1
|
Liang W, Guo H, Li L, Tan W, Liu J, Hu X, Wang Y, Zhou S. Ferroptosis: a new target for depression prevention and treatment. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02912-4. [PMID: 40317298 DOI: 10.1007/s00702-025-02912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/06/2025] [Indexed: 05/07/2025]
Abstract
Depression, a significant mental health issue, is one of the diseases with the highest disability rates worldwide. The exact etiology of depression remains undetermined, complicating the development of treatment strategies targeting specific mechanisms, and there is currently no effective cure. In this context, ferroptosis may represent a breakthrough in the understanding of depression. Ferroptosis is primarily associated with iron accumulation and lipid peroxidation, and recent studies have revealed its potential association with depression. Clinical evidence suggests that ferroptosis may influence the development and function of the hippocampus through interactions with neuroinflammation. Activated microglia, astrocytes, and neurons are involved in ferroptosis. This review summarizes recent findings on how ferroptosis contributes to depression, including glutathione peroxidase 4 (GPX4), nuclear factor-erythroid 2-related factor 2 (Nrf2), phase separation, and neuroinflammatory pathways, allowing the proposal of some new hypotheses. We hope that exploring the role of ferroptosis in the mechanism of depression will offer a new perspective on the complex biological basis of depression and provide theoretical support for the development of new therapeutic methods.
Collapse
Affiliation(s)
- Wenxuan Liang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China
- Basic Medical College, Guilin Medical College, Guilin, 541199, China
| | - Haowei Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China
- Basic Medical College, Guilin Medical College, Guilin, 541199, China
| | - Luyao Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China
- Basic Medical College, Guilin Medical College, Guilin, 541199, China
| | - Wupeng Tan
- Department of Gynaecology, Maternal and Child Health Hospital of Hengyang, Hengyang, 421001, China
| | - Jianfeng Liu
- Department of Pediatrics, Second Affiliated Hospital of South China University, Hengyang, 421001, China
| | - Xiaoli Hu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China
- Basic Medical College, Guilin Medical College, Guilin, 541199, China
| | - Yuchu Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China.
- Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin, 541199, China.
- Basic Medical College, Guilin Medical College, Guilin, 541199, China.
| |
Collapse
|
2
|
Hastings N, Rahman S, Stempor PA, Wayland MT, Kuan WL, Kotter MRN. Connexin 43 is downregulated in advanced Parkinson's disease in multiple brain regions which correlates with symptoms. Sci Rep 2025; 15:10250. [PMID: 40133513 PMCID: PMC11937269 DOI: 10.1038/s41598-025-94188-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition with the greatest increase in disability globally. Dysfunction of dopaminergic neurons is a well-known PD hallmark; however, changes in astrocytes also accompany PD progression. One aspect of astrocyte biology not yet investigated in PD is their network coupling. To assess this, we focussed on the major astrocytic gap junctional protein connexin 43 (Cx43, GJA1). A dataset of 20 post-mortem late-stage PD brain tissue samples from the cortex and basal ganglia alongside 20 age-matched control sets was collected, accompanied by clinical histories and data on α-synuclein, tau, and amyloid-β pathology. Protein levels and intracellular distribution of Cx43 and other key markers were measured. Computational re-analysis of open-source mRNA sequencing datasets from the striatum and midbrain complemented the original findings. Two novel observations were made: first, profound Cx43 loss in late-stage PD, and second, differential manifestation of this pathology in different brain areas, including those outside of the midbrain substantia nigra-the region that is most commonly used in PD research. Cx43 downregulation in specific regions correlated with non-motor symptoms of PD such as depression and sleep disturbance. Astrocytic tree simplification in the frontal cortex was further observed. In conclusion, astrocytic network decoupling through Cx43 downregulation in PD may contribute to astrocytic dysfunction and PD symptom development.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK.
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Saifur Rahman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| | | | - Matthew T Wayland
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Alborada Drug Discovery Institute, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
| |
Collapse
|
3
|
Lu CL, Ren J, Cao X. An Astroglial Basis of Major Depressive Disorder: Molecular, Cellular, and Circuit Features. Biol Psychiatry 2025; 97:217-226. [PMID: 39084500 DOI: 10.1016/j.biopsych.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Major depressive disorder is a common psychiatric disorder and a leading cause of disability worldwide. Astrocytes play a role in the maintenance of the function of the central nervous system, both physiologically and pathologically. Accumulated evidence indicates that the astrocyte is an important contributor to the pathophysiology of major depressive disorder including blood-brain barrier integrity, gap junctions, gliotransmission, glutamate homeostasis, and energy metabolism. Here, we comprehensively summarize an astroglial basis for major depressive disorder based on molecular, cellular, and circuit properties, suggesting that astrocytes appear to be highly sensitive to stress and are likely to be uniquely positioned to integrate peripheral and central stress responses.
Collapse
Affiliation(s)
- Cheng-Lin Lu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
5
|
Wulaer B, Holtz MA, Nagai J. Homeostasis to Allostasis: Prefrontal Astrocyte Roles in Cognitive Flexibility and Stress Biology. ADVANCES IN NEUROBIOLOGY 2024; 39:137-163. [PMID: 39190074 DOI: 10.1007/978-3-031-64839-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In the intricate landscape of neurophysiology, astrocytes have been traditionally cast as homeostatic cells; however, their mechanistic involvement in allostasis-particularly how they modulate the adaptive response to stress and its accumulative impact that disrupts cognitive functions and precipitates psychiatric disorders-is now starting to be unraveled. Here, we address the gap by positing astrocytes as crucial allostatic players whose molecular adaptations underlie cognitive flexibility in stress-related neuropsychiatric conditions. We review how astrocytes, responding to stress mediators such as glucocorticoid and epinephrine/norepinephrine, undergo morphological and functional transformations that parallel the maladaptive changes. Our synthesis of recent findings reveals that these glial changes, especially in the metabolically demanding prefrontal cortex, may underlie some of the neuropsychiatric mechanisms characterized by the disruption of energy metabolism and astrocytic networks, compromised glutamate clearance, and diminished synaptic support. We argue that astrocytes extend beyond their homeostatic role, actively participating in the brain's allostatic response, especially by modulating energy substrates critical for cognitive functions.
Collapse
Affiliation(s)
- Bolati Wulaer
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mika A Holtz
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
6
|
Lei L, Wang YT, Hu D, Gai C, Zhang Y. Astroglial Connexin 43-Mediated Gap Junctions and Hemichannels: Potential Antidepressant Mechanisms and the Link to Neuroinflammation. Cell Mol Neurobiol 2023; 43:4023-4040. [PMID: 37875763 PMCID: PMC11407732 DOI: 10.1007/s10571-023-01426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023]
Abstract
Major depression disorder (MDD) is a neuropsychiatric disorder associated with a high suicide rate and a higher disability rate than any other disease. Evidence suggests that the pathological mechanism of MDD is related to astrocyte dysfunction. Depression is mainly associated with the expression of connexin 43 (Cx43) and the function of Cx43-mediated gap junctions and hemichannels in astrocytes. Moreover, neuroinflammation has been a hotspot in research on the pathology of depression, and Cx43-mediated functions are thought to be involved in neuroinflammation-related depression. However, the specific mechanism of Cx43-mediated functions in neuroinflammation-related depression pathology remains unclear. Therefore, this review summarizes and discusses Cx43 expression, the role of gap junction intercellular communication, and its relationship with neuroinflammation in depression. This review also focuses on the effects of antidepressant drugs (e.g., monoamine antidepressants, psychotropic drugs, and N-methyl-D-aspartate receptor antagonists) on Cx43-mediated function and provides evidence for Cx43 as a novel target for the treatment of MDD. The pathogenesis of MDD is related to astrocyte dysfunction, with reduced Cx43 expression, GJ dysfunction, decreased GJIC and reduced BDNF expression in the depressed brain. The effect of Cx43 on neuroinflammation-related depression involving inflammatory cytokines, glutamate excitotoxicity, and HPA axis dysregulation. Antidepressant drugs targeting Cx43 can effectively relieve depressive symptoms.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Cong Gai
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
7
|
Miguel-Hidalgo JJ. Neuroprotective astroglial response to neural damage and its relevance to affective disorders. EXPLORATION OF NEUROPROTECTIVE THERAPY 2023; 3:328-345. [PMID: 37920189 PMCID: PMC10622120 DOI: 10.37349/ent.2023.00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
Astrocytes not only support neuronal function with essential roles in synaptic neurotransmission, action potential propagation, metabolic support, or neuroplastic and developmental adaptations. They also respond to damage or dysfunction in surrounding neurons and oligodendrocytes by releasing neurotrophic factors and other molecules that increase the survival of the supported cells or contribute to mechanisms of structural and molecular restoration. The neuroprotective responsiveness of astrocytes is based on their ability to sense signals of degeneration, metabolic jeopardy and structural damage, and on their aptitude to locally deliver specific molecules to remedy threats to the molecular and structural features of their cellular partners. To the extent that neuronal and other glial cell disturbances are known to occur in affective disorders, astrocyte responsiveness to those disturbances may help to better understand the roles astrocytes play in affective disorders. The astrocytic sensing apparatus supporting those responses involves receptors for neurotransmitters, purines, cell adhesion molecules and growth factors. Astrocytes also share with the immune system the capacity of responding to cytokines released upon neuronal damage. In addition, in responses to specific signals astrocytes release unique factors such as clusterin or humanin that have been shown to exert potent neuroprotective effects. Astrocytes integrate the signals above to further deliver structural lipids, removing toxic metabolites, stabilizing the osmotic environment, normalizing neurotransmitters, providing anti-oxidant protection, facilitating synaptogenesis and acting as barriers to contain varied deleterious signals, some of which have been described in brain regions relevant to affective disorders and related animal models. Since various of the injurious signals that activate astrocytes have been implicated in different aspects of the etiopathology of affective disorders, particularly in relation to the diagnosis of depression, potentiating the corresponding astrocyte neuroprotective responses may provide additional opportunities to improve or complement available pharmacological and behavioral therapies for affective disorders.
