aqp7 and Mrp1 in a tissue selective manner. These findings illustrate interactions between arsenite and zinc leading to changes in tissue metal level and suggest a potential mechanism by which zinc may offer protection from arsenic toxicities.
Collapse
Affiliation(s)
- Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America.
| | - Jodi R Schilz
- Division of Physical Therapy, School of Medicine, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Sandra A Alvarez
- Early Childhood Services Center, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Carmen P Wong
- School of Public Health, College of Health, Oregon State University, Corvallis, OR 97331, United States of America
| | - Karen Simmons
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| | - Emily Ho
- School of Public Health, College of Health, Oregon State University, Corvallis, OR 97331, United States of America; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, United States of America
| |
Collapse
|
23
|
Yu Q, Wang W, Wu Z, Sun B, Zhang A. Association between exposure to arsenic and the risk of cardiovascular disease: Potential role of vascular endothelial injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104303. [PMID: 39492540 DOI: 10.1016/j.etap.2023.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
In this study, we investigated the risk of cardiovascular disease (CVD) in individuals exposed to arsenic (As) and to identify potential biomarkers. The results revealed that the FRS was positively correlated with the MMA content and MMA% but negatively correlated with the DMA% and SMI, while the AIP index was positively correlated with the DMA, MMA, MMA%, iAs, tAs and As3+ content. In addition, ADMA was positively correlated with MMA and MMA% and negatively correlated with the SMI and DMA%. Regression models showed that ADMA and ICAM1 were positively correlated with CVD risk. Mediation analysis indicated that ADMA and ICAM1 mediated the association between As exposure and CVD risk. In conclusion, the risk of CVD is higher in residents previously exposed As. Endothelial injury appears to mediate the increased risk of As-induced CVD, and both ADMA and ICAM1 may serve as potential biomarkers for the early identification of this process.
Collapse
Affiliation(s)
- Qing Yu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Ziqin Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
24
|
Smith TJS, Navas-Acien A, Baker S, Kok C, Kruczynski K, Avolio LN, Pisanic N, Randad PR, Fry RC, Goessler W, van Geen A, Buckley JP, Rahman MH, Ali H, Haque R, Shaikh S, Siddiqua TJ, Schulze K, West KP, Labrique AB, Heaney CD. Anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. ENVIRONMENTAL RESEARCH 2023; 234:116453. [PMID: 37343752 PMCID: PMC10518461 DOI: 10.1016/j.envres.2023.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Arsenic methylation converts inorganic arsenic (iAs) to monomethyl (MMA) and dimethyl (DMA) arsenic compounds. Body mass index (BMI) has been positively associated with arsenic methylation efficiency (higher DMA%) in adults, but evidence in pregnancy is inconsistent. We estimated associations between anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. METHODS We enrolled pregnant women (n = 784) (median [IQR] gestational week: 14 [13, 15]) in Gaibandha District, Bangladesh from 2018 to 2019. Anthropometric measures were BMI, subscapular and triceps skinfold thicknesses, and mid-upper arm circumference (MUAC), fat area (MUAFA), and muscle area (MUAMA). Arsenic methylation measures were urinary iAs, MMA, and DMA divided by their sum and multiplied by 100 (iAs%, MMA%, and DMA%), primary methylation index (MMA/iAs; PMI), and secondary methylation index (DMA/MMA; SMI). In complete cases (n = 765 [97.6%]), we fitted linear, beta, and Dirichlet regression models to estimate cross-sectional differences in iAs%, MMA%, DMA%, PMI, and SMI per IQR-unit difference in each anthropometric measure, adjusting for drinking water arsenic, age, gestational age, education, living standards index, and plasma folate, vitamin B12, and homocysteine. RESULTS Median (IQR) BMI, subscapular skinfold thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 21.5 (19.4, 23.8) kg/m2, 17.9 (13.2, 24.2) mm, 14.2 (10.2, 18.7) mm, 25.9 (23.8, 28.0) cm, 15.3 (10.5, 20.3) cm2, and 29.9 (25.6, 34.2) cm2, respectively. Median (IQR) iAs%, MMA%, DMA%, PMI, and SMI were 12.0 (9.3, 15.2)%, 6.6 (5.3, 8.3)%, 81.0 (77.1, 84.6)%, 0.6 (0.4, 0.7), and 12.2 (9.3, 15.7), respectively. In both unadjusted and adjusted linear models, all anthropometric measures were negatively associated with iAs%, MMA%, and PMI and positively associated with DMA% and SMI. For example, fully adjusted mean differences (95% CI) in DMA% per IQR-unit difference in BMI, subscapular skinfolds thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 1.72 (1.16, 2.28), 1.58 (0.95, 2.21), 1.74 (1.11, 2.37), 1.45 (0.85, 2.06), 1.70 (1.08, 2.31), and 0.70 (0.13, 1.27) pp, respectively. CONCLUSIONS Anthropometric measures were positively associated with arsenic methylation efficiency among pregnant women in the early second trimester.
Collapse
Affiliation(s)
- Tyler J S Smith
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Sarah Baker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Caryn Kok
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kate Kruczynski
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lindsay N Avolio
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nora Pisanic
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pranay R Randad
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Graz, Austria
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Jessie P Buckley
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Md Hafizur Rahman
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Hasmot Ali
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Rezwanul Haque
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Saijuddin Shaikh
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Towfida J Siddiqua
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Kerry Schulze
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keith P West
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alain B Labrique
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christopher D Heaney
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
25
|
Spaur M, Bostick BC, Chillrud SN, Factor-Litvak P, Navas-Acien A, Nigra AE. Impact of lowering the US maximum contaminant level on arsenic exposure: Differences by race, region, and water arsenic in NHANES 2003-2014. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122047. [PMID: 37331581 PMCID: PMC10529840 DOI: 10.1016/j.envpol.2023.122047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Our objective was to evaluate regional and sociodemographic inequalities in water arsenic exposure reductions associated with the US Environmental Protection Agency's Final Arsenic Rule, which lowered the arsenic maximum contaminant level to 10 μg/L in public water systems. We analyzed 8544 participants from the 2003-14 National Health and Nutrition Examination Survey (NHANES) reliant on community water systems (CWSs). We estimated arsenic exposure from water by recalibrating urinary dimethylarsinate (rDMA) to remove smoking and dietary contributions. We evaluated mean differences and corresponding percent reductions of urinary rDMA comparing subsequent survey cycles to 2003-04 (baseline), stratified by region, race/ethnicity, educational attainment, and tertile of CWS arsenic assigned at the county level. The overall difference (percent reduction) in urine rDMA was 0.32 μg/L (9%) among participants with the highest tertile of CWS arsenic, comparing 2013-14 to 2003-04. Declines in urinary rDMA were largest in regions with the highest water arsenic: the South [0.57 μg/L (16%)] and West [0.46 μg/L, (14%)]. Declines in urinary rDMA levels were significant and largest among Mexican American [0.99 μg/L (26%)] and Non-Hispanic White [0.25 μg/L (10%)] participants. Reductions in rDMA following the Final Arsenic Rule were highest among participants with the highest CWS arsenic concentrations, supporting legislation can benefit those who need it the most, although additional efforts are still needed to address remaining inequalities in CWS arsenic exposure.
Collapse
Affiliation(s)
- Maya Spaur
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA.
