1
|
Zou SJ, Shi JN. Therapeutic efficacy of transcranial direct current stimulation in treating auditory hallucinations in schizophrenia: A meta-analysis. World J Psychiatry 2025; 15:99364. [PMID: 40110010 PMCID: PMC11886339 DOI: 10.5498/wjp.v15.i3.99364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Schizophrenia is a chronic psychiatric condition with complex symptomatology, including debilitating auditory hallucinations. Transcranial direct current stimulation (tDCS) has been explored as an adjunctive treatment to alleviate such symptoms. AIM To evaluate the therapeutic efficacy of tDCS in schizophrenia. METHODS Adhering to PRISMA guidelines, we systematically searched PubMed, Embase, Web of Science, and the Cochrane Library on September 19, 2023, for randomized controlled trials examining the efficacy of tDCS in schizophrenia, with no language or time restrictions. We included studies that compared tDCS with a control condition and reported clinically relevant outcomes. Data extraction and quality assessments were performed by independent evaluators using the Cochrane Collaboration's risk of bias tool. Statistical heterogeneity was evaluated, and a random-effects model was applied due to moderate heterogeneity (I 2 = 41.3%). RESULTS Nine studies comprising 425 participants (tDCS group: 219, control group: 206) were included. The meta-analysis demonstrated a significant reduction in auditory hallucination scores following tDCS treatment (weighted mean difference: -2.18, 95% confidence interval: -4.0 to -0.29, P < 0.01). Sensitivity analysis confirmed the robustness of the results, with no significant influence from individual studies. Additionally, publication bias was not detected, supporting the reliability and generalizability of the findings. These results underscore the efficacy of tDCS as a therapeutic intervention for auditory hallucinations in schizophrenia. CONCLUSION tDCS significantly reduces auditory hallucinations in schizophrenia, suggesting its potential as an effective adjunctive treatment for managing this disabling symptom. The findings highlight the practical significance of tDCS in clinical settings, particularly for patients with treatment-resistant auditory hallucinations.
Collapse
Affiliation(s)
- Shi-Jia Zou
- The 4th Ward, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Jin-Nan Shi
- The 4th Ward, Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
2
|
Song J, Carmona-Torres E, Kambari Y, Chavez S, Ueno F, Koizum T, Amaev A, Abdolizadeh A, De Luca V, Blumberger DM, Remington G, Pollock B, Graff-Guerrero A, Gerretsen P. Impaired insight in schizophrenia is associated with higher frontoparietal cerebral blood flow: an arterial spin labeling study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2025; 11:2. [PMID: 39794339 PMCID: PMC11723987 DOI: 10.1038/s41537-024-00536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/13/2024] [Indexed: 01/13/2025]
Abstract
Impaired insight into illness occurs in up to 98% of patients with schizophrenia, depending on the stage of illness, and leads to negative clinical outcomes. Previous neuroimaging studies suggest that impaired insight in patients with schizophrenia may be related to structural and functional anomalies in frontoparietal brain regions. To date, limited studies have investigated the association between regional cerebral blood flow (CBF) and impaired insight in schizophrenia. Therefore, we sought to investigate the relationship between regional CBF, as measured by arterial spin labeling (ASL), and impaired insight in participants with schizophrenia. A total of 32 participants were included in the analysis. Impaired insight in patients with schizophrenia was measured using the VAGUS, Self-report (VAGUS-SR). Resting-state regional CBF was measured using pseudo-continuous ASL (pCASL) and extracted using SPM12 and REX toolbox. Whole brain analysis found that impaired insight was associated with higher regional CBF in the right angular gyrus, left supramarginal gyrus, and right superior frontal region when controlling for age, gender, smoking status, and illness severity. The results indicate that impaired insight in schizophrenia is related to regional CBF in frontoparietal areas. These neuroimaging findings can serve as therapeutic targets for intervention, such as with non-invasive brain stimulation.