Collapse
|
8
|
Sun N, Cui WQ, Min XM, Zhang GM, Liu JZ, Wu HY. A new perspective on hippocampal synaptic plasticity and post-stroke depression. Eur J Neurosci 2023; 58:2961-2984. [PMID: 37518943 DOI: 10.1111/ejn.16093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
Post-stroke depression, a common complication after stroke, severely affects the recovery and quality of life of patients with stroke. Owing to its complex mechanisms, post-stroke depression treatment remains highly challenging. Hippocampal synaptic plasticity is one of the key factors leading to post-stroke depression; however, the precise molecular mechanisms remain unclear. Numerous studies have found that neurotrophic factors, protein kinases and neurotransmitters influence depressive behaviour by modulating hippocampal synaptic plasticity. This review further elaborates on the role of hippocampal synaptic plasticity in post-stroke depression by summarizing recent research and analysing possible molecular mechanisms. Evidence for the correlation between hippocampal mechanisms and post-stroke depression helps to better understand the pathological process of post-stroke depression and improve its treatment.
Collapse
Affiliation(s)
- Ning Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Man Min
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia-Zheng Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Yao L, He F, Zhao Q, Li D, Fu S, Zhang M, Zhang X, Zhou B, Wang L. Spatial Multiplexed Protein Profiling of Cardiac Ischemia-Reperfusion Injury. Circ Res 2023; 133:86-103. [PMID: 37249015 DOI: 10.1161/circresaha.123.322620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Reperfusion therapy is critical to myocardial salvage in the event of a myocardial infarction but is complicated by ischemia-reperfusion injury (IRI). Limited understanding of the spatial organization of cardiac cells, which governs cellular interaction and function, has hindered the search for targeted interventions minimizing the deleterious effects of IRI. METHODS We used imaging mass cytometry to characterize the spatial distribution and dynamics of cell phenotypes and communities in the mouse left ventricle following IRI. Heart sections were collected from 12 cardiac segments (basal, mid-cavity, apical, and apex of the anterior, lateral, and inferior wall) and 8 time points (before ischemia [I-0H], and postreperfusion [R-0H, R-2H, R-6H, R-12H, R-1D, R-3D, R-7D]), and stained with 29 metal-isotope-tagged antibodies. Cell community analysis was performed on reconstructed images, and the most disease-relevant cell type and target protein were selected for intervention of IRI. RESULTS We obtained a total of 251 multiplexed images, and identified 197 063 single cells, which were grouped into 23 distinct cell communities based on the structure of cellular neighborhoods. The cellular architecture was heterogeneous throughout the ventricular wall and exhibited swift changes following IRI. Analysis of proteins with posttranslational modifications in single cells unveiled 13 posttranslational modification intensity clusters and highlighted increased H3K9me3 (tri-methylated lysine 9 of histone H3) as a key regulatory response in endothelial cells during the middle stage of IRI. Erasing H3K9 methylation, by silencing its methyltransferase Suv39h1 or overexpressing its demethylase Kdm4d in isolated endothelial cells, attenuated cardiac dysfunction and pathological remodeling following IRI. in vitro, H3K9me3 binding significantly increased at endothelial cell function-related genes upon hypoxia, suppressing tube formation, which was rescued by inhibiting H3K9me3. CONCLUSIONS We mapped the spatiotemporal heterogeneity of cellular phenotypes in the adult heart upon IRI, and uncovered H3K9me3 in endothelial cells as a potential therapeutic target for alleviating pathological remodeling of the heart following myocardial IRI.
Collapse
Affiliation(s)
- Luyan Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Funan He
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Bejing (Q.Z., B.Z., L.W.)
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Shufang Fu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Mingzhi Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Xingzhong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (L.Y., F.H., Q.Z., D.L., S.F., M.Z., X.Z., B.Z., L.W.)
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Bejing (Q.Z., B.Z., L.W.)
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Bejing (Q.Z., B.Z., L.W.)
- Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing (L.W.)
| |
Collapse
|
10
|
Wu X, Li L, Zhou B, Wang J, Shao W. Connexin 43 regulates astrocyte dysfunction and cognitive deficits in early life stress-treated mice. Exp Brain Res 2023; 241:1207-1214. [PMID: 36939885 DOI: 10.1007/s00221-023-06587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2023]
Abstract
Early life stress such as maternal separation (MS), is a major risk factor for developing psychiatric disorders in adulthood. Connexin 43 (CX43), the main type of connexins expressed in astrocytes, has been indicated to participate in depression disorders. Nevertheless, the role of CX43 in MS-induced cognitive impairment and astrocyte dysfunction is unclear. Neonatal C57BL/6 mice were exposed to MS to mimic early life stress. Adeno-associated virus carrying CX43 was inoculated into mice for CX43 overexpression. Sucrose preference test, forced swim test and Morris water maze were performed for evaluating depression-like behaviors and spatial learning and memory of mice in adulthood. Real time quantitative polymerase chain reaction was conducted to detect CX43 mRNA expression in mouse brain. Immunofluorescence staining and western blotting were used for measuring expression levels of astrocytic markers in murine hippocampal dentate gyrus. The results showed that overexpressing CX43 attenuated MS exposure-induced depression-like behaviors and decrease in spatial learning and memory in mice. Upregulating CX43 alleviated MS exposure-induced downregulation of astrocytic markers. Collectively, CX43 overexpression attenuates cognitive deficits and astrocyte dysfunction in mice exposed to MS.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Neurology, Wuhan First Hospital, Qiaokou District, No. 215 Zhongshan Avenue, Wuhan, 430033, China
| | - Lijuan Li
- Department of Neurology, Wuhan First Hospital, Qiaokou District, No. 215 Zhongshan Avenue, Wuhan, 430033, China
| | - Bingling Zhou
- Department of Neurology, Wuhan First Hospital, Qiaokou District, No. 215 Zhongshan Avenue, Wuhan, 430033, China
| | - Junli Wang
- Department of Neurology, Wuhan First Hospital, Qiaokou District, No. 215 Zhongshan Avenue, Wuhan, 430033, China
| | - Wei Shao
- Department of Neurology, Wuhan First Hospital, Qiaokou District, No. 215 Zhongshan Avenue, Wuhan, 430033, China.
| |
Collapse
|
11
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay MÈ. The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci 2022; 16:1015556. [PMID: 36439206 PMCID: PMC9693782 DOI: 10.3389/fncel.2022.1015556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system (CNS) neurons are classically considered the functional unit of the brain. Analysis of the physical connections and co-activation of neurons, referred to as structural and functional connectivity, respectively, is a metric used to understand their interplay at a higher level. A myriad of glial cell types throughout the brain composed of microglia, astrocytes and oligodendrocytes are key players in the maintenance and regulation of neuronal network dynamics. Microglia are the central immune cells of the CNS, able to affect neuronal populations in number and connectivity, allowing for maturation and plasticity of the CNS. Microglia and astrocytes are part of the neurovascular unit, and together they are essential to protect and supply nutrients to the CNS. Oligodendrocytes are known for their canonical role in axonal myelination, but also contribute, with microglia and astrocytes, to CNS energy metabolism. Glial cells can achieve this variety of roles because of their heterogeneous populations comprised of different states. The neuroglial relationship can be compromised in various manners in case of pathologies affecting development and plasticity of the CNS, but also consciousness and mood. This review covers structural and functional connectivity alterations in schizophrenia, major depressive disorder, and disorder of consciousness, as well as their correlation with vascular connectivity. These networks are further explored at the cellular scale by integrating the role of glial cell diversity across the CNS to explain how these networks are affected in pathology.