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory of Columbia University. 61 Route 9W, Palisades, NY, USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory of Columbia University. 61 Route 9W, Palisades, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health. 722 W 168th St, New York, NY, USA
| |
Collapse
|
26
|
Siddique MAM, Hossain MS, Chakma B, Islam MM, Hossain MM, Shazada NE, Walker TR. Metal and metalloid bioaccumulation in dried red seaweed Hypnea musciformis and health risk assessment for consumers. MARINE POLLUTION BULLETIN 2023; 194:115302. [PMID: 37480790 DOI: 10.1016/j.marpolbul.2023.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
This study measured 22 metal and metalloid concentrations in Hypnea musciformis from the Bakkhali River estuary and Saint Martin's Island, Bangladesh and determined their potential impact on consumption. Student t-tests showed a significant variation in metal concentrations between the two sampling sites (p < 0.05). Mean concentrations of Co (2.49 ± 0.05 mg/kg), Fe (793.29 ± 11.76 mg/kg), Mn (368.72 ± 4.87 mg/kg), Pb (3.82 ± 0.02 mg/kg), V (11.23 ± 0.20 mg/kg) and Zn (16.60 ± 0.28 mg/kg) were higher in samples collected from the Bakkhali River estuary compared to Saint Martin's Island, while mean concentrations of Ca (484.18 ± 4.68 mg/kg), Cd (2.44 ± 0.03 mg/kg), Mg (2112.70 ± 17.80 mg/kg), Mo (1.57 ± 0.06 mg/kg), Sr (2377.57 ± 29.98 mg/kg), and Ti (258.27 ± 4.62 mg/kg) were higher in samples collected from Saint Martin's Island. Eight heavy metals (Pb, Cd, Zn, Cu, Ni, Mn, Cr, Fe) were used to assess potential health risks for adults, but no potential health risk was detected (HQ value>1). This study reveals positive Se-HBV for H. musciformis collected from both sampling sites, indicating no potential risks involved with Hg toxicity.
Collapse
Affiliation(s)
- Mohammad Abdul Momin Siddique
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Department of Oceanography, Noakhali Science and Technology University, Nokha li-3814, Bangladesh.
| | - Md Shakhawate Hossain
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Bibhuti Chakma
- Department of Oceanography, Noakhali Science and Technology University, Nokha li-3814, Bangladesh
| | - Md Mohidul Islam
- Marine Fisheries & Technology Station, Bangladesh Fisheries, Research Institute, Cox's Bazar 4700, Bangladesh
| | - Md Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Nokhali 3814, Bangladesh
| | - Nururshopa Eskander Shazada
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic; Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Nokhali 3814, Bangladesh
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
27
|
Demanelis K, Delgado DA, Tong L, Jasmine F, Ahmed A, Islam T, Parvez F, Kibriya MG, Graziano JH, Ahsan H, Pierce BL. Somatic loss of the Y chromosome is associated with arsenic exposure among Bangladeshi men. Int J Epidemiol 2023; 52:1035-1046. [PMID: 36130227 PMCID: PMC10695470 DOI: 10.1093/ije/dyac176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Arsenic exposure increases the risk of several cancers in humans and contributes to genomic instability. Somatic loss of the Y chromosome (LoY) is a potential biomarker of genomic instability and cancer risk. Smoking is associated with LoY, but few other carcinogens have been investigated. We tested the cross-sectional association between arsenic exposure and LoY in leukocytes among genotyped Bangladeshi men (age 20-70 years) from the Health Effects of Arsenic Longitudinal Study. METHODS We extracted the median of logR-ratios from probes on the Y chromosome (mLRR-chrY) from genotyping arrays (n = 1364) and estimated the percentage of cells with LoY (% LoY) from mLRR-chrY. We evaluated the association between arsenic exposure (measured in drinking water and urine) and LoY using multivariable linear and logistic regression models. The association between LoY and incident arsenic-induced skin lesions was also examined. RESULTS Ten percent of genotyped men had LoY in at least 5% of cells and % LoY increased with age. Among men randomly selected for genotyping (n = 778), higher arsenic in drinking water, arsenic consumed and urinary arsenic were associated with increased % LoY (P = 0.006, P = 0.06 and P = 0.13, respectively). LoY was associated with increased risk of incident skin lesions (P = 0.008). CONCLUSION Arsenic exposure was associated with increased LoY, providing additional evidence that arsenic contributes to genomic instability. LoY was associated with developing skin lesions, a risk factor for cancer, suggesting that LoY may be a biomarker of susceptibility in arsenic-exposed populations. The effect of arsenic on somatic events should be further explored in cancer-prone tissue types.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Dayana A Delgado
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Lin Tong
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Farzana Jasmine
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | | | | | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Muhammad G Kibriya
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
- Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Brandon L Pierce
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
- Comprehensive Cancer Center, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Obluchinskaya ED, Pozharitskaya ON, Gorshenina EV, Zakharov DV, Flisyuk EV, Terninko II, Generalova YE, Shikov AN. Arctic Edible Brown Alga Fucus distichus L.: Biochemical Composition, Antiradical Potential and Human Health Risk. PLANTS (BASEL, SWITZERLAND) 2023; 12:2380. [PMID: 37376005 DOI: 10.3390/plants12122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Fucus distichus L. is the dominant canopy-forming macroalga in the rocky intertidal areas of the Arctic and Subarctic. In the present study, the impact of the geographic location of F. distichus collected in the Baffin Sea (BfS), Norwegian Sea (NS), White Sea (WS), and Barents Sea (BS) on the variations in biochemical composition, antiradical properties, and health risk was evaluated. The accumulation of main carbohydrates (fucoidan, mannitol, and alginic acid) varied from 335 mg/g dry weight (DW) in NS to 445 mg/g DW in BS. The highest level of the sum of polyphenols and flavonoids was found in samples of F. distichus from WS and was located in the following ranking order: BS < BfS < NS < WS. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of seaweed is correlated with its phenolic content. It is notable that in most Arctic F. distichus samples, Cd, Cr, Pb, and Ni were not detected or their concentrations were below the limit of quantification. According to calculated targeted hazard quotient and hazard index values, all studied samples of Arctic F. distichus are safe for daily consumption as they do not pose a carcinogenic risk to the health of adults or children. The results of this study support the rationale for using Arctic F. distichus as a rich source of polysaccharides, polyphenols, and flavonoids with important antiradical activity. We believe that our data will help to effectively use the potential of F. distichus and expand the use of this algae as a promising and safe raw material for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ekaterina D Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
| | - Elena V Gorshenina
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
| | - Denis V Zakharov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
- Zoological Institute RAS (ZIN RAS), 1 Universitetskaya Embankment, 199034 Saint-Petersburg, Russia
| | - Elena V Flisyuk
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| | - Inna I Terninko
- Core Shared Research Facilities "Analytical Center", St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| | - Yuliya E Generalova
- Core Shared Research Facilities "Analytical Center", St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| | - Alexander N Shikov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183038 Murmansk, Russia
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14 Prof. Popov Str., 197376 Saint-Petersburg, Russia
| |
Collapse
|
29
|
Lim SY, Dayal H, Seah SJ, Tan RPW, Low ZE, Laserna AKC, Tan SH, Chan MY, Li SFY. Plasma metallomics reveals potential biomarkers and insights into the ambivalent associations of elements with acute myocardial infarction. J Trace Elem Med Biol 2023; 77:127148. [PMID: 36905853 DOI: 10.1016/j.jtemb.2023.127148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. Using a validated and efficient ICP-MS/MS-based workflow, a total of 30 metallomic features were profiled in a study comprising 101 AMI patients and 66 age-matched healthy controls. The metallomic features include 12 essential elements (Ca, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, Zn), 8 non-essential/toxic elements (Al, As, Ba, Cd, Cr, Ni, Rb, Sr, U, V), and 10 clinically relevant element-pair product/ratios (Ca/Mg, Ca×P, Cu/Se, Cu/Zn, Fe/Cu, P/Mg, Na/K, Zn/Se). Preliminary linear regression with feature selection confirmed smoking status as a predominant determinant for the non-essential/toxic elements, and revealed potential routes of action. Univariate assessments with adjustments for covariates revealed insights into the ambivalent relationships of Cu, Fe, and P with AMI, while also confirming cardioprotective associations of Se. Also, beyond their roles as risk factors, Cu and Se may be involved in the response mechanism in AMI onset/intervention, as demonstrated via longitudinal data analysis with 2 additional time-points (1-/6-month follow-up). Finally, based on both univariate tests and multivariate classification modelling, potentially more sensitive markers measured as element-pair ratios were identified (e.g., Cu/Se, Fe/Cu). Overall, metallomics-based biomarkers may have utility for AMI prediction.