Collapse
Affiliation(s)
- Jianmeng Song
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Edgardo Carmona-Torres
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Yasaman Kambari
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sofia Chavez
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fumihiko Ueno
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Teruki Koizum
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aron Amaev
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ali Abdolizadeh
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Schizophrenia Division, CAMH, Toronto, ON, Canada
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Schizophrenia Division, CAMH, Toronto, ON, Canada
| | - Bruce Pollock
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Adult Neurodevelopment and Geriatric Psychiatry, CAMH, Toronto, ON, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Adult Neurodevelopment and Geriatric Psychiatry, CAMH, Toronto, ON, Canada.
| |
Collapse
|
3
|
Yeh TC, Lin YY, Tzeng NS, Kao YC, Chung YA, Chang CC, Fang HW, Chang HA. Effects of online high-definition transcranial direct current stimulation over left dorsolateral prefrontal cortex on predominant negative symptoms and EEG functional connectivity in patients with schizophrenia: a randomized, double-blind, controlled trial. Psychiatry Clin Neurosci 2025; 79:2-11. [PMID: 39317963 DOI: 10.1111/pcn.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
AIMS Schizophrenia, a debilitating mental disorder, is characterized by persistent negative symptoms such as avolition and anhedonia. Currently, there are no effective treatments available for these symptoms. Thus, our study aims to assess the efficacy of online high-definition transcranial direct current stimulation (online HD-tDCS) in addressing the negative symptoms of schizophrenia, utilizing a double-blind, randomized, sham-controlled trial design. METHODS Fifty-nine patients with schizophrenia were randomized to receive either active HD-tDCS or sham stimulation, targeting the left dorsolateral prefrontal cortex. Outcomes were measured by changes in the Positive and Negative Syndrome Scale Factor Score for Negative Symptom (PANSS-FSNS). Exact low-resolution electromagnetic tomography was used to assess the functional connectivity. RESULTS All 59 participants, including 50.84% females with an average age of 43.36 years, completed the trial. In the intention-to-treat analysis, patients receiving active HD-tDCS showed greater improvement in PANSS-FSNS scores compared to those receiving the sham procedure. The differences were 2.34 (95% confidence interval [CI], 1.28-3.40), 4.28 (95% CI, 2.93-5.62), and 4.91 (95% CI, 3.29-6.52) after the intervention, as well as at 1-week and 1-month follow-ups, respectively. A tingling sensation on the scalp was more common in the active group (63.3%) compared to the sham group (10.3%). Additionally, HD-tDCS was associated with a decrease in delta-band connectivity within the default mode network. CONCLUSIONS High-definition transcranial direct current stimulation was effective and safe in ameliorating negative symptoms in patients with schizophrenia when combined with online functional targeting.
Collapse
Affiliation(s)
- Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital Beitou Branch, National Defense Medical Center, Taipei, Taiwan
| | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Yang C, Jung B, Lee SH. Transcranial Electrical Stimulation: Clinical Implication and Practice for Treatment of Psychiatric Illness. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:391-404. [PMID: 39069679 PMCID: PMC11289600 DOI: 10.9758/cpn.23.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 07/30/2024]
Abstract
Brain electrical stimulation, particularly non-invasive brain stimulation (NIBS) techniques such as transcranial electrical stimulation (tES), have emerged as a promising treatment for various psychiatric disorders, including depression, anxiety, and post-traumatic stress disorder. tES techniques, such as transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS), are cost-effective and safe interventions that are designed to affect neuronal circuits in the brain using various modalities. Although tES has shown effectiveness in the treatment of psychiatric disorders, there is a lack of comprehensive papers that consider its clinical implications. Therefore, this review aims to evaluate the clinical implications of tES and provide practical guidance for the treatment of psychiatric illnesses. Moreover, this review provides an overview of tES techniques and their mechanisms of action and summarizes recent clinical studies that have examined the use of tES for psychiatric disorders.