Collapse
Affiliation(s)
- Micaël Carrier
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
- Oncology Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
13
|
Zhang NN, Zhang Y, Wang ZZ, Chen NH. Connexin 43: insights into candidate pathological mechanisms of depression and its implications in antidepressant therapy. Acta Pharmacol Sin 2022; 43:2448-2461. [PMID: 35145238 PMCID: PMC9525669 DOI: 10.1038/s41401-022-00861-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/06/2022] [Indexed: 11/09/2022]
Abstract
Major depressive disorder (MDD), a chronic and recurrent disease characterized by anhedonia, pessimism or even suicidal thought, remains a major chronic mental concern worldwide. Connexin 43 (Cx43) is the most abundant connexin expressed in astrocytes and forms the gap junction channels (GJCs) between astrocytes, the most abundant and functional glial cells in the brain. Astrocytes regulate neurons' synaptic strength and function by expressing receptors and regulating various neurotransmitters. Astrocyte dysfunction causes synaptic abnormalities, which are related to various mood disorders, e.g., depression. Increasing evidence suggests a crucial role of Cx43 in the pathogenesis of depression. Depression down-regulates Cx43 expression in humans and rats, and dysfunction of Cx43 also induces depressive behaviors in rats and mice. Recently Cx43 has received considerable critical attention and is highly implicated in the onset of depression. However, the pathological mechanisms of depression-like behavior associated with Cx43 still remain ambiguous. In this review we summarize the recent progress regarding the underlying mechanisms of Cx43 in the etiology of depression-like behaviors including gliotransmission, metabolic disorders, and neuroinflammation. We also discuss the effects of antidepressants (monoamine antidepressants and ketamine) on Cx43. The clarity of the candidate pathological mechanisms of depression-like behaviors associated with Cx43 and its potential pharmacological roles for antidepressants will benefit the exploration of a novel antidepressant target.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
14
|
Dolotov OV, Inozemtseva LS, Myasoedov NF, Grivennikov IA. Stress-Induced Depression and Alzheimer's Disease: Focus on Astrocytes. Int J Mol Sci 2022; 23:4999. [PMID: 35563389 PMCID: PMC9104432 DOI: 10.3390/ijms23094999] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases and depression are multifactorial disorders with a complex and poorly understood physiopathology. Astrocytes play a key role in the functioning of neurons in norm and pathology. Stress is an important factor for the development of brain disorders. Here, we review data on the effects of stress on astrocyte function and evidence of the involvement of astrocyte dysfunction in depression and Alzheimer's disease (AD). Stressful life events are an important risk factor for depression; meanwhile, depression is an important risk factor for AD. Clinical data indicate atrophic changes in the same areas of the brain, the hippocampus and prefrontal cortex (PFC), in both pathologies. These brain regions play a key role in regulating the stress response and are most vulnerable to the action of glucocorticoids. PFC astrocytes are critically involved in the development of depression. Stress alters astrocyte function and can result in pyroptotic death of not only neurons, but also astrocytes. BDNF-TrkB system not only plays a key role in depression and in normalizing the stress response, but also appears to be an important factor in the functioning of astrocytes. Astrocytes, being a target for stress and glucocorticoids, are a promising target for the treatment of stress-dependent depression and AD.
Collapse
Affiliation(s)
- Oleg V. Dolotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ludmila S. Inozemtseva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Nikolay F. Myasoedov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| |
Collapse
|
15
|
Miguel-Hidalgo JJ. Astroglia in the Vulnerability to and Maintenance of Stress-Mediated Neuropathology and Depression. Front Cell Neurosci 2022; 16:869779. [PMID: 35530179 PMCID: PMC9074831 DOI: 10.3389/fncel.2022.869779] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022] Open
Abstract
Significant stress exposure and psychiatric depression are associated with morphological, biochemical, and physiological disturbances of astrocytes in specific brain regions relevant to the pathophysiology of those disorders, suggesting that astrocytes are involved in the mechanisms underlying the vulnerability to or maintenance of stress-related neuropathology and depression. To understand those mechanisms a variety of studies have probed the effect of various modalities of stress exposure on the metabolism, gene expression and plasticity of astrocytes. These studies have uncovered the participation of various cellular pathways, such as those for intracellular calcium regulation, neuroimmune responses, extracellular ionic regulation, gap junctions-based cellular communication, and regulation of neurotransmitter and gliotransmitter release and uptake. More recently epigenetic modifications resulting from exposure to chronic forms of stress or to early life adversity have been suggested to affect not only neuronal mechanisms but also gene expression and physiology of astrocytes and other glial cells. However, much remains to be learned to understand the specific role of those and other modifications in the astroglial contribution to the vulnerability to and maintenance of stress-related disorders and depression, and for leveraging that knowledge to achieve more effective psychiatric therapies.
Collapse
|
16
|
Li B, Zhang D, Verkhratsky A. Astrocytes in Post-traumatic Stress Disorder. Neurosci Bull 2022; 38:953-965. [PMID: 35349095 PMCID: PMC8960712 DOI: 10.1007/s12264-022-00845-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 01/15/2023] Open
Abstract
Although posttraumatic stress disorder (PTSD) is on the rise, traumatic events and their consequences are often hidden or minimized by patients for reasons linked to PTSD itself. Traumatic experiences can be broadly classified into mental stress (MS) and traumatic brain injury (TBI), but the cellular mechanisms of MS- or TBI-induced PTSD remain unknown. Recent evidence has shown that the morphological remodeling of astrocytes accompanies and arguably contributes to fearful memories and stress-related disorders. In this review, we summarize the roles of astrocytes in the pathogenesis of MS-PTSD and TBI-PTSD. Astrocytes synthesize and secrete neurotrophic, pro- and anti-inflammatory factors and regulate the microenvironment of the nervous tissue through metabolic pathways, ionostatic control, and homeostatic clearance of neurotransmitters. Stress or trauma-associated impairment of these vital astrocytic functions contribute to the pathophysiological evolution of PTSD and may present therapeutic targets.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Dianjun Zhang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
| |
Collapse
|
17
|
Yang Y, Luan Y, Feng Q, Chen X, Qin B, Ren KD, Luan Y. Epigenetics and Beyond: Targeting Histone Methylation to Treat Type 2 Diabetes Mellitus. Front Pharmacol 2022; 12:807413. [PMID: 35087408 PMCID: PMC8788853 DOI: 10.3389/fphar.2021.807413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus is a global public health challenge with high morbidity. Type 2 diabetes mellitus (T2DM) accounts for 90% of the global prevalence of diabetes. T2DM is featured by a combination of defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. However, the pathogenesis of this disease is complicated by genetic and environmental factors, which needs further study. Numerous studies have demonstrated an epigenetic influence on the course of this disease via altering the expression of downstream diabetes-related proteins. Further studies in the field of epigenetics can help to elucidate the mechanisms and identify appropriate treatments. Histone methylation is defined as a common histone mark by adding a methyl group (-CH3) onto a lysine or arginine residue, which can alter the expression of downstream proteins and affect cellular processes. Thus, in tthis study will discuss types and functions of histone methylation and its role in T2DM wilsed. We will review the involvement of histone methyltransferases and histone demethylases in the progression of T2DM and analyze epigenetic-based therapies. We will also discuss the potential application of histone methylation modification as targets for the treatment of T2DM.
Collapse
Affiliation(s)
- Yang Yang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Xing Chen
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Qin
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yi Luan
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Tamimou R, Lumbroso S, Mouzat K, Lopez-Castroman J. Genetic variations related to inflammation in suicidal ideation and behavior: A systematic review. Front Psychiatry 2022; 13:1003034. [PMID: 36325529 PMCID: PMC9621324 DOI: 10.3389/fpsyt.2022.1003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES Immune-inflammatory changes have been found in all types of suicidal ideation and behavior (SIB), independently of associated mental disorders. Since several Single Nucleotide Polymorphisms (SNPs) affect the function of inflammation-related genes, we searched the literature for genetic variations potentially altering inflammatory processes in SIB. METHODS We included studies that looked for associations between SIB and SNPs in genes related to inflammatory processes. Case reports, literature reviews, and animal studies were excluded. Articles were retrieved from PubMed and PsycINFO databases, Google Scholar and GreySource Index until September 17th, 2022. Quality was assessed using Q-Genie. RESULTS We analyzed 32 studies. SIB has been associated with eighteen SNPs located in genes encoding for interleukin-8 (rs4073), C-reactive protein (rs1130864), tumor necrosis factor α (rs1800629, rs361525, and rs1099724), tumor necrosis factor receptor 2 (rs1061622), transforming growth factor β-1 (rs1982073), acid phosphatase 1 (rs7419262, rs300774), interleukin-10 (rs1800896), interferon γ (rs2430561), amino-carboxy muconate semialdehyde decarboxylase (rs2121337), interleukin 7 (rs10448044, rs10448042), macrophage migration inhibitory factor (rs755622), interleukin 1-α (rs1800587), and interleukin 1-β (rs1143634 and rs16944. A genome-wide association study reported one association at the threshold of significance with the rs300774 SNP, located in the 2p25 region containing ACP1 gene. DISCUSSION The studies included were methodologically and clinically diverse and of moderate quality. Their findings suggest that some inflammation-related SNPs could increase the likelihood of SIB but the evidence to date is insufficient. Further research using gene-gene (GxG) and gene-environment (GxE) approaches is warranted. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk], identifier [CRD42022296310].