Collapse
Affiliation(s)
- Si Ying Lim
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hiranya Dayal
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Song Jie Seah
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Regina Pei Woon Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhi En Low
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Anna Karen Carrasco Laserna
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; Central Instrument Facility, Office of the Vice Chancellor for Research and Innovation, De La Salle University, 2401 Taft Avenue, Malate, Manila 1004, Philippines
| | - Sock Hwee Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Mark Y Chan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Sam Fong Yau Li
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
30
|
Kapwata T, Wright CY, Reddy T, Street R, Kunene Z, Mathee A. Relations between personal exposure to elevated concentrations of arsenic in water and soil and blood arsenic levels amongst people living in rural areas in Limpopo, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65204-65216. [PMID: 37079235 PMCID: PMC10116462 DOI: 10.1007/s11356-023-26813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Exposure to arsenic even at low levels can lead to adverse health outcomes, however, there is a paucity of research from South Africa in relation to human exposure to arsenic. We investigated long-term exposure of residents in Limpopo province, South Africa, in a cross-sectional study by analysing water, soil and blood arsenic concentrations from two arsenic-exposed (high and medium-low exposure) villages and one non-exposed (control) village. There were statistically significant differences in the distribution of arsenic in water, soil and blood amongst the three sites. The median drinking water arsenic concentration in the high-exposure village was 1.75 µg/L (range = 0.02 to 81.30 µg/L), 0.45 µg/L (range = 0.100 to 6.00 µg/L) in the medium- / low-exposure village and 0.15 µg/L (range = < limit of detection (LOD) to 29.30 µg/L) in the control site. The median soil arsenic concentration in the high-exposure village was 23.91 mg/kg (range = < LOD to 92.10 mg/kg) whilst arsenic concentrations were below the limit of detection in all soil samples collected from the medium-/low-exposure and control villages. In the high-exposure village, the median blood arsenic concentration was 1.6 µg/L (range = 0.7 to 4.2 µg/L); 0.90 µg/L (range = < LOD to 2.5 µg/L) in the medium-/low-exposure village and 0.6 µg/L (range = < LOD to 3.3 µg/L) in the control village. Significant percentages of drinking water, soil and blood samples from the exposed sites were above the internationally recommended guidelines (namely, 10 µg/L, 20 mg/kg and 1 µg/L, respectively). Majority of participants (86%) relied on borehole water for drinking and there was a significant positive correlation between arsenic in blood and borehole water (p-value = 0.031). There was also a statistically significant correlation between arsenic concentrations in participants' blood and soil samples collected from gardens (p-value = 0.051). Univariate quantile regression found that blood arsenic concentrations increased by 0.034 µg/L (95% CI = 0.02-0.05) for each one unit increase in water arsenic concentrations (p < 0.001). After adjusting for age, water source and homegrown vegetable consumption in multivariate quantile regression, participants from the high-exposure site had significantly higher blood concentrations than those in the control site (coefficient: 1.00; 95% CI = 0.25-1.74; p-value = 0.009) demonstrating that blood arsenic is a good biomarker of arsenic exposure. Our findings also provide new evidence for South Africa on the association between drinking water and arsenic exposure, emphasising the need for the provision of potable water for human consumption in areas with high environmental arsenic concentrations.
Collapse
Affiliation(s)
- Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa.
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa.
| | - Caradee Y Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, 0084, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, 0001, South Africa
| | - Tarylee Reddy
- Biostatistics Research Unit, South African Medical Research Council, Durban, 4001, South Africa
- School of Mathematics, Statistics and Computer Science, University of KwaZulu Natal, Pietermaritzburg, 3201, South Africa
| | - Renee Street
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa
- Environment and Health Research Unit, South African Medical Research Council, Durban, 4001, South Africa
| | - Zamantimande Kunene
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa
| | - Angela Mathee
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, 2028, South Africa
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2028, South Africa
- School of Public Health, University of the Witwatersrand, Johannesburg, 2028, South Africa
| |
Collapse
|
31
|
Das S, Ghosh A, Powell MA, Banik P. Meta-analyses of arsenic accumulation in Indica and Japonica rice grains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58827-58840. [PMID: 36997784 DOI: 10.1007/s11356-023-26729-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/26/2023] [Indexed: 05/10/2023]
Abstract
Arsenic (As) is a worldwide concern because of its toxic effects on crop yield and prevalence in the food chain. Rice is consumed by half of the world's population and is known to accumulate As. The present study reviews the available literatures on As accumulation in different subspecies of rice grains (indica, japonica and aromatic) and performs meta-analyses for grain size and texture; these data include 120 studies conducted over the last 15 years across different parts of the world. Aromatic rice varieties accumulate less As with its 95% confidence interval (CI) being 73.90 - 80.94 μg kg-1 which is significantly lower than the As accumulation by either indica or japonica rice varieties with their overall 95% CI being 135.48 - 147.78 μg kg-1 and 204.71 - 212.25 μg kg-1, respectively. Japonica rice varieties accumulate higher As than indica rice grains and within each subspecies polished and/or shorter rice grains accumulated significantly lower As compared to larger and/or unpolished grains; 95% CIs for the polished indica and japonica rice varieties are seen to be 96.33 - 111.11 μg kg-1 and 203.34 - 211.09 μg kg-1, respectively, whereas the same for unpolished varieties are seen to be 215.99 - 238.18 μg kg-1 and 215.27 - 248.63 μg kg-1, respectively. This shows that rice-based As bioaccumulation in humans could be lowered by increased use of aromatic or polished indica rice varieties, followed by the cultivation of shorter polished grains of japonica rice. These findings will be important to inform policy on rice cultivation and dietary uptake of As for a large portion of the global population.
Collapse
Affiliation(s)
- Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Abhik Ghosh
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Michael A Powell
- Department of Renewable Resources, Faculty of Agriculture, Life and Environmental Sciences (ALES), University of Alberta, Edmonton, CA, Canada
| | - Pabitra Banik
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India.
| |
Collapse
|
32
|
Iyer S, Kauffman D, Steinmaus C, Hoover S. Biomonitoring California Protocol for Following up on Elevated Levels of Urinary Arsenic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5269. [PMID: 37047885 PMCID: PMC10094481 DOI: 10.3390/ijerph20075269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES to develop and implement a follow-up protocol for Biomonitoring California study participants with elevated levels of urinary arsenic, particularly inorganic forms. METHODS We selected 20 μg/L as the level of concern for urinary inorganic arsenic; samples with total arsenic ≥20 μg/L were speciated. Participants with elevated inorganic arsenic were notified of their level and invited to participate in a telephone survey to help determine possible exposure sources. We illustrate the protocol in four Biomonitoring California studies, which collected samples from 2010-2013 in locations across the state. RESULTS 48 participants in the four studies had elevated urinary inorganic arsenic levels. Consumption of rice and rice-based products was the most commonly identified potential source of inorganic arsenic exposure. CONCLUSIONS Of 48 participants with elevated inorganic arsenic, 27 would have been missed if we had used the previously published threshold of 50 µg/L total arsenic to identify urine samples for speciation. This protocol fills a gap in the clinical literature by providing a more health-protective approach to identify individuals with elevated urinary inorganic arsenic and help determine potentially significant exposure sources.