Collapse
Affiliation(s)
- Chaeyeon Yang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
| | - Bori Jung
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychology, Sogang University, Seoul, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
5
|
Siafis S, Lorenz C, Wu H, Zhu Y, Schneider-Thoma J, Bighelli I, Li C, Hansen WP, Padberg F, Salanti G, Leucht S. Non-invasive brain stimulation for treatment-resistant schizophrenia: protocol of a systematic review and network meta-analysis. Syst Rev 2024; 13:165. [PMID: 38915121 PMCID: PMC11195004 DOI: 10.1186/s13643-024-02585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Non-invasive brain stimulation (NIBS) is a promising intervention for treatment-resistant schizophrenia. However, there are multiple available techniques and a comprehensive synthesis of evidence is lacking. Thus, we will conduct a systematic review and network meta-analysis to investigate the comparative efficacy and safety of NIBS techniques as an add-on to antipsychotics for treatment-resistant schizophrenia. METHODS We will include single- and double-blind randomized-controlled trials (RCT) comparing any NIBS technique with each other or with a control intervention as an add-on to antipsychotics in adult patients with treatment-resistant schizophrenia. We will exclude studies focusing on predominant negative symptoms, maintenance treatment, and single sessions. The primary outcome will be a change in overall symptoms, and secondary outcomes will be a change in symptom domains, cognitive performance, quality of life, functioning, response, dropouts, and side effects. We will search for eligible studies in previous reviews, multiple electronic databases and clinical trial registries from inception onwards. At least two independent reviewers will perform the study selection, data extraction, and risk of bias assessment. We will measure the treatment differences using standardized mean difference (SMD) and odds ratio (OR) for continuous and dichotomous outcomes, respectively. We will conduct pairwise and network meta-analysis within a frequentist framework using a random-effects model, except for rare event outcomes where we will use a fixed-effects Mantel-Haenszel method. We will investigate potential sources of heterogeneity in subgroup analyses. Reporting bias will be assessed with funnel plots and the Risk of Bias due to Missing Evidence in Network meta-analysis (ROB-MEN) tool. The certainty in the evidence will be evaluated using the Confidence in Network Meta-analysis (CINeMA) approach. DISCUSSION Our network meta-analysis would provide an up-to-date synthesis of the evidence from all available RCTs on the comparative efficacy and safety of NIBS for treatment-resistant schizophrenia. This information could guide evidence-based clinical practice and improve the outcomes of patients. SYSTEMATIC REVIEW REGISTRATION PROSPERO-ID CRD42023410645.
Collapse
Affiliation(s)
- Spyridon Siafis
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany.
| | - Carolin Lorenz
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Hui Wu
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Johannes Schneider-Thoma
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Irene Bighelli
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | | | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU University Hospital Munich, Munich, Germany
| | - Georgia Salanti
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Stefan Leucht
- Technical University of Munich, TUM School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| |
Collapse
|
6
|
Lisoni J, Nibbio G, Baldacci G, Zucchetti A, Cicale A, Zardini D, Miotto P, Deste G, Barlati S, Vita A. Improving depressive symptoms in patients with schizophrenia using bilateral bipolar-nonbalanced prefrontal tDCS: Results from a double-blind sham-controlled trial. J Affect Disord 2024; 349:165-175. [PMID: 38199388 DOI: 10.1016/j.jad.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Treating depressive symptoms in patients with schizophrenia is challenging. While transcranical Dicrect Current Stimulation (tDCS) improved other core symptoms of schizophrenia, conflicting results have been obtained on depressive symptoms. Thus, we aimed to expand current evidence on tDCS efficacy to improve depressive symptoms in patients with schizophrenia. METHODS A double-blind RCT was performed with patients randomized to 2 mA active-tDCS or sham-tDCS (15 daily sessions) with a bilateral bipolar-nonbalanced prefrontal placement (anode: left Dorsolateral prefrontal cortex; cathode: right orbitofrontal region). Clinical outcomes included variations of Calgary Depression Scale for Schizophrenia total score (CDSS) and of Depression-hopelessness and Guilty idea of reference-pathological guilt factors. Analysis of covariance was performed evaluating between-group changes over time. The presence/absence of probable clinically significant depression was determined when CDSS > 6. RESULTS As 50 outpatients were included (both groups, n = 25), significant improvements following active-tDCS were observed for CDSS total score (p = 0.001), Depression-hopelessness (p = 0.001) and Guilty idea of reference-pathological guilt (p = 0.03). Considering patients with CDSS>6 (n = 23), compared to sham, active-tDCS significantly improved CDSS total score (p < 0.001), Depression-hopelessness (p = 0.001) but Guilty idea of reference-pathological guilt only marginally improved (p = 0.051). Considering response rates of clinically significant depression, important reductions of CDSS score were observed (78 % of the sample scored ≤6; active-tDCS, n = 23; sham-tDCS, n = 16; p = 0.017). Early wakening item did not significantly change in any group. LIMITATIONS The study lacks a follow-up period and evaluation of tDCS effects on psychosocial functioning. CONCLUSIONS Bilateral bipolar-nonbalanced prefrontal tDCS is a successful protocol for the treatment of depressive symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Jacopo Lisoni