Collapse
Affiliation(s)
- Rabah Tamimou
- Department of Psychiatry, Nimes University Hospital, Nimes, France.,Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France
| | - Serge Lumbroso
- Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Kevin Mouzat
- Laboratory of Biochemistry and Molecular Biology, Nimes University Hospital, University of Montpellier, Nimes, France
| | - Jorge Lopez-Castroman
- Department of Psychiatry, Nimes University Hospital, Nimes, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS-INSERM, Montpellier, France.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| |
Collapse
|
19
|
Effects of an Atypical Antipsychotic, Zotepine, on Astroglial L-Glutamate Release through Hemichannels: Exploring the Mechanism of Mood-Stabilising Antipsychotic Actions and Antipsychotic-Induced Convulsion. Pharmaceuticals (Basel) 2021; 14:ph14111116. [PMID: 34832898 PMCID: PMC8625878 DOI: 10.3390/ph14111116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Accumulating neuropsychopharmacological evidence has suggested that functional abnormalities of astroglial transmission and protein kinase B (Akt) contribute to the pathophysiology and/or pathomechanisms of several neuropsychiatric disorders, such as epilepsy, schizophrenia, affective disorders and antipsychotic-induced convulsions. Therefore, to explore the pathophysiology of mood-stabilising antipsychotics and the proconvulsive actions of atypical antipsychotics, the present study determined the effects of a mood-stabilising, atypical, antipsychotic agent, zotepine (ZTP), on astroglial L-glutamate release and the expression of connexin43 (Cx43) protein in cortical, primary, cultured astrocytes using ultra-high-pressure liquid chromatography and capillary immunoblotting systems. Both acute and subchronic administrations of therapeutically relevant concentrations of ZTP did not affect astroglial L-glutamate release or Cx43 expression in plasma membranes; however, chronic administration of a therapeutically relevant concentration of ZTP increased astroglial L-glutamate release and Cx43 expression in the plasma membrane. Subchronic administrations of a supratherapeutic concentration of ZTP enhanced astroglial L-glutamate release and Cx43 expression in the plasma membrane, whereas acute administration of a supratherapeutic concentration of ZTP enhanced astroglial L-glutamate release without affecting Cx43 expression. These stimulatory effects of ZTP on astroglial L-glutamate release through activated hemichannels and Cx43 trafficking to the astroglial plasma membrane were suppressed by the Akt inhibitor. These results suggest that ZTP enhances astroglial L-glutamate release in a concentration-dependent and time-dependent manner due to the enhanced function of astroglial hemichannels, probably via activation of Akt signalling. Therefore, the enhanced astroglial L-glutamatergic transmission induced by ZTP is, at least partially, involved in the mood-stabilising antipsychotic and proconvulsive actions of ZTP.
Collapse
|
20
|
Kouter K, Videtic Paska A. 'Omics' of suicidal behaviour: A path to personalised psychiatry. World J Psychiatry 2021; 11:774-790. [PMID: 34733641 PMCID: PMC8546767 DOI: 10.5498/wjp.v11.i10.774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Psychiatric disorders, including suicide, are complex disorders that are affected by many different risk factors. It has been estimated that genetic factors contribute up to 50% to suicide risk. As the candidate gene approach has not identified a gene or set of genes that can be defined as biomarkers for suicidal behaviour, much is expected from cutting edge technological approaches that can interrogate several hundred, or even millions, of biomarkers at a time. These include the '-omic' approaches, such as genomics, transcriptomics, epigenomics, proteomics and metabolomics. Indeed, these have revealed new candidate biomarkers associated with suicidal behaviour. The most interesting of these have been implicated in inflammation and immune responses, which have been revealed through different study approaches, from genome-wide single nucleotide studies and the micro-RNA transcriptome, to the proteome and metabolome. However, the massive amounts of data that are generated by the '-omic' technologies demand the use of powerful computational analysis, and also specifically trained personnel. In this regard, machine learning approaches are beginning to pave the way towards personalized psychiatry.
Collapse
Affiliation(s)
- Katarina Kouter
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Alja Videtic Paska
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
21
|
Distinct Effects of Escitalopram and Vortioxetine on Astroglial L-Glutamate Release Associated with Connexin43. Int J Mol Sci 2021; 22:ijms221810013. [PMID: 34576176 PMCID: PMC8468507 DOI: 10.3390/ijms221810013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
It has been established that enhancement of serotonergic transmission contributes to improvement of major depression; however, several post-mortem studies and experimental depression rodent models suggest that functional abnormalities of astrocytes play important roles in the pathomechanisms/pathophysiology of mood disorders. Direct effects of serotonin (5-HT) transporter inhibiting antidepressants on astroglial transmission systems has never been assessed in this context. Therefore, to explore the effects of antidepressants on transmission associated with astrocytes, the present study determined the effects of the selective 5-HT transporter inhibitor, escitalopram, and the 5-HT partial agonist reuptake inhibitor, vortioxetine, on astroglial L-glutamate release through activated hemichannels, and the expression of connexin43 (Cx43), type 1A (5-HT1AR) and type 7 (5-HT7R) 5-HT receptor subtypes, and extracellular signal-regulated kinase (ERK) in astrocytes using primary cultured rat cortical astrocytes in a 5-HT-free environment. Both escitalopram and 5-HT1AR antagonist (WAY100635) did not affect basal astroglial L-glutamate release or L-glutamate release through activated hemichannels. Subchronic (for seven days) administrations of vortioxetine and the 5-HT7R inverse agonist (SB269970) suppressed both basal L-glutamate release and L-glutamate release through activated hemichannels, whereas 5-HT1AR agonist (BP554) inhibited L-glutamate release through activated hemichannels, but did not affect basal L-glutamate release. In particular, WAY100635 did not affect the inhibitory effects of vortioxetine on L-glutamate release. Subchronic administration of vortioxetine, BP554 and SB269970 downregulated 5-HT1AR, 5-HT7R and phosphorylated ERK in the plasma membrane fraction, but escitalopram and WAY100635 did not affect them. Subchronic administration of SB269970 decreased Cx43 expression in the plasma membrane but did not affect the cytosol; however, subchronic administration of BP554 increased Cx43 expression in the cytosol but did not affect the plasma membrane. Subchronic vortioxetine administration increased Cx43 expression in the cytosol and decreased it in the plasma membrane. WAY100635 prevented an increased Cx43 expression in the cytosol induced by vortioxetine without affecting the reduced Cx43 expression in the plasma membrane. These results suggest that 5-HT1AR downregulation probably increases Cx43 synthesis, but 5-HT7R downregulation suppresses Cx43 trafficking to the plasma membrane. These results also suggest that the subchronic administration of therapeutic-relevant concentrations of vortioxetine inhibits both astroglial L-glutamate and Cx43 expression in the plasma membrane via 5-HT7R downregulation but enhances Cx43 synthesis in the cytosol via 5-HT1AR downregulation. This combination of the downregulation of 5-HT1AR, 5-HT7R and Cx43 in the astroglial plasma membrane induced by subchronic vortioxetine administration suggest that astrocytes is possibly involved in the pathophysiology of depression.