Collapse
Affiliation(s)
- Shoba Iyer
- Office of Environmental Health Hazard Assessment (OEHHA), Oakland, CA 94612, USA
- San Francisco Environment Department (SFE), San Francisco, CA 94103, USA
| | - Duyen Kauffman
- California Department of Public Health (CDPH), Richmond, CA 94804, USA
| | - Craig Steinmaus
- Office of Environmental Health Hazard Assessment (OEHHA), Oakland, CA 94612, USA
- Superfund Research Program, University of California, Berkeley, CA 94720, USA
| | - Sara Hoover
- Office of Environmental Health Hazard Assessment (OEHHA), Oakland, CA 94612, USA
| |
Collapse
|
33
|
Avolio LN, Smith TJS, Navas‐Acien A, Kruczynski K, Pisanic N, Randad PR, Detrick B, Fry RC, van Geen A, Goessler W, Karron RA, Klein SL, Ogburn EL, Wills‐Karp M, Alland K, Ayesha K, Dyer B, Islam MT, Oguntade HA, Rahman MH, Ali H, Haque R, Shaikh S, Schulze KJ, Muraduzzaman AKM, Alamgir ASM, Flora MS, West KP, Labrique AB, Heaney CD. The Pregnancy, Arsenic, and Immune Response (PAIR) Study in rural northern Bangladesh. Paediatr Perinat Epidemiol 2023; 37:165-178. [PMID: 36756808 PMCID: PMC10096093 DOI: 10.1111/ppe.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Arsenic exposure and micronutrient deficiencies may alter immune reactivity to influenza vaccination in pregnant women, transplacental transfer of maternal antibodies to the foetus, and maternal and infant acute morbidity. OBJECTIVES The Pregnancy, Arsenic, and Immune Response (PAIR) Study was designed to assess whether arsenic exposure and micronutrient deficiencies alter maternal and newborn immunity and acute morbidity following maternal seasonal influenza vaccination during pregnancy. POPULATION The PAIR Study recruited pregnant women across a large rural study area in Gaibandha District, northern Bangladesh, 2018-2019. DESIGN Prospective, longitudinal pregnancy and birth cohort. METHODS We conducted home visits to enrol pregnant women in the late first or early second trimester (11-17 weeks of gestational age). Women received a quadrivalent seasonal inactivated influenza vaccine at enrolment. Follow-up included up to 13 visits between enrolment and 3 months postpartum. Arsenic was measured in drinking water and maternal urine. Micronutrient deficiencies were assessed using plasma biomarkers. Vaccine-specific antibody titres were measured in maternal and infant serum. Weekly telephone surveillance ascertained acute morbidity symptoms in women and infants. PRELIMINARY RESULTS We enrolled 784 pregnant women between October 2018 and March 2019. Of 784 women who enrolled, 736 (93.9%) delivered live births and 551 (70.3%) completed follow-up visits to 3 months postpartum. Arsenic was detected (≥0.02 μg/L) in 99.7% of water specimens collected from participants at enrolment. The medians (interquartile ranges) of water and urinary arsenic at enrolment were 5.1 (0.5, 25.1) μg/L and 33.1 (19.6, 56.5) μg/L, respectively. Water and urinary arsenic were strongly correlated (Spearman's ⍴ = 0.72) among women with water arsenic ≥ median but weakly correlated (⍴ = 0.17) among women with water arsenic < median. CONCLUSIONS The PAIR Study is well positioned to examine the effects of low-moderate arsenic exposure and micronutrient deficiencies on immune outcomes in women and infants. REGISTRATION NCT03930017.
Collapse
Affiliation(s)
- Lindsay N. Avolio
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Tyler J. S. Smith
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Ana Navas‐Acien
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNew YorkUSA
| | - Kate Kruczynski
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Nora Pisanic
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Pranay R. Randad
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Barbara Detrick
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rebecca C. Fry
- Department of Environmental Sciences and EngineeringUniversity of North Carolina at Chapel Hill Gillings School of Global Public HealthChapel HillNorth CarolinaUSA
| | | | - Walter Goessler
- Institute of Chemistry – Analytical ChemistryUniversity of GrazGrazAustria
| | - Ruth A. Karron
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Sabra L. Klein
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Elizabeth L. Ogburn
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Marsha Wills‐Karp
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Kelsey Alland
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Kaniz Ayesha
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Brian Dyer
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Md. Tanvir Islam
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Habibat A. Oguntade
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Division of Epidemiology and Community HealthUniversity of Minnesota School of Public HealthMinneapolisMinnesotaUSA
| | - Md. Hafizur Rahman
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Hasmot Ali
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Rezwanul Haque
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Saijuddin Shaikh
- JiVitA Maternal and Child Health and Nutrition Research ProjectGaibandhaBangladesh
| | - Kerry J. Schulze
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | | | - A. S. M. Alamgir
- Institute of Epidemiology, Disease Control, and ResearchDhakaBangladesh
| | - Meerjady S. Flora
- Institute of Epidemiology, Disease Control, and ResearchDhakaBangladesh
| | - Keith P. West
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Alain B. Labrique
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Christopher D. Heaney
- Department of Environmental Health and EngineeringJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of International HealthJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | | |
Collapse
|
34
|
Nielsen GH, Heiger-Bernays WJ, Levy JI, White RF, Axelrad DA, Lam J, Chartres N, Abrahamsson DP, Rayasam SDG, Shaffer RM, Zeise L, Woodruff TJ, Ginsberg GL. Application of probabilistic methods to address variability and uncertainty in estimating risks for non-cancer health effects. Environ Health 2023; 21:129. [PMID: 36635712 PMCID: PMC9835218 DOI: 10.1186/s12940-022-00918-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human health risk assessment currently uses the reference dose or reference concentration (RfD, RfC) approach to describe the level of exposure to chemical hazards without appreciable risk for non-cancer health effects in people. However, this "bright line" approach assumes that there is minimal risk below the RfD/RfC with some undefined level of increased risk at exposures above the RfD/RfC and has limited utility for decision-making. Rather than this dichotomous approach, non-cancer risk assessment can benefit from incorporating probabilistic methods to estimate the amount of risk across a wide range of exposures and define a risk-specific dose. We identify and review existing approaches for conducting probabilistic non-cancer risk assessments. Using perchloroethylene (PCE), a priority chemical for the U.S. Environmental Protection Agency under the Toxic Substances Control Act, we calculate risk-specific doses for the effects on cognitive deficits using probabilistic risk assessment approaches. Our probabilistic risk assessment shows that chronic exposure to 0.004 ppm PCE is associated with approximately 1-in-1,000 risk for a 5% reduced performance on the Wechsler Memory Scale Visual Reproduction subtest with 95% confidence. This exposure level associated with a 1-in-1000 risk for non-cancer neurocognitive deficits is lower than the current RfC for PCE of 0.0059 ppm, which is based on standard point of departure and uncertainty factor approaches for the same neurotoxic effects in occupationally exposed adults. We found that the population-level risk of cognitive deficit (indicating central nervous system dysfunction) is estimated to be greater than the cancer risk level of 1-in-100,000 at a similar chronic exposure level. The extension of toxicological endpoints to more clinically relevant endpoints, along with consideration of magnitude and severity of effect, will help in the selection of acceptable risk targets for non-cancer effects. We find that probabilistic approaches can 1) provide greater context to existing RfDs and RfCs by describing the probability of effect across a range of exposure levels including the RfD/RfC in a diverse population for a given magnitude of effect and confidence level, 2) relate effects of chemical exposures to clinical disease risk so that the resulting risk assessments can better inform decision-makers and benefit-cost analysis, and 3) better reflect the underlying biology and uncertainties of population risks.