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giulia Baldacci
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Andrea Zucchetti
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Andrea Cicale
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Daniela Zardini
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paola Miotto
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Antonio Vita
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
7
|
Li WX, Lin QH, Zhao BH, Kuang LD, Zhang CY, Han Y, Calhoun VD. Dynamic functional network connectivity based on spatial source phase maps of complex-valued fMRI data: Application to schizophrenia. J Neurosci Methods 2024; 403:110049. [PMID: 38151187 DOI: 10.1016/j.jneumeth.2023.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Dynamic spatial functional network connectivity (dsFNC) has shown advantages in detecting functional alterations impacted by mental disorders using magnitude-only fMRI data. However, complete fMRI data are complex-valued with unique and useful phase information. METHODS We propose dsFNC of spatial source phase (SSP) maps, derived from complex-valued fMRI data (named SSP-dsFNC), to capture the dynamics elicited by the phase. We compute mutual information for connectivity quantification, employ statistical analysis and Markov chains to assess dynamics, ultimately classifying schizophrenia patients (SZs) and healthy controls (HCs) based on connectivity variance and Markov chain state transitions across windows. RESULTS SSP-dsFNC yielded greater dynamics and more significant HC-SZ differences, due to the use of complete brain information from complex-valued fMRI data. COMPARISON WITH EXISTING METHODS Compared with magnitude-dsFNC, SSP-dsFNC detected additional and meaningful connections across windows (e.g., for right frontal parietal) and achieved 14.6% higher accuracy for classifying HCs and SZs. CONCLUSIONS This work provides new evidence about how SSP-dsFNC could be impacted by schizophrenia, and this information could be used to identify potential imaging biomarkers for psychotic diagnosis.
Collapse
Affiliation(s)
- Wei-Xing Li
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qiu-Hua Lin
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Bin-Hua Zhao
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li-Dan Kuang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Chao-Ying Zhang
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yue Han
- School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Ma S, Chen T, Jia W, Liu J, Ding S, Li P, Gan H, Zhang D, Shao S, Poo MM, Zhao M, Sun B, Jiang J. Enhanced Beta2-band Oscillations Denote Auditory Hallucination in Schizophrenia Patients and a Monkey Model of Psychosis. Neurosci Bull 2024; 40:325-338. [PMID: 37612582 PMCID: PMC10912066 DOI: 10.1007/s12264-023-01100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 08/25/2023] Open
Abstract
An electroencephalographic (EEG) signature of auditory hallucinations (AHs) is important for facilitating the diagnosis and treatment of AHs in schizophrenia. We recorded EEG from 25 schizophrenia patients with recurrent AHs. During the period of AHs, EEG recordings exhibited significantly elevated beta2-band power in the temporal region, as compared to those recorded in the absence of AHs or during stimulation with verbal sounds. We further generated methamphetamine-treated rhesus monkeys exhibiting psychosis-like behaviors, including repetitive sudden searching actions in the absence of external intrusion, suggesting the occurrence of AHs. Epidural EEG beta2-band power in the temporal region of these monkeys was enhanced immediately after methamphetamine treatment and positively correlated with the frequency of sudden searching actions. Thus, the enhancement of temporal beta2-band oscillations represents a signature for AHs in both patients and a monkey model of psychosis, and this monkey model can be used for developing closed-loop neuromodulation approaches for the treatment of refractory AHs in schizophrenia.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200020, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Wenjun Jia
- Shanghai Center for Brain Science and Brain-inspired Technology, Lingang Laboratory, Shanghai, 201602, China
| | - Jie Liu
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200020, China
| | - Shihan Ding
- University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Puzhe Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China
| | - Hong Gan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dapeng Zhang
- Fuyang Third People's Hospital, Fuyang Mental Health Center, Fuyang, 236052, China
| | - Shuxin Shao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Mu-Ming Poo
- Shanghai Center for Brain Science and Brain-inspired Technology, Lingang Laboratory, Shanghai, 201602, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200030, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200020, China.
| | - Jian Jiang
- Shanghai Center for Brain Science and Brain-inspired Technology, Lingang Laboratory, Shanghai, 201602, China.