Collapse
|
22
|
Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, Cheng Y, Li R, Sáez JC, Yi C, Xiao L, Niu J. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101181. [PMID: 34155833 PMCID: PMC8373108 DOI: 10.1002/advs.202101181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/03/2021] [Indexed: 05/21/2023]
Abstract
Astrocyte maldevelopment is implicated in various neuropsychiatric diseases associated with early life stress. However, the underlying astrocytopathy mechanism, which can result in the psychiatric symptoms, remains unclear. In this study, it is shown that a reduced oligodendrocyte precursor cell (OPC) population accompanies hindered hippocampal astrocytic development in an improved parental isolation mouse model, and that the loss of OPCs suppresses astrocytic network formation and activity. It is further demonstrated that OPC-derived Wnt ligands, in particular Wnt7b, are required for Wnt/β-catenin pathway-mediated astrocytic development and subsequent effects related to neuronal function. In addition, focal replenishment of Wnt7a/b is sufficient to rescue astrocytic maldevelopment. These results elucidate a Wnt-paracrine-dependent but myelin-independent role of OPCs in regulating astrocytic development, which provides a unique insight into the astrocytopathy mechanism in early life stress, and can be implicated in the pathogenesis of human early life stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Histology and EmbryologyChongqing Key Laboratory of NeurobiologyBrain and Intelligence Research Key Laboratory of Chongqing Education CommissionThird Military Medical UniversityChongqing400038China
| | - Yixun Su
- Department of Histology and EmbryologyChongqing Key Laboratory of NeurobiologyBrain and Intelligence Research Key Laboratory of Chongqing Education CommissionThird Military Medical UniversityChongqing400038China
- Research CentreSeventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhen518107China
| | - Guangdan Yu
- Department of Histology and EmbryologyChongqing Key Laboratory of NeurobiologyBrain and Intelligence Research Key Laboratory of Chongqing Education CommissionThird Military Medical UniversityChongqing400038China
| | - Xiaorui Wang
- Department of Histology and EmbryologyChongqing Key Laboratory of NeurobiologyBrain and Intelligence Research Key Laboratory of Chongqing Education CommissionThird Military Medical UniversityChongqing400038China
| | - Xiaoying Chen
- Department of Histology and EmbryologyChongqing Key Laboratory of NeurobiologyBrain and Intelligence Research Key Laboratory of Chongqing Education CommissionThird Military Medical UniversityChongqing400038China
| | - Bin Yu
- Department of Histology and EmbryologyChongqing Key Laboratory of NeurobiologyBrain and Intelligence Research Key Laboratory of Chongqing Education CommissionThird Military Medical UniversityChongqing400038China
- Department of Neurosurgery2nd affiliated HospitalThird Military Medical UniversityChongqing400038China
| | - Yijun Cheng
- Department of Histology and EmbryologyChongqing Key Laboratory of NeurobiologyBrain and Intelligence Research Key Laboratory of Chongqing Education CommissionThird Military Medical UniversityChongqing400038China
| | - Rui Li
- Department of Histology and EmbryologyChongqing Key Laboratory of NeurobiologyBrain and Intelligence Research Key Laboratory of Chongqing Education CommissionThird Military Medical UniversityChongqing400038China
| | - Juan C. Sáez
- Instituto de NeurocienciaCentro Interdisciplinario de Neurociencia de ValparaísoValparaíso2381850Chile
| | - Chenju Yi
- Research CentreSeventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhen518107China
| | - Lan Xiao
- Department of Histology and EmbryologyChongqing Key Laboratory of NeurobiologyBrain and Intelligence Research Key Laboratory of Chongqing Education CommissionThird Military Medical UniversityChongqing400038China
- Department of Neurosurgery2nd affiliated HospitalThird Military Medical UniversityChongqing400038China
| | - Jianqin Niu
- Department of Histology and EmbryologyChongqing Key Laboratory of NeurobiologyBrain and Intelligence Research Key Laboratory of Chongqing Education CommissionThird Military Medical UniversityChongqing400038China
| |
Collapse
|
23
|
Kawatake-Kuno A, Murai T, Uchida S. The Molecular Basis of Depression: Implications of Sex-Related Differences in Epigenetic Regulation. Front Mol Neurosci 2021; 14:708004. [PMID: 34276306 PMCID: PMC8282210 DOI: 10.3389/fnmol.2021.708004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms. Males and females also differ in their responsiveness to antidepressants. These clinical findings suggest that sex-dependent molecular and neural mechanisms may underlie the development of depression and the actions of antidepressant medications. This review discusses recent advances regarding the role of epigenetics in stress and depression. The first section presents a brief introduction of the basic mechanisms of epigenetic regulation, including histone modifications, DNA methylation, and non-coding RNAs. The second section reviews their contributions to neural plasticity, the risk of depression, and resilience against depression, with a particular focus on epigenetic modulators that have causal relationships with stress and depression in both clinical and animal studies. The third section highlights studies exploring sex-dependent epigenetic alterations associated with susceptibility to stress and depression. Finally, we discuss future directions to understand the etiology and pathophysiology of MDD, which would contribute to optimized and personalized therapy.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
24
|
Effects of Atypical Antipsychotics, Clozapine, Quetiapine and Brexpiprazole on Astroglial Transmission Associated with Connexin43. Int J Mol Sci 2021; 22:ijms22115623. [PMID: 34070699 PMCID: PMC8198373 DOI: 10.3390/ijms22115623] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, accumulating preclinical findings suggest the possibility that functional abnormalities of tripartite synaptic transmission play important roles in the pathophysiology of schizophrenia and affective disorder. Therefore, to explore the novel mechanisms of mood-stabilizing effects associated with tripartite synaptic transmission, the present study determined the effects of mood-stabilizing antipsychotics, clozapine (CLZ), quetiapine (QTP) and brexpiprazole (BPZ), on the astroglial l-glutamate release and expression of connexin43 (Cx43) in the astroglial plasma membrane using cortical primary cultured astrocytes. Neither acute (for 120 min) nor subchronic (for 7 days) administrations of CLZ, QTP and BPZ affected basal astroglial l-glutamate release, whereas both acute and subchronic administration of CLZ, QTP and BPZ concentration-dependently enhanced astroglial l-glutamate release through activated hemichannels. Subchronic administration of therapeutic-relevant concentration of valproate (VPA), a histone deacetylase inhibiting mood-stabilizing antiepileptic drug, enhanced the stimulatory effects of therapeutic-relevant concentration of CLZ, QTP and BPZ on astroglial l-glutamate release through activated hemichannel. Subchronic administration of therapeutic-relevant concentration of CLZ, QTP and BPZ did not affect Cx43 protein expression in the plasma membrane during resting stage. After subchronic administration of VPA, acute and subchronic administration of therapeutic-relevant concentrations of CLZ increased Cx43 protein expression in the plasma membrane. Both acute administrations of therapeutic-relevant concentrations of QTP and BPZ did not affect, but subchronic administrations enhanced Cx43 protein expression in the astroglial plasma membrane. Furthermore, protein kinase B (Akt) inhibitor suppressed the stimulatory effects of CLZ and QTP, but did not affect Cx43 protein expression in the astroglial plasma membrane. These results suggest that three mood-stabilizing atypical antipsychotics, CLZ, QTP and BPZ enhance tripartite synaptic glutamatergic transmission due to enhancement of astroglial Cx43 containing hemichannel activities; however, the Cx43 activating mechanisms of these three mood-stabilizing antipsychotics were not identical. The enhanced astroglial glutamatergic transmission induced by CLZ, QTP and BPZ is, at least partially, involved in the actions of these three mood-stabilizing antipsychotics.
Collapse
|
25
|
The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder. J Pers Med 2021; 11:jpm11030167. [PMID: 33804455 PMCID: PMC7999864 DOI: 10.3390/jpm11030167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies imply that there is a tight association between epigenetics and a molecular mechanism of major depressive disorder (MDD). Epigenetic modifications, i.e., DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA), are able to influence the severity of the disease and the outcome of the therapy. This article summarizes the most recent literature data on this topic, i.e., usage of histone deacetylases as therapeutic agents with an antidepressant effect and miRNAs or lncRNAs as markers of depression. Due to the noteworthy potential of the role of epigenetics in MDD diagnostics and therapy, we have gathered the most relevant data in this area.
Collapse
|
26
|
O'Leary LA, Belliveau C, Davoli MA, Ma JC, Tanti A, Turecki G, Mechawar N. Widespread Decrease of Cerebral Vimentin-Immunoreactive Astrocytes in Depressed Suicides. Front Psychiatry 2021; 12:640963. [PMID: 33613346 PMCID: PMC7890082 DOI: 10.3389/fpsyt.2021.640963] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Post-mortem investigations have implicated cerebral astrocytes immunoreactive (-IR) for glial fibrillary acidic protein (GFAP) in the etiopathology of depression and suicide. However, it remains unclear whether astrocytic subpopulations IR for other astrocytic markers are similarly affected. Astrocytes IR to vimentin (VIM) display different regional densities than GFAP-IR astrocytes in the healthy brain, and so may be differently altered in depression and suicide. To investigate this, we compared the densities of GFAP-IR astrocytes and VIM-IR astrocytes in post-mortem brain samples from depressed suicides and matched non-psychiatric controls in three brain regions (dorsomedial prefrontal cortex, dorsal caudate nucleus and mediodorsal thalamus). A quantitative comparison of the fine morphology of VIM-IR astrocytes was also performed in the same regions and subjects. Finally, given the close association between astrocytes and blood vessels, we also assessed densities of CD31-IR blood vessels. Like for GFAP-IR astrocytes, VIM-IR astrocyte densities were found to be globally reduced in depressed suicides relative to controls. By contrast, CD31-IR blood vessel density and VIM-IR astrocyte morphometric features in these regions were similar between groups, except in prefrontal white matter, in which vascularization was increased and astrocytes displayed fewer primary processes. By revealing a widespread reduction of cerebral VIM-IR astrocytes in cases vs. controls, these findings further implicate astrocytic dysfunctions in depression and suicide.
Collapse
Affiliation(s)
- Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Jie Christopher Ma
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Astroglial Connexin43 as a Potential Target for a Mood Stabiliser. Int J Mol Sci 2020; 22:ijms22010339. [PMID: 33396966 PMCID: PMC7795839 DOI: 10.3390/ijms22010339] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Mood disorders remain a major public health concern worldwide. Monoaminergic hypotheses of pathophysiology of bipolar and major depressive disorders have led to the development of monoamine transporter-inhibiting antidepressants for the treatment of major depression and have contributed to the expanded indications of atypical antipsychotics for the treatment of bipolar disorders. In spite of psychopharmacological progress, current pharmacotherapy according to the monoaminergic hypothesis alone is insufficient to improve or prevent mood disorders. Recent approval of esketamine for treatment of treatment-resistant depression has attracted attention in psychopharmacology as a glutamatergic hypothesis of the pathophysiology of mood disorders. On the other hand, in the last decade, accumulated findings regarding the pathomechanisms of mood disorders emphasised that functional abnormalities of tripartite synaptic transmission play important roles in the pathophysiology of mood disorders. At first glance, the enhancement of astroglial connexin seems to contribute to antidepressant and mood-stabilising effects, but in reality, antidepressive and mood-stabilising actions are mediated by more complicated interactions associated with the astroglial gap junction and hemichannel. Indeed, several depressive mood-inducing stress stimulations suppress connexin43 expression and astroglial gap junction function, but enhance astroglial hemichannel activity. On the other hand, monoamine transporter-inhibiting antidepressants suppress astroglial hemichannel activity and enhance astroglial gap junction function, whereas several non-antidepressant mood stabilisers activate astroglial hemichannel activity. Based on preclinical findings, in this review, we summarise the effects of antidepressants, mood-stabilising antipsychotics, and anticonvulsants on astroglial connexin, and then, to establish a novel strategy for treatment of mood disorders, we reveal the current progress in psychopharmacology, changing the question from "what has been revealed?" to "what should be clarified?".