Collapse
Affiliation(s)
- Greylin H Nielsen
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, T4W, Boston, MA, 02118, USA
| | - Wendy J Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, T4W, Boston, MA, 02118, USA.
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, T4W, Boston, MA, 02118, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, T4W, Boston, MA, 02118, USA
| | | | - Juleen Lam
- Department of Public Health, California State University, East Bay, Hayward, CA, USA
| | - Nicholas Chartres
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitri Panagopoulos Abrahamsson
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Swati D G Rayasam
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel M Shaffer
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Gary L Ginsberg
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
35
|
Riseberg E, Melamed RD, James KA, Alderete TL, Corlin L. Development and application of an evidence-based directed acyclic graph to evaluate the associations between metal mixtures and cardiometabolic outcomes. EPIDEMIOLOGIC METHODS 2023; 12:20220133. [PMID: 37377511 PMCID: PMC10292771 DOI: 10.1515/em-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Objectives Specifying causal models to assess relationships among metal mixtures and cardiometabolic outcomes requires evidence-based models of the causal structures; however, such models have not been previously published. The objective of this study was to develop and evaluate a directed acyclic graph (DAG) diagraming metal mixture exposure and cardiometabolic outcomes. Methods We conducted a literature search to develop the DAG of metal mixtures and cardiometabolic outcomes. To evaluate consistency of the DAG, we tested the suggested conditional independence statements using linear and logistic regression analyses with data from the San Luis Valley Diabetes Study (SLVDS; n=1795). We calculated the proportion of statements supported by the data and compared this to the proportion of conditional independence statements supported by 1,000 DAGs with the same structure but randomly permuted nodes. Next, we used our DAG to identify minimally sufficient adjustment sets needed to estimate the association between metal mixtures and cardiometabolic outcomes (i.e., cardiovascular disease, fasting glucose, and systolic blood pressure). We applied them to the SLVDS using Bayesian kernel machine regression, linear mixed effects, and Cox proportional hazards models. Results From the 42 articles included in the review, we developed an evidence-based DAG with 74 testable conditional independence statements (43 % supported by SLVDS data). We observed evidence for an association between As and Mn and fasting glucose. Conclusions We developed, tested, and applied an evidence-based approach to analyze associations between metal mixtures and cardiometabolic health.
Collapse
Affiliation(s)
- Emily Riseberg
- Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Katherine A. James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University, Boston, MA, USA
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
36
|
Metabolic Changes and Their Associations with Selected Nutrients Intake in the Group of Workers Exposed to Arsenic. Metabolites 2023; 13:metabo13010070. [PMID: 36676995 PMCID: PMC9866863 DOI: 10.3390/metabo13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Arsenic (As) exposure causes numerous adverse health effects, which can be reduced by the nutrients involved in the metabolism of iAs (inorganic As). This study was carried out on two groups of copper-smelting workers: WN, workers with a urinary total arsenic (tAs) concentration within the norm (n = 75), and WH, workers with a urinary tAs concentration above the norm (n = 41). This study aimed to analyze the association between the intake level of the nutrients involved in iAs metabolism and the signal intensity of the metabolites that were affected by iAs exposure. An untargeted metabolomics analysis was carried out on urine samples using liquid chromatography-mass spectrometry, and the intake of the nutrients was analyzed based on 3-day dietary records. Compared with the WN group, five pathways (the metabolism of amino acids, carbohydrates, glycans, vitamins, and nucleotides) with twenty-five putatively annotated metabolites were found to be increased in the WH group. In the WN group, the intake of nutrients (methionine; vitamins B2, B6, and B12; folate; and zinc) was negatively associated with six metabolites (cytosine, D-glucuronic acid, N-acetyl-D-glucosamine, pyroglutamic acid, uridine, and urocanic acid), whereas in the WH group, it was associated with five metabolites (D-glucuronic acid, L-glutamic acid, N-acetyl-D-glucosamine, N-acetylneuraminic acid, and uridine). Furthermore, in the WH group, positive associations between methionine, folate, and zinc intake and the signal intensity of succinic acid and 3-mercaptolactic acid were observed. These results highlight the need to educate the participants about the intake level of the nutrients involved in iAs metabolism and may contribute to further considerations with respect to the formulation of dietary recommendations for people exposed to iAs.
Collapse
|
37
|
Balarastaghi S, Rezaee R, Hayes AW, Yarmohammadi F, Karimi G. Mechanisms of Arsenic Exposure-Induced Hypertension and Atherosclerosis: an Updated Overview. Biol Trace Elem Res 2023; 201:98-113. [PMID: 35167029 DOI: 10.1007/s12011-022-03153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Arsenic is an abundant element in the earth's crust. In the environment and within the human body, this toxic element can be found in both organic and inorganic forms. Chronic exposure to arsenic can predispose humans to cardiovascular diseases including hypertension, stroke, atherosclerosis, and blackfoot disease. Oxidative damage induced by reactive oxygen species is a major player in arsenic-induced toxicity, and it can affect genes expression, inflammatory responses, and/or nitric oxide homeostasis. Exposure to arsenic in drinking water can lead to vascular endothelial dysfunction which is reflected by an imbalance between vascular relaxation and contraction. Arsenic has been shown to inactivate endothelial nitric oxide synthase leading to a reduction of the generation and bioavailability of nitric oxide. Ultimately, these effects increase the risk of vascular diseases such as hypertension and atherosclerosis. The present article reviews how arsenic exposure contributes to hypertension and atherosclerosis development.
Collapse
Affiliation(s)
- Soudabeh Balarastaghi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Fatemeh Yarmohammadi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Karachaliou C, Sgourou A, Kakkos S, Kalavrouziotis I. Arsenic exposure promotes the emergence of cardiovascular diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:467-486. [PMID: 34253004 DOI: 10.1515/reveh-2021-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies conducted in the past decade 2010-2020 refer to the impact of arsenic (As) exposure on cardiovascular risk factors. The arsenic effect on humans is complex and mainly depends on the varying individual susceptibilities, its numerous toxic expressions and the variation in arsenic metabolism between individuals. In this review we present relevant data from studies which document the association of arsenic exposure with various biomarkers, the effect of several genome polymorphisms on arsenic methylation and the underling molecular mechanisms influencing the cardiovascular pathology. The corresponding results provide strong evidence that high and moderate-high As intake induce oxidative stress, inflammation and vessel endothelial dysfunction that are associated with increased risk for cardiovascular diseases (CVDs) and in particular hypertension, myocardial infarction, carotid intima-media thickness and stroke, ventricular arrhythmias and peripheral arterial disease. In addition, As exposure during pregnancy implies risks for blood pressure abnormalities among infants and increased mortality rates from acute myocardial infarction during early adulthood. Low water As concentrations are associated with increased systolic, diastolic and pulse pressure, coronary heart disease and incident stroke. For very low As concentrations the relevant studies are few. They predict a risk for myocardial infarction, stroke and ischemic stroke and incident CVD, but they are not in agreement regarding the risk magnitude.