- Shanghai Quanlan Technology Co., Ltd, Shanghai, 201602, China.
| |
Collapse
|
9
|
Lisoni J, Baldacci G, Nibbio G, Zucchetti A, Butti Lemmi Gigli E, Savorelli A, Facchi M, Miotto P, Deste G, Barlati S, Vita A. Effects of bilateral, bipolar-nonbalanced, frontal transcranial Direct Current Stimulation (tDCS) on negative symptoms and neurocognition in a sample of patients living with schizophrenia: Results of a randomized double-blind sham-controlled trial. J Psychiatr Res 2022; 155:430-442. [PMID: 36182772 DOI: 10.1016/j.jpsychires.2022.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Negative symptoms (NS), conceived as Avolition-Apathy (AA) and Expressive Deficit (EXP) domains, and neurocognitive impairments represent unmet therapeutic needs for patients with schizophrenia. The present study investigated if bilateral bipolar-nonbalanced frontal transcranial Direct Current Stimulation (tDCS) could improve these psychopathological dimensions. This randomized, double-blind, sham-controlled study (active-tDCS versus sham-tDCS, both, n = 25) included 50 outpatients diagnosed with schizophrenia clinically stabilized. Patients received 20-min 2 mA active-tDCS or sham-tDCS (anode: left Dorsolateral Prefrontal Cortex; cathode: right orbitofrontal region). Primary outcomes included: PANSS-Negative subscale, Negative Factor (Neg-PANSS), AA and EXP domains; neurocognitive performance at Brief Assessment of Cognition in Schizophrenia. Secondary outcomes included: PANSS subscales and total score, Disorganized/Concrete (DiscC-PANSS) and Positive Factors, Clinical Global Impression (CGI) scores, clinical insight at Scale to Assess Unawareness of Mental Disorder (SUMD). Analysis of covariance (ANCOVA) was performed evaluating between-group changes over time. Significant improvements following active-tDCS were observed for all NS measures (all, p < 0.001; d > 0.8) and for working memory (p = 0.025, d = 0.31). Greater variations following to active treatment emerged also for PANSS-General Psychopathology subscale (p < 0.001; d = 0.54), PANSS total score (p < 0.001; d = 0.69), CGI indexes (all, p < 0.001; d > 0.6), DiscC-PANSS (p < 0.001; d = 0.80) and SUMD-general Unawareness index (p = 0.005; d = 0.15) but not for positive symptoms and others insight measures. Good safety/tolerability profiles were found. Bilateral bipolar-nonbalanced frontal-tDCS is a non-pharmacological approach in schizophrenia effectively improving NS, particularly the AA and EXP domains, probably acting by modulating dysfunctional cortical-subcortical networks. Preliminary results also suggest working memory improvements following tDCS. Further studies are needed to confirm the neurobiological basis of these results.