Collapse
|
28
|
Alshammari TK, Alghamdi HM, Alduhailan HE, Saja MF, Alrasheed NM, Alshammari MA. Examining the central effects of chronic stressful social isolation on rats. Biomed Rep 2020; 13:56. [PMID: 33123370 PMCID: PMC7583698 DOI: 10.3892/br.2020.1363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022] Open
Abstract
Stress-related disorders are extremely complex and current treatment strategies have limitations. The present study investigated alternative pathological mechanisms using a combination of multiple environmental approaches with biochemical and molecular tools. The aim of the present study was to evaluate blood-brain-barrier (BBB) integrity in socially manipulated animal housing conditions. Multiple environmentally-related models were employed in the current study. The main model proposed (chronically isolated rats) was biochemically validated using the level of peripheral corticosterone. The current study examined and compared the mRNA levels of certain inflammatory and BBB markers in the hippocampal tissue of chronically isolated rats, including claudin-5 (cldn5) and tight junction protein (tjp). Animals were divided into four groups: i) Standard housed rats (controls); ii) chronically isolated rats; iii) control rats treated with fluoxetine, which is a standard selective serotonin reuptake inhibitor; and iv) isolated rats treated with fluoxetine. To further examine the effect of environmental conditions on BBB markers, the current study assessed BBB markers in enriched environmental (EE) housing and short-term isolation conditions. The results demonstrated a significant increase in cldn5 and tjp levels in the chronically isolated group. Despite some anomalous results, alterations in mRNA levels were further confirmed in EE housing conditions compared with chronically isolated rats. This trend was also observed in rats subjected to short-term isolation compared with paired controls. Additionally, levels of IL-6, an inflammatory marker associated with neuroinflammation, were markedly increased in the isolated group. However, treatment with fluoxetine treatment reversed these effects. The results indicated that BBB integrity may be compromised in stress-related disorders, highlighting a need for further functional studies on the kinetics of BBB in stress-related models.
Collapse
Affiliation(s)
- Tahani K Alshammari
- Department of Pharmacology and Toxicology, College of Medicine, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Hajar M Alghamdi
- Pharmacology and Toxicology Graduate Program, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Hessa E Alduhailan
- Department of Pharmacology and Toxicology, College of Medicine, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Maha F Saja
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Nouf M Alrasheed
- Department of Pharmacology and Toxicology, College of Medicine, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Medicine, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
O'Leary LA, Davoli MA, Belliveau C, Tanti A, Ma JC, Farmer WT, Turecki G, Murai KK, Mechawar N. Characterization of Vimentin-Immunoreactive Astrocytes in the Human Brain. Front Neuroanat 2020; 14:31. [PMID: 32848635 PMCID: PMC7406576 DOI: 10.3389/fnana.2020.00031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytes are commonly identified by their expression of the intermediate filament protein glial fibrillary acidic protein (GFAP). GFAP-immunoreactive (GFAP-IR) astrocytes exhibit regional heterogeneity in density and morphology in the mouse brain as well as morphological diversity in the human cortex. However, regional variations in astrocyte distribution and morphology remain to be assessed comprehensively. This was the overarching objective of this postmortem study, which mainly exploited the immunolabeling of vimentin (VIM), an intermediate filament protein expressed by astrocytes and endothelial cells which presents the advantage of more extensively labeling cell structures. We compared the densities of vimentin-immunoreactive (VIM-IR) and GFAP-IR astrocytes in various brain regions (prefrontal and primary visual cortex, caudate nucleus, mediodorsal thalamus) from male individuals having died suddenly in the absence of neurological or psychiatric conditions. The morphometric properties of VIM-IR in these brain regions were also assessed. We found that VIM-IR astrocytes generally express the canonical astrocytic markers Aldh1L1 and GFAP but that VIM-IR astrocytes are less abundant than GFAP-IR astrocytes in all human brain regions, particularly in the thalamus, where VIM-IR cells were nearly absent. About 20% of all VIM-IR astrocytes presented a twin cell morphology, a phenomenon rarely observed for GFAP-IR astrocytes. Furthermore VIM-IR astrocytes in the striatum were often seen to extend numerous parallel processes which seemed to give rise to large VIM-IR fiber bundles projecting over long distances. Moreover, morphometric analyses revealed that VIM-IR astrocytes were more complex than their mouse counterparts in functionally homologous brain regions, as has been previously reported for GFAP-IR astrocytes. Lastly, the density of GFAP-IR astrocytes in gray and white matter were inversely correlated with vascular density, but for VIM-IR astrocytes this was only the case in gray matter, suggesting that gliovascular interactions may especially influence the regional heterogeneity of GFAP-IR astrocytes. Taken together, these findings reveal special features displayed uniquely by human VIM-IR astrocytes and illustrate that astrocytes display important region- and marker-specific differences in the healthy human brain.
Collapse
Affiliation(s)
- Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Jie Christopher Ma
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - William Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Keith Kazuo Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells 2020; 9:E846. [PMID: 32244528 PMCID: PMC7226843 DOI: 10.3390/cells9040846] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer's, Parkinson's, and Huntington's diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| | | | | | | | | | - Sonia-Luz Albarracin
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| |
Collapse
|
31
|
Policicchio S, Washer S, Viana J, Iatrou A, Burrage J, Hannon E, Turecki G, Kaminsky Z, Mill J, Dempster EL, Murphy TM. Genome-wide DNA methylation meta-analysis in the brains of suicide completers. Transl Psychiatry 2020; 10:69. [PMID: 32075955 PMCID: PMC7031296 DOI: 10.1038/s41398-020-0752-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Suicide is the second leading cause of death globally among young people representing a significant global health burden. Although the molecular correlates of suicide remains poorly understood, it has been hypothesised that epigenomic processes may play a role. The objective of this study was to identify suicide-associated DNA methylation changes in the human brain by utilising previously published and unpublished methylomic datasets. We analysed prefrontal cortex (PFC, n = 211) and cerebellum (CER, n = 114) DNA methylation profiles from suicide completers and non-psychiatric, sudden-death controls, meta-analysing data from independent cohorts for each brain region separately. We report evidence for altered DNA methylation at several genetic loci in suicide cases compared to controls in both brain regions with suicide-associated differentially methylated positions enriched among functional pathways relevant to psychiatric phenotypes and suicidality, including nervous system development (PFC) and regulation of long-term synaptic depression (CER). In addition, we examined the functional consequences of variable DNA methylation within a PFC suicide-associated differentially methylated region (PSORS1C3 DMR) using a dual luciferase assay and examined expression of nearby genes. DNA methylation within this region was associated with decreased expression of firefly luciferase but was not associated with expression of nearby genes, PSORS1C3 and POU5F1. Our data suggest that suicide is associated with DNA methylation, offering novel insights into the molecular pathology associated with suicidality.