Collapse
Affiliation(s)
- Christiana Karachaliou
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| | - Argyro Sgourou
- School of Science and Technology, Biology Lab, Hellenic Open University, Patras, Greece
| | - Stavros Kakkos
- Department of Vascular Surgery, Medical School of Patras, University of Patras, Patras, Greece
| | - Ioannis Kalavrouziotis
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| |
Collapse
|
39
|
García Salcedo JJ, Roh T, Nava Rivera LE, Betancourt Martínez ND, Carranza Rosales P, San Miguel Salazar MF, Rivera Guillén MA, Serrano Gallardo LB, Niño Castañeda MS, Guzmán Delgado NE, Millán Orozco J, Ortega Morales N, Morán Martínez J. Comparative Biomonitoring of Arsenic Exposure in Mothers and Their Neonates in Comarca Lagunera, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16232. [PMID: 36498305 PMCID: PMC9739351 DOI: 10.3390/ijerph192316232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Multiple comorbidities related to arsenic exposure through drinking water continue to be public problems worldwide, principally in chronically exposed populations, such as those in the Comarca Lagunera (CL), Mexico. In addition, this relationship could be exacerbated by an early life exposure through the placenta and later through breast milk. This study conducted a comparative analysis of arsenic levels in multiple biological samples from pregnant women and their neonates in the CL and the comparison region, Saltillo. Total arsenic levels in placenta, breast milk, blood, and urine were measured in pregnant women and their neonates from rural areas of seven municipalities of the CL using atomic absorption spectrophotometry with hydride generation methodology. The average concentrations of tAs in drinking water were 47.7 µg/L and 0.05 µg/L in the exposed and non-exposed areas, respectively. Mean levels of tAs were 7.80 µg/kg, 77.04 µg/g-Cr, and 4.30 µg/L in placenta, blood, urine, and breast milk, respectively, in mothers, and 107.92 µg/g-Cr in neonates in the exposed group, which were significantly higher than those in the non-exposed area. High levels of urinary arsenic in neonates were maintained 4 days after birth, demonstrating an early arsenic exposure route through the placenta and breast milk. In addition, our study suggested that breastfeeding may reduce arsenic exposure in infants in arsenic-contaminated areas. Further studies are necessary to follow up on comorbidities later in life in neonates and to provide interventions in this region.
Collapse
Affiliation(s)
- José Javier García Salcedo
- Departamento de Bioquímica y Farmacología, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Lydia Enith Nava Rivera
- Departamento de Biología Celular y Ultraestructura, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Nadia Denys Betancourt Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Pilar Carranza Rosales
- Centro de Investigaciones Biomédicas del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64000, Mexico
| | - María Francisco San Miguel Salazar
- Departamento de Bioquímica y Farmacología, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Mario Alberto Rivera Guillén
- Departamento de Bioquímica y Farmacología, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Luis Benjamín Serrano Gallardo
- Departamento de Bioquímica y Farmacología, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - María Soñadora Niño Castañeda
- Departamento de Biología Celular y Ultraestructura, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| | - Nacny Elena Guzmán Delgado
- División de Investigaciones en Salud, Unidad Médica de Alta Especialidad, Hospital de Cardiología #34, Instituto Mexicano del Seguro Social, Monterrey 64000, Mexico
| | - Jair Millán Orozco
- Unidad Laguna, Universidad Autónoma Agraria Antonio Narro, Raúl López Sánchez, Torreon 27000, Mexico
| | - Natalia Ortega Morales
- División de Investigaciones en Salud, Unidad Médica de Alta Especialidad, Hospital de Cardiología #34, Instituto Mexicano del Seguro Social, Monterrey 64000, Mexico
| | - Javier Morán Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigaciones Biomédicas, Facultad de Medicina, Universidad Autónoma de Coahuila Torreón, Torreón 27000, Mexico
| |
Collapse
|
40
|
Nationwide geospatial analysis of county racial and ethnic composition and public drinking water arsenic and uranium. Nat Commun 2022; 13:7461. [PMID: 36460659 PMCID: PMC9718774 DOI: 10.1038/s41467-022-35185-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
There is no safe level of exposure to inorganic arsenic or uranium, yet recent studies identified sociodemographic and regional inequalities in concentrations of these frequently detected contaminants in public water systems across the US. We analyze the county-level association between racial/ethnic composition and public water arsenic and uranium concentrations from 2000-2011 using geospatial models. We find that higher proportions of Hispanic/Latino and American Indian/Alaskan Native residents are associated with significantly higher arsenic and uranium concentrations. These associations differ in magnitude and direction across regions; higher proportions of non-Hispanic Black residents are associated with higher arsenic and uranium in regions where concentrations of these contaminants are high. The findings from this nationwide geospatial analysis identifying racial/ethnic inequalities in arsenic and uranium concentrations in public drinking water across the US can advance environmental justice initiatives by informing regulatory action and financial and technical support to protect communities of color.
Collapse
|
41
|
Yim G, Reynaga L, Nunez V, Howe CG, Romano ME, Chen Y, Karagas MR, Toledo-Corral C, Farzan SF. Perinatal Metal and Metalloid Exposures and Offspring Cardiovascular Health Risk. Curr Environ Health Rep 2022; 9:714-734. [PMID: 35980568 PMCID: PMC11559654 DOI: 10.1007/s40572-022-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Toxic metal exposures have been associated with cardiovascular disease in adults and growing evidence suggests metal exposures also adversely affect cardiovascular phenotypes in childhood and adolescence. However, to our knowledge, the influence of perinatal metals exposure, particularly metal mixtures, in relation to cardiovascular-related outcomes have not been comprehensively reviewed. RECENT FINDINGS We summarized 17 contemporary studies (2017-2021) that investigated the impact of perinatal metal exposures on measures of cardiovascular health in children. Accumulating evidence supports a potential adverse impact of perinatal Pb exposure on BP in children. Fewer recent studies have focused on perinatal As, Hg, and Cd; thus, the cardiovascular impacts of these metals are less clear. Studies of metal mixtures demonstrate that interactions between metals may be complex and have identified numerous understudied elements and essential metals, including Mo, Co, Ni, Se, Zn, and Mn, which may influence cardiovascular risk. A key question that remains is whether perinatal metals exposure influences cardiovascular health into adulthood. Comparisons across studies remain challenging due to several factors, including differences in the timing of exposure/outcome assessments and exposure biomarkers, as well as variability in exposure levels and mixture compositions across populations. Future studies longitudinally investigating trajectories of cardiovascular outcomes could help determine the influence of perinatal metals exposure on long-term effects of clinical relevance in later life and whether interventions, which reduce metals exposures during this key developmental window, could alter disease development.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Lorena Reynaga
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Velia Nunez
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yu Chen
- Department of Population Health, NYU School of Medicine, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia Toledo-Corral
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA.
| |
Collapse
|
42
|
Nigra AE, Cazacu-De Luca A, Navas-Acien A. Socioeconomic vulnerability and public water arsenic concentrations across the US. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120113. [PMID: 36084737 PMCID: PMC9811132 DOI: 10.1016/j.envpol.2022.120113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
Inorganic arsenic is a known human carcinogen and is routinely detected in US community water systems (CWSs). Inequalities in CWS arsenic exist across broad sociodemographic subgroups. Our objective was to evaluate the county-level association between socioeconomic vulnerability and CWS arsenic concentrations across the US. We evaluated previously developed, population-weighted CWS arsenic concentrations (2006-2011) and three socioeconomic domains (the proportion of adults with a high school diploma, median household income, and the Centers for Disease Control and Prevention's overall socioeconomic vulnerability score) for 2,604 conterminous US counties. We used spatial lag models and evaluated the adjusted geometric mean ratio (GMR) of CWS arsenic concentrations per higher socioeconomic domain score corresponding to the interquartile range, and also evaluated flexible quadratic spline models. We also stratified by region and by United States Department of Agriculture Rural-Urban Continuum Codes to assess potential effect measure modification by region and rurality. Associations between socioeconomic vulnerability and CWS arsenic were modified by region and rurality and specific to socioeconomic domain. The fully adjusted GMR (95% CIs) of CWS arsenic per interquartile range higher proportion of adults with a high school education was 0.83 (0.71, 0.98) in the Southwest (corresponding to 17% lower arsenic with higher education), 0.82 (0.71, 0.94) in the Eastern Midwest (18% lower), and 0.65 (0.31, 1.36) in New England (35% lower). Associations between median household income and CWS arsenic were largely null. Higher overall socioeconomic vulnerability was significantly associated with lower CWS arsenic, but only in counties in the Central Midwest and those with total populations less than 20,000. Findings may reflect regional/local differences in both socioeconomic/socio-cultural context and public drinking water regulatory efforts. Across the US, individual domains of socioeconomic vulnerability (especially educational attainment) are more strongly associated with inequalities in CWS arsenic than the complex overall socioeconomic vulnerability index.