Collapse
Affiliation(s)
- Jacopo Lisoni
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Giulia Baldacci
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Zucchetti
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Arianna Savorelli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Michele Facchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Paola Miotto
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Adam O, Blay M, Brunoni AR, Chang HA, Gomes JS, Javitt DC, Jung DU, Kantrowitz JT, Koops S, Lindenmayer JP, Palm U, Smith RC, Sommer IE, Valiengo LDCL, Weickert TW, Brunelin J, Mondino M. Efficacy of Transcranial Direct Current Stimulation to Improve Insight in Patients With Schizophrenia: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Schizophr Bull 2022; 48:1284-1294. [PMID: 35820035 PMCID: PMC9673267 DOI: 10.1093/schbul/sbac078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Impaired insight into the illness and its consequences is associated with poor outcomes in schizophrenia. While transcranial direct current stimulation (tDCS) may represent a potentially effective treatment strategy to relieve various symptoms of schizophrenia, its impact on insight remains unclear. To investigate whether tDCS would modulate insight in patients with schizophrenia, we undertook a meta-analysis based on results from previous RCTs that investigated the clinical efficacy of tDCS. We hypothesize that repeated sessions of tDCS will be associated with insight improvement among patients. STUDY DESIGN PubMed and ScienceDirect databases were systematically searched to identify RCTs that delivered at least 10 tDCS sessions in patients with schizophrenia. The primary outcome was the change in insight score, assessed by the Positive and Negative Syndrome Scale (PANSS) item G12 following active tDCS sessions as opposed to sham stimulation. Effect sizes were calculated for all studies and pooled using a random-effects model. Meta-regression and subgroup analyses were conducted. STUDY RESULTS Thirteen studies (587 patients with schizophrenia) were included. A significant pooled effect size (g) of -0.46 (95% CI [-0.78; -0.14]) in favor of active tDCS was observed. Age and G12 score at baseline were identified as significant moderators, while change in total PANSS score was not significant. CONCLUSIONS Ten sessions of active tDCS with either frontotemporoparietal or bifrontal montage may improve insight into the illness in patients with schizophrenia. The effect of this treatment could contribute to the beneficial outcomes observed in patients following stimulation.
Collapse
Affiliation(s)
- Ondine Adam
- Pôle Est, Centre Hospitalier Le Vinatier, Bron, France,INSERM U1028; CNRS UMR5292; PSYR2 Team; Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Lyon, France
| | - Martin Blay
- Pôle Est, Centre Hospitalier Le Vinatier, Bron, France
| | - Andre R Brunoni
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Laboratório de Neurociências (LIM-27), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil,Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, Serviço Interdisciplinar de Neuromodulação (SIN), Hospital das Clínicas HCFMUSP, São Paulo, Brazil
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - July S Gomes
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel C Javitt
- Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA,Nathan Kline Institute, Orangeburg, NY, USA
| | - Do-Un Jung
- Department of Psychiatry, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Joshua T Kantrowitz
- Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA,Nathan Kline Institute, Orangeburg, NY, USA
| | - Sanne Koops
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neurosciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Jean-Pierre Lindenmayer
- Nathan Kline Institute, Orangeburg, NY, USA,New York University School of Medicine, New York, NY, USA,Manhattan Psychiatric Center, New York, NY, USA
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany,Medical Park Chiemseeblick, Bernau-Felden, Germany
| | - Robert C Smith
- Nathan Kline Institute, Orangeburg, NY, USA,New York University School of Medicine, New York, NY, USA
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neurosciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Leandro do Costa Lane Valiengo
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Laboratório de Neurociências (LIM-27), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil,Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, Serviço Interdisciplinar de Neuromodulação (SIN), Hospital das Clínicas HCFMUSP, São Paulo, Brazil
| | - Thomas W Weickert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW, Australia
| | | | - Marine Mondino
- To whom correspondence should be addressed; PsyR2 team, Centre Hospitalier le Vinatier, batiment 416, 1st floor, 95 boulevard Pinel, 69678 Bron, Cedex BP 30039, France; tel: (+33)4 37 91 55 65, fax: (+33)4 37 91 55 49, e-mail:
| |
Collapse
|
11
|