Collapse
Affiliation(s)
- Stefania Policicchio
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Sam Washer
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Joana Viana
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Artemis Iatrou
- grid.240684.c0000 0001 0705 3621Rush Alzheimer’s Neurodisease Center, Rush University Medical Center, 600 South Paulina Street, Chicago, IL 60612 USA
| | - Joe Burrage
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Gustavo Turecki
- grid.14709.3b0000 0004 1936 8649Douglas Institute, Department of Psychiatry, McGill University, Verdun, QC H4H 1R3 Canada
| | - Zachary Kaminsky
- grid.21107.350000 0001 2171 9311Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Jonathan Mill
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Emma L. Dempster
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Therese M. Murphy
- grid.8391.30000 0004 1936 8024University of Exeter Medical School, University of Exeter, Exeter, UK ,grid.497880.aSchool of Biological and Health Sciences, Technological University Dublin, City Campus, Dublin, 2 Ireland
| |
Collapse
|
32
|
Droguerre M, Tsurugizawa T, Duchêne A, Portal B, Guiard BP, Déglon N, Rouach N, Hamon M, Mouthon F, Ciobanu L, Charvériat M. A New Tool for In Vivo Study of Astrocyte Connexin 43 in Brain. Sci Rep 2019; 9:18292. [PMID: 31797899 PMCID: PMC6892890 DOI: 10.1038/s41598-019-54858-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
Astrocytes are glial cells organized in dynamic and structured networks in the brain. These plastic networks, involving key proteins such as connexin 43 (Cx43), are engaged in fine neuronal tuning and have recently been considered as emerging therapeutic targets in central nervous system disorders. We developed and validated a new application of the manganese-enhanced magnetic resonance imaging (MEMRI) technique allowing in vivo investigations of astrocyte-neuron interactions through quantification of brain Cx43 functional activity. The proof of concept has been achieved by quantification of MEMRI signals in brain after either local astrocyte-specific Cx43 knockdown with shRNA or systemic administration of Cx43 blockers. Unilateral hippocampal Cx43 genetical silencing was associated with an ipsilateral local increase of MEMRI signal. Furthermore, Cx43 blockers also enhanced MEMRI signal responses in hippocampus. Altogether, these data reveal the MEMRI technique as a tool for quantitative imaging of in vivo Cx43-dependent function in astrocytes under physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Benjamin Portal
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31330, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31330, Toulouse, France
| | - Nicole Déglon
- Laboratory of Neurotherapies and NeuroModulation, Neuroscience research Center (CRN), Lausanne University Hospital (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland.,Laboratory of Neurotherapies and NeuroModulation, Department of Clinical Neuroscience (DNC), Lausanne University Hospital (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Nathalie Rouach
- Laboratory of Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, 75005, France
| | - Michel Hamon
- Theranexus, 60 Avenue Rockefeller, 69008, Lyon, France
| | | | | | | |
Collapse
|
33
|
Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides. Neuropsychopharmacology 2019; 44:2099-2111. [PMID: 31374562 PMCID: PMC6897926 DOI: 10.1038/s41386-019-0471-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Glial dysfunction is a major pathophysiological feature of mood disorders. While altered astrocyte (AS) and oligodendrocyte-lineage (OL) functions have been associated with depression, the crosstalk between these glial cell types has never been assessed in that context. AS are potent regulators of myelination, in part through gap junction (GJ) channels formed by the heterotypic coupling of AS-specific (Cx30 and Cx43) and OL-specific (Cx32 and Cx47) connexins. This study therefore aimed at addressing the integrity of AS/OL coupling in the anterior cingulate cortex (ACC) of depressed suicides. Using immunofluorescence and confocal imaging, we characterized the distribution of Cx30 and mapped its expression onto OL somas, myelinated axons, and brain vasculature in postmortem brain samples from depressed suicides (N = 48) and matched controls (N = 23). Differential gene expression of key components of the GJ nexus was also screened through RNA-sequencing previously generated by our group, and validated by quantitative real-time PCR. We show that Cx30 expression localized onto OL cells and myelinated fibers is decreased in deep cortical layers of the ACC in male-depressed suicides. This effect was associated with decreased expression of OL-specific connexins, as well as the downregulation of major connexin-interacting proteins essential for the scaffolding, trafficking, and function of GJs. These results provide a first evidence of impaired AS/OL GJ-mediated communication in the ACC of individuals with mood disorders. These changes in glial coupling are likely to have significant impact on brain function, and may contribute to the altered OL function previously reported in this brain region.
Collapse
|
34
|
Verkhratsky A, Rodrigues JJ, Pivoriunas A, Zorec R, Semyanov A. Astroglial atrophy in Alzheimer’s disease. Pflugers Arch 2019; 471:1247-1261. [DOI: 10.1007/s00424-019-02310-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
|
35
|
Sarrouilhe D, Mesnil M, Dejean C. Targeting Gap Junctions: New Insights into the Treatment of Major Depressive Disorder. Curr Med Chem 2019; 26:3775-3791. [DOI: 10.2174/0929867325666180327103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Abstract
Background:Major depressive disorder (MDD) is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and associated with excess mortality. Treatments for this disease are not effective in all patients showing the need to find new therapeutic targets.Objective:This review aims to update our knowledge on the involvement of astroglial gap junctions and hemichannels in MDD and to show how they have become potential targets for the treatment of this pathology.Methods:The method applied in this review includes a systematic compilation of the relevant literature.Results and Conclusion:The use of rodent models of depression, gene analysis of hippocampal tissues of MDD patients and post-mortem studies on the brains from MDD patients suggest that astrocytic gap junction dysfunction may be a part of MDD etiologies. Chronic antidepressant treatments of rats, rat cultured cortical astrocytes and human astrocytoma cell lines support the hypothesis that the up-regulation of gap junctional coupling between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants. However, two recent functional studies suggest that connexin43 hemichannel activity is a part of several antidepressants’ mode of action and that astrocyte gap junctional intercellular communication and hemichannels exert different effects on antidepressant drug response. Even if they emerge as new therapeutic targets for new and more active treatments, further studies are needed to decipher the sophisticated and respective role of astrocytic gap junctions and hemichannels in MDD.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculte de Medecine et Pharmacie, Universite de Poitiers, 6 rue de la Miletrie, Bat D1, TSA 51115, 86073 Poitiers, Cedex 9, France
| | - Marc Mesnil
- STIM, ERL 7003, CNRS-Universite de Poitiers, Pole Biologie Sante, Bat B36, TSA 51106, 1 rue Georges Bonnet, 86073 Poitiers, Cedex 9, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, 370 avenue Jacques Coeur, 86021 Poitiers Cedex, France
| |
Collapse
|
36
|
Steardo L, de Filippis R, Carbone EA, Segura-Garcia C, Verkhratsky A, De Fazio P. Sleep Disturbance in Bipolar Disorder: Neuroglia and Circadian Rhythms. Front Psychiatry 2019; 10:501. [PMID: 31379620 PMCID: PMC6656854 DOI: 10.3389/fpsyt.2019.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
The worldwide prevalence of sleep disorders is approximately 50%, with an even higher occurrence in a psychiatric population. Bipolar disorder (BD) is a severe mental illness characterized by shifts in mood and activity. The BD syndrome also involves heterogeneous symptomatology, including cognitive dysfunctions and impairments of the autonomic nervous system. Sleep abnormalities are frequently associated with BD and are often a good predictor of a mood swing. Preservation of stable sleep-wake cycles is therefore a key to the maintenance of stability in BD, indicating the crucial role of circadian rhythms in this syndrome. The symptom most widespread in BD is insomnia, followed by excessive daytime sleepiness, nightmares, difficulty falling asleep or maintaining sleep, poor sleep quality, sleep talking, sleep walking, and obstructive sleep apnea. Alterations in the structure or duration of sleep are reported in all phases of BD. Understanding the role of neuroglia in BD and in various aspects of sleep is in nascent state. Contributions of the different types of glial cells to BD and sleep abnormalities are discussed in this paper.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Renato de Filippis
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elvira Anna Carbone
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Pasquale De Fazio
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
37
|
Simard S, Coppola G, Rudyk CA, Hayley S, McQuaid RJ, Salmaso N. Profiling changes in cortical astroglial cells following chronic stress. Neuropsychopharmacology 2018; 43:1961-1971. [PMID: 29907879 PMCID: PMC6046043 DOI: 10.1038/s41386-018-0105-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
Recent studies have suggested that cortical astroglia play an important role in depressive-like behaviors. Potential astroglial contributions have been proposed based on their known neuroplastic functions, such as glutamate recycling and synaptic plasticity. However, the specific mechanisms by which astroglial cells may contribute or protect against a depressive phenotype remain unknown. To delineate astroglial changes that accompany depressive-like behavior, we used astroglial-specific bacTRAP mice exposed to chronic variable stress (CVS) and profiled the astroglial translatome using translating ribosome affinity purification (TRAP) in conjunction with RNAseq. As expected, CVS significantly increased anxiety- and depressive-like behaviors and corticosterone levels and decreased GFAP expression in astroglia, although this did not reflect a change in the total number of astroglial cells. TRAPseq results showed that CVS decreased genes associated with astroglial plasticity: RhoGTPases, growth factor signaling, and transcription regulation, and increased genes associated with the formation of extracellular matrices such as perineuronal nets (PNNs). PNNs inhibit neuroplasticity and astroglia contribute to the formation, organization, and maintenance of PNNs. To validate our TRAPseq findings, we showed an increase in PNNs following CVS. Degradation of PNNs in the prefrontal cortex of mice exposed to CVS reversed the CVS-induced behavioral phenotype in the forced swim test. These data lend further support to the neuroplasticity hypothesis of depressive behaviors and, in particular, extend this hypothesis beyond neuronal plasticity to include an overall decrease in genes associated with cortical astroglial plasticity following CVS. Further studies will be needed to assess the antidepressant potential of directly targeting astroglial cell function in models of depression.