Collapse
Affiliation(s)
- Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, 11th Floor Rm 1107A, New York, 10032, NY, USA.
| | - Adina Cazacu-De Luca
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, 11th Floor Rm 1107A, New York, 10032, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, 11th Floor Rm 1107A, New York, 10032, NY, USA
| |
Collapse
|
43
|
Lin Y, Yuan Y, Ouyang Y, Wang H, Xiao Y, Zhao X, Yang H, Li X, Guo H, He M, Zhang X, Xu G, Qiu G, Wu T. Metabolome-Wide Association Study of Multiple Plasma Metals with Serum Metabolomic Profile among Middle-to-Older-Aged Chinese Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16001-16011. [PMID: 36269707 PMCID: PMC9671050 DOI: 10.1021/acs.est.2c05547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Metal exposure has been associated with risk of various cardio-metabolic disorders, and investigation on the association between exposure to multiple metals and metabolic responses may reveal novel clues to the underlying mechanisms. Based on a metabolome-wide association study of 17 plasma metals with untargeted metabolomic profiling of 189 serum metabolites among 1992 participants within the Dongfeng-Tongji cohort, we replicated two metal-associated pathways, linoleic acid metabolism and aminoacyl-tRNA biosynthesis, with novel metal associations (false discovery rate, FDR < 0.05), and we also identified two novel pathways, including biosynthesis of unsaturated fatty acids and alpha-linolenic acid metabolism, as associated with metal exposure (FDR < 0.05). Moreover, two-way orthogonal partial least-squares analysis showed that five metabolites, including aspartylphenylalanine, free fatty acid 14:1, uridine, carnitine C14:2, and LPC 18:2, contributed most to the joint covariation between the two data matrices (12.3%, 8.3%, 8.0%, 7.4%, and 7.3%, respectively). Further BKMR analysis showed significant positive joint associations of plasma Al, As, Ba, and Zn with aspartylphenylalanine and of plasma Ba, Co, Mn, and Pb with carnitine C14:2, when all the metals were at the 55th percentiles or above, compared with the median. We also found significant interactions between As and Ba in the association with aspartylphenylalanine (P for interaction = 0.048) and between Ba and Pb in the association with carnitine C14:2 (P for interaction < 0.001). Together, these findings may provide new insights into the mechanisms underlying the adverse health effects induced by metal exposure.
Collapse
Affiliation(s)
- Yuhui Lin
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Yuan
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Ouyang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Xiao
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinjie Zhao
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Handong Yang
- Department
of Cardiovascular Disease, Dongfeng Central
Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiulou Li
- Department
of Cardiovascular Disease, Dongfeng Central
Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Huan Guo
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomin Zhang
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guowang Xu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaokun Qiu
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tangchun Wu
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
44
|
Huang J, El-Kersh K, Mann KK, James KA, Cai L. Overview of the cardiovascular effects of environmental metals: New preclinical and clinical insights. Toxicol Appl Pharmacol 2022; 454:116247. [PMID: 36122736 PMCID: PMC9941893 DOI: 10.1016/j.taap.2022.116247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/06/2023]
Abstract
Environmental causes of cardiovascular diseases (CVDs) are global health issues. In particular, an association between metal exposure and CVDs has become evident but causal evidence still lacks. Therefore, this symposium at the Society of Toxicology 2022 annual meeting addressed epidemiological, clinical, pre-clinical animal model-derived and mechanism-based evidence by five presentations: 1) An epidemiologic study on potential CVD risks of individuals exposed occupationally and environmentally to heavy metals; 2) Both presentations of the second and third were clinical studies focusing on the potential link between heavy metals and pulmonary arterial hypertension (PAH), by presenting altered blood metal concentrations of both non-essential and essential metals in the patients with PAH and potential therapeutic approaches; 3) Arsenic-induced atherosclerosis via inflammatory cells in mouse model; 4) Pathogenic effects on the heart by adult chronic exposure to very low-dose cadmium via epigenetic mechanisms and whole life exposure to low dose cadmium via exacerbating high-fat-diet-lipotoxicity. This symposium has brought epidemiologists, therapeutic industry, physicians, and translational scientists together to discuss the health risks of occupational and environmental exposure to heavy metals through direct cardiotoxicity and indirect disruption of homeostatic mechanisms regulating essential metals, as well as lipid levels. The data summarized by the presenters infers a potential causal link between multiple metals and CVDs and defines differences and commonalities. Therefore, summary of these presentations may accelerate the development of efficient preventive and therapeutic strategies by facilitating collaborations among multidisciplinary investigators.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Cardiovascular Innovation Institute, Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Karim El-Kersh
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koren K Mann
- Departments of Pharmacology & Therapeutics and Oncology and Medicine, McGill University, Canada; Segal Cancer Center, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Katherine A James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA,.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Pediatric Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
45
|
Exploring the Link Between the Serum/Blood Levels of Heavy Metals (Pb, As, Cd, and Cu) and 2 Novel Biomarkers of Cardiovascular Stress (Growth Differentiation Factor 15 and Soluble Suppression of Tumorigenicity 2) in Copper Smelter Workers. J Occup Environ Med 2022; 64:976-984. [PMID: 35902369 DOI: 10.1097/jom.0000000000002624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Studying the association between the occupational exposure to Pb, As, Cd, and Cu with the serum levels of 2 novel biomarkers of cardiovascular stress; growth differentiation factor 15 and soluble suppression of tumorigenicity 2, in some Egyptian Cu smelter workers. METHODS Forty-one exposed workers and 41 administrative controls were clinically evaluated. Serum/blood levels of heavy metals and biomarkers were measured for both groups. RESULTS The smelter workers showed significantly elevated levels of heavy metals and biomarkers compared with controls. The elevated serum levels of both biomarkers were significantly and positively correlated with each other, the levels of heavy metals, and the duration of employment of the exposed workers. CONCLUSIONS There was a significant association between the levels of heavy metals and both biomarkers among the smelter workers. Further prospective studies should be performed.
Collapse
|
46
|
Siddique MAM, Hossain MS, Islam MM, Rahman M, Kibria G. Heavy metals and metalloids in edible seaweeds of Saint Martin's Island, Bay of Bengal, and their potential health risks. MARINE POLLUTION BULLETIN 2022; 181:113866. [PMID: 35759901 DOI: 10.1016/j.marpolbul.2022.113866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The present study aimed to assess the levels of heavy metals and metalloids present in six seaweeds and their potential impact on consumption. The highest concentration of 11 metals, i.e., Be (0.47 mg/kg), Co (4.34 mg/kg), Cr (23.46 mg/kg), Cu (11.96 mg/kg), Fe (2290.26 mg/kg), Li (11.55 mg/kg), Ni (13.75 mg/kg), Pb (6.67 mg/kg), Ti (736.62 mg/kg), Tl (0.14 mg/kg), and V (33.09 mg/kg) were observed in Enteromorpha intestinalis (green seaweeds). Besides, the highest concentration of Ca (1071.09 mg/kg), Cd (5.81 mg/kg), Mn (1003.41 mg/kg), Sr (2838.86 mg/kg), and Zn (41.95 mg/kg) were found in Padina tetrastromatica (brown seaweeds). Eight metals (Pb, Cd, Zn, Cu, Ni, Mn, Cr, Fe) have been used to assess the potential health risk for adults, but no potential health risk was detected (HQ value > 1). The HI value of E. intestinalis and P. tetrastromatica were >1, implying that these two seaweeds are not safe for human consumption as there is a carcinogenic health risk for adults.