Adjunctive tDCS for treatment-refractory auditory hallucinations in schizophrenia: A meta-analysis of randomized, double-blinded, sham-controlled studies. Asian J Psychiatr 2022; 73:103100. [PMID: 35430496 DOI: 10.1016/j.ajp.2022.103100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/14/2022] [Accepted: 04/02/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Treatment-refractory auditory hallucinations (TRAH) in schizophrenia often do not improve with pharmacotherapy. We performed a meta-analysis of randomized, double-blind, sham-controlled clinical trials (RCTs) that systematically examined the therapeutic effects and tolerability of adjunctive active versus sham active transcranial direct current stimulation (tDCS) for auditory hallucinations as measured by the Auditory Hallucination Rating Scale (AHRS) in schizophrenia patients with TRAH. METHODS Relevant data were extracted, checked and analyzed using the Review Manager, Version 5.3 by three independent investigators. RESULTS Eight double-blind RCTs covering 329 schizophrenia patients (168 in active tDCS group, 161 in sham tDCS group) were included. Although no advantage of active tDCS on auditory hallucinations [7 RCTs, n = 224; standardized mean difference (SMD): - 0.33 (95% confidence interval (CI): - 0.71, 0.05), P = 0.09; I2 = 46%] was found compared to sham, subgroup analyses revealed that active tDCS with twice-daily stimulation [6 RCTs, n = 198; SMD: - 0.42 (95%CI: -0.82, -0.02), P = 0.04; I2 = 44%] and active tDCS with ≥ 10 stimulation sessions [6 RCTs, n = 198; SMD: - 0.42 (95%CI: -0.82, -0.02), P = 0.04; I2 = 44%] showed a significantly better therapeutic effect than sham in improving auditory hallucinations symptoms. Meta-analyses of total psychopathology and discontinuation due to any reason were not significantly different between the active and sham tDCS groups. CONCLUSION This meta-analysis demonstrated that the effects of tDCS for auditory hallucinations symptoms were influenced by the tDCS parameters. Twice-daily stimulation and ≥ 10 stimulation sessions may be needed to improve auditory hallucinations symptoms in schizophrenia with TRAH.
Collapse
|
12
|
Hyde J, Carr H, Kelley N, Seneviratne R, Reed C, Parlatini V, Garner M, Solmi M, Rosson S, Cortese S, Brandt V. Efficacy of neurostimulation across mental disorders: systematic review and meta-analysis of 208 randomized controlled trials. Mol Psychiatry 2022; 27:2709-2719. [PMID: 35365806 PMCID: PMC8973679 DOI: 10.1038/s41380-022-01524-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/29/2023]
Abstract
Non-invasive brain stimulation (NIBS), including transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS), is a potentially effective treatment strategy for a number of mental conditions. However, no quantitative evidence synthesis of randomized controlled trials (RCTs) of TMS or tDCS using the same criteria including several mental conditions is available. Based on 208 RCTs identified in a systematic review, we conducted a series of random effects meta-analyses to assess the efficacy of NIBS, compared to sham, for core symptoms and cognitive functioning within a broad range of mental conditions. Outcomes included changes in core symptom severity and cognitive functioning from pre- to post-treatment. We found significant positive effects for several outcomes without significant heterogeneity including TMS for symptoms of generalized anxiety disorder (SMD = -1.8 (95% CI: -2.6 to -1), and tDCS for symptoms of substance use disorder (-0.73, -1.00 to -0.46). There was also significant effects for TMS in obsessive-compulsive disorder (-0.66, -0.91 to -0.41) and unipolar depression symptoms (-0.60, -0.78 to -0.42) but with significant heterogeneity. However, subgroup analyses based on stimulation site and number of treatment sessions revealed evidence of positive effects, without significant heterogeneity, for specific TMS stimulation protocols. For neurocognitive outcomes, there was only significant evidence, without significant heterogeneity, for tDCS for improving attention (-0.3, -0.55 to -0.05) and working memory (-0.38, -0.74 to -0.03) in individuals with schizophrenia. We concluded that TMS and tDCS can benefit individuals with a variety of mental conditions, significantly improving clinical dimensions, including cognitive deficits in schizophrenia which are poorly responsive to pharmacotherapy.
Collapse
Affiliation(s)
- Joshua Hyde
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK.
| | - Hannah Carr
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Nicholas Kelley
- Centre for Research on Self and Identity, School of Psychology, University of Southampton, Southampton, UK
| | - Rose Seneviratne
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Claire Reed
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Valeria Parlatini
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Matthew Garner
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
| | - Stella Rosson
- Department of Mental Health, Azienda AULSS 3 Serenissima, Venice, Italy
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| |
Collapse
|
13
|
Phelan S, Sigala N. The effect of treatment on insight in psychotic disorders - A systematic review and meta-analysis. Schizophr