Collapse
Affiliation(s)
- Stephanie Simard
- 0000 0004 1936 893Xgrid.34428.39Department of Neuroscience, Carleton University, Ottawa, ON Canada
| | - Gianfilippo Coppola
- 0000000419368710grid.47100.32Child Study Center, Yale University, New Haven, CT USA
| | - Christopher A. Rudyk
- 0000 0004 1936 893Xgrid.34428.39Department of Neuroscience, Carleton University, Ottawa, ON Canada
| | - Shawn Hayley
- 0000 0004 1936 893Xgrid.34428.39Department of Neuroscience, Carleton University, Ottawa, ON Canada
| | - Robyn J. McQuaid
- 0000 0001 1503 7525grid.414622.7The Royal Ottawa Hospital, Ottawa, ON Canada
| | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada. .,Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
38
|
Roy B, Dwivedi Y. Understanding the Neuroepigenetic Constituents of Suicide Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:233-262. [PMID: 29933952 DOI: 10.1016/bs.pmbts.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stressful life incidents often cause a predisposition for developing mental disorders such as major depressive disorder (MDD). Impaired neurocognitive and neuro-vegetative functions of the central nervous system are the hallmarks of this mental illness. Blunted responses from emotionally salient regions of the brain including cortex, hippocampus, and amygdala have been associated with MDD-related behavioral changes. Moreover, improper signal processing and neuronal atrophy were held responsible for the overall dysfunctionality of these vulnerable regions in the MDD brain. The prevalence of genetic susceptibility along with adverse environmental stimuli often makes the situation worse for MDD patients, leading to an increased risk of suicidal behavior and eventually death by suicide. Despite considerable efforts to understand the complex neurobiology associated with MDD and suicidal behavior, their pathological determinants remain mostly elusive. Recent research, however, has shown that epigenetic perturbations have a formidable impact on the etiopathogenesis of MDD. Understanding the neuroepigenetic nature of this mental disorder may provide opportunities to devise more effective treatment strategies. Moreover, this can potentially lead to identifying predictive biomarkers associated with suicide risk. The present chapter critically reviews studies pertaining to epigenetic signatures of MDD and suicide brain.
Collapse
Affiliation(s)
- Bhaskar Roy
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yogesh Dwivedi
- University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
39
|
Abstract
Major depressive disorder (MDD) is a chronic and debilitating illness that affects over 350 million people worldwide; however, current treatments have failed to cure or prevent the progress of depression. Increasing evidence suggests a crucial role for connexins in MDD. In this review, we have summarised recent accomplishments regarding the role of connexins, gap junctions, and hemichannels in the aetiology of MDD, and discussed the limitations of current research. A blockage of gap junctions or hemichannels induces depressive behaviour. Possible underlying mechanisms include the regulation of neurosecretory functions and synaptic activity by gap junctions and hemichannels. Gap junctions are functionally inhibited under stress conditions. Conversely, hemichannel permeability is increased. Antidepressants inhibit hemichannel permeability; however, they have contrasting effects on the function of gap junctions under normal conditions and can protect them against stress. In conclusion, the blockage of hemichannels concurrent with improvements in gap junction functionality might be potential targets for depression treatment.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tohru Yamakuni
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
40
|
Czéh B, Nagy SA. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders. Front Mol Neurosci 2018. [PMID: 29535607 PMCID: PMC5835102 DOI: 10.3389/fnmol.2018.00056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the “gliocentric theory”, glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation—mediated by microglial activation—triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the “gliocentric” theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder.
Collapse
Affiliation(s)
- Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Laboratory Medicine, University of Pécs, Medical School, Pécs, Hungary
| | - Szilvia A Nagy
- Neurobiology of Stress Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.,Department of Neurosurgery, University of Pécs, Medical School, Pécs, Hungary.,MTA-PTE, Clinical Neuroscience MR Research Group, Pécs, Hungary.,Pécs Diagnostic Centre, Pécs, Hungary
| |
Collapse
|
41
|
Sild M, Ruthazer ES, Booij L. Major depressive disorder and anxiety disorders from the glial perspective: Etiological mechanisms, intervention and monitoring. Neurosci Biobehav Rev 2017; 83:474-488. [DOI: 10.1016/j.neubiorev.2017.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
|
42
|
Altered miRNA expression network in locus coeruleus of depressed suicide subjects. Sci Rep 2017; 7:4387. [PMID: 28663595 PMCID: PMC5491496 DOI: 10.1038/s41598-017-04300-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 12/19/2022] Open
Abstract
Norepinephrine (NE) is produced primarily by neurons in the locus coeruleus (LC). Retrograde and ultrastructural examinations reveal that the core of the LC and its surrounding region receives afferent projections from several brain areas which provide multiple neurochemical inputs to the LC with changes in LC neuronal firing, making it a highly coordinated event. Although NE and mediated signaling systems have been studied in relation to suicide and psychiatric disorders that increase the risk of suicide including depression, less is known about the corresponding changes in molecular network within LC. In this study, we examined miRNA networks in the LC of depressed suicide completers and healthy controls. Expression array revealed differential regulation of 13 miRNAs. Interaction between altered miRNAs and target genes showed dense interconnected molecular network. Functional clustering of predicated target genes yielded stress induced disorders that collectively showed the complex nature of suicidal behavior. In addition, 25 miRNAs were pairwise correlated specifically in the depressed suicide group, but not in the control group. Altogether, our study revealed for the first time the involvement of LC based dysregulated miRNA network in disrupting cellular pathways associated with suicidal behavior.
Collapse
|
43
|
Charvériat M, Naus CC, Leybaert L, Sáez JC, Giaume C. Connexin-Dependent Neuroglial Networking as a New Therapeutic Target. Front Cell Neurosci 2017; 11:174. [PMID: 28694772 PMCID: PMC5483454 DOI: 10.3389/fncel.2017.00174] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory functions. Additionally, astrocyte domains have been involved in neurogenesis and neuronal differentiation during development; they participate in the “tripartite synapse” with both pre-synaptic and post-synaptic neurons by tuning down or up neuronal activities through the control of neuronal synaptic strength. Connexin-based hemichannels are also involved in those regulations of neuronal activities, however, this feature will not be considered in the present review. Furthermore, neuronal processes, transmitting electrical signals to chemical synapses, stringently control astroglial connexin expression, and channel functions. Long-range energy trafficking toward neurons through connexin-coupled astrocytes and plasticity of those networks are hence largely dependent on neuronal activity. Such reciprocal interactions between neurons and astrocyte networks involve neurotransmitters, cytokines, endogenous lipids, and peptides released by neurons but also other brain cell types, including microglial and endothelial cells. Over the past 10 years, knowledge about neuroglial interactions has widened and now includes effects of CNS-targeting drugs such as antidepressants, antipsychotics, psychostimulants, or sedatives drugs as potential modulators of connexin function and thus astrocyte networking activity. In physiological situations, neuroglial networking is consequently resulting from a two-way interaction between astrocyte gap junction-mediated networks and those made by neurons. As both cell types are modulated by CNS drugs we postulate that neuroglial networking may emerge as new therapeutic targets in neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Science Institute, University of British ColumbiaVancouver, BC, Canada
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent UniversityGhent, Belgium
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de ChileSantiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto MilenioValparaíso, Chile
| | - Christian Giaume
- Center of Interdisciplinary Research in Biology, Collège de FranceParis, France
| |
Collapse
|
44
|
Gene-body 5-hydroxymethylation is associated with gene expression changes in the prefrontal cortex of depressed individuals. Transl Psychiatry 2017; 7:e1119. [PMID: 28485726 PMCID: PMC5534961 DOI: 10.1038/tp.2017.93] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
5-Hydroxymethylcytosine (5hmC) is a recently characterized epigenetic mark that is particularly abundant in brain tissue and that regulates gene transcription. We have recently begun to understand the important role of 5hmC in brain development, plasticity and disease, but there are currently little data on 5hmC alterations in psychiatric illnesses. Here we report what we believe to be the first genome-wide analysis of 5hmC in the depressed brain. Using AbaSI sequencing, we investigated 5hmC in the prefrontal cortex of depressed (N=19) and psychiatrically healthy controls (N=19). Consistent with previous global 5hmC analyses in other phenotypes, and likely owing to the inter-individual variability in 5hmC content, the distribution of 5hmC across chromosomes and genomic features was not different between groups. We did, however, find 550 CpGs with suggestive evidence of differential hydroxymethylation. Of these, we validated CpGs in the gene body of myosin XVI (MYO16) and insulin-degrading enzyme using targeted oxidative bisulfite sequencing. Furthermore, the enrichment of 5hmC was also associated with changes in the expression of these two genes in depressed suicides. Together, our results present a novel mechanism linking increased 5hmC to depression and provide a framework for future research in this field.
Collapse
|
45
|
Wang Q, Jie W, Liu JH, Yang JM, Gao TM. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65:1227-1250. [DOI: 10.1002/glia.23143] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
46
|
Understanding epigenetic architecture of suicide neurobiology: A critical perspective. Neurosci Biobehav Rev 2016; 72:10-27. [PMID: 27836463 DOI: 10.1016/j.neubiorev.2016.10.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
Abstract
Current understanding of environmental cross-talk with genetic makeup is found to be mediated through an epigenetic interface which is associated with prominent reversible and heritable changes at gene expression level. Recent emergence of epigenetic modulation in shaping the genetic information has become a key regulatory factor in answering the underlying complexities associated with several mental disorders. A comprehensive understanding of the pertinent changes in the epigenetic makeup of suicide phenotype exhibits a characteristic signature with the possibility of using it as a biomarker to help predict the risk factors associated with suicide. Within the scope of this current review, the most sought after epigenetic changes of DNA methylation and histone modification are thoroughly scrutinized to understand their close functional association with the broad spectrum of suicide phenotype.
Collapse
|