Collapse
Affiliation(s)
- Mohammad Abdul Momin Siddique
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Md Shakhawate Hossain
- Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrogenases, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Md Mohidul Islam
- Marine Fisheries & Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar 4700, Bangladesh
| | - Mahfuzur Rahman
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | | |
Collapse
|
47
|
Bottled and Well Water Quality in a Small Central Appalachian Community: Household-Level Analysis of Enteric Pathogens, Inorganic Chemicals, and Health Outcomes in Rural Southwest Virginia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148610. [PMID: 35886462 PMCID: PMC9319903 DOI: 10.3390/ijerph19148610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
Consumption of unsafe drinking water is associated with a substantial burden of disease globally. In the US, ~1.8 million people in rural areas lack reliable access to safe drinking water. Our objective was to characterize and assess household-level water sources, water quality, and associated health outcomes in Central Appalachia. We collected survey data and water samples (tap, source, and bottled water) from consenting households in a small rural community without utility-supplied water in southwest Virginia. Water samples were analyzed for physicochemical parameters, total coliforms, E. coli, nitrate, sulfate, metals (e.g., arsenic, cadmium, lead), and 30+ enteric pathogens. Among the 69% (n = 9) of households that participated, all had piped well water, though 67% (n = 6) used bottled water as their primary drinking water source. Total coliforms were detected in water samples from 44.4% (n = 4) of homes, E. coli in one home, and enteric pathogens (Aeromonas, Campylobacter, Enterobacter) in 33% (n = 3) of homes. Tap water samples from 11% (n = 1) of homes exceeded the EPA MCL for nitrate, and 33% (n = 3) exceeded the EPA SMCL for iron. Among the 19 individuals residing in study households, reported diarrhea was 25% more likely in homes with measured E. coli and/or specific pathogens (risk ratio = 1.25, cluster-robust standard error = 1.64, p = 0.865). Although our sample size was small, our findings suggest that a considerable number of lower-income residents without utility-supplied water in rural areas of southwest Virginia may be exposed to microbiological and/or chemical contaminants in their water, and many, if not most, rely on bottled water as their primary source of drinking water.
Collapse
|
48
|
Assessment of Arsenic in Hair of the Inhabitants of East Croatia—Relationship to Arsenic Concentrations in Drinking Water. WATER 2022. [DOI: 10.3390/w14101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The problem of elevated arsenic concentrations in water and environment is an increasing public health concern. The aim of the study was to assess the arsenic content in human hair in selected areas of eastern Croatia and to compare them with measured values after installation of a new water supply system. The hair samples were taken in the areas of wider Osijek and Vinkovci area and analyzed using the ICP–MS method. These data were also compared with data for Vinkovci previously published in 2004. Depending on the investigated area, the median concentrations ranged from 0.02 to 0.9 µg g−1, whereby this last value exceeded the upper range of the reference value (0.319 µg g−1). The arsenic concentrations from the Našice, Osijek and Vinkovci areas were within or slightly above the maximum allowed reference range. The highest median values in hair samples were detected in Čepin, with arsenic-contaminated potable water, while in areas where the water source was changed, the values were significantly lower. The results add to the conclusion that there has been significant reduction in hair arsenic concentrations in the population that was given access to clean, uncontaminated water from other regional sources.
Collapse
|
49
|
Bao QJ, Zhao K, Guo Y, Wu XT, Yang JC, Yang MF. Environmental toxic metal contaminants and risk of stroke: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32545-32565. [PMID: 35190994 DOI: 10.1007/s11356-022-18866-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The relationship between toxic metals in the environment and clinical stroke risk remains unclear, although their role as immunotoxicants and carcinogens has been well established. We conducted a systematic review of the relationship between five metals (arsenic, mercury, copper, cadmium, and lead) and stroke. First, we comprehensively searched 3 databases (Pubmed, EMBASE, and Cochrane) from inception until June 2021. Random-effects meta-analyses, pooled relative risks (RR) and 95% confidence intervals (CI) were applied to evaluate the effect value. We finally identified 38 studies involving 642,014 non-overlapping participants. Comparing the highest vs. lowest baseline levels, chronic exposure to lead (RR = 1.07; 95%CI,1.00-1.14), cadmium (RR = 1.30; 95%CI,1.13-1.48), and copper (RR = 1.19; 95%CI,1.04-1.36) were significantly associated with stroke risks. However, the other two metals (arsenic and mercury) had less effect on stroke risk. Further analysis indicated that the association was likely in a metal dose-dependent manner. The results may further support the possibility that environmental toxic metal contaminants in recent years are associated with the increased risk of stroke.
Collapse
Affiliation(s)
- Qiang-Ji Bao
- Graduate School, Qinghai University, Xining, 810016, Qinghai, China
| | - Kai Zhao
- Graduate School, Qinghai University, Xining, 810016, Qinghai, China
| | - Yu Guo
- Graduate School, Qinghai University, Xining, 810016, Qinghai, China
| | - Xin-Ting Wu
- Graduate School, Qinghai University, Xining, 810016, Qinghai, China
| | - Jin-Cai Yang
- Graduate School, Qinghai University, Xining, 810016, Qinghai, China
| | - Ming-Fei Yang
- Department of Neurosurgery, Qinghai Provincial People's Hospital, Xining, 810007, Qinghai, China.
| |
Collapse
|
50
|
Burden of Coronary Heart Disease and Cancer from Dietary Exposure to Inorganic Arsenic in Adults in China, 2016. Ann Glob Health 2022; 88:28. [PMID: 35582410 PMCID: PMC9053568 DOI: 10.5334/aogh.3620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background and Objectives: Inorganic arsenic (iAs) can cause a wide range of health problems, including coronary heart disease (CHD) and lung, bladder, and skin cancer. Although dietary iAs intake is the primary source of iAs, the burden of CHD and cancers from dietary iAs exposure in Chinese adults has not been well known. Methods: To estimate the iAs exposure level in Chinese adults’ diet, we systematically collected food-specific iAs concentrations in China from Chinese and English literature databases during 2000-2020. Food consumption was extracted from two nationwide food and nutrition surveys in China. The population attributable fraction was calculated based on the dose-response relationship between iAs and CHD risk. Combining the 2016 Chinese tumor registry data, we calculated the annual incidence of cancer from dietary iAs exposure to measure the disability-adjusted life year (DALY) in 2016. Findings: The total amount of daily foodborne iAs intake was 0.55 μg/kg bw/day among Chinese adults. The DALY of foodborne iAs-associated CHD was 3,017,510, which accounted for 10.18% of total CHD DALY in Chinese adults in 2016. Moreover, the carcinogenic DALY for lung cancer, bladder cancer, and skin cancer of Chinese residents in 2016 related to dietary iAs was 314.24, 9.89, and 167.32 thousand, accounting for 2.05%, 1.70%, and 35.5% of the total cancer burden, respectively. Conclusions: Our findings suggested that dietary iAs exposure causes a substantial disease burden in Chinese adults. More efforts for foodborne iAs control are critical to reducing the disease burden of CHD and cancer in China and other countries with similar dietary patterns.
Collapse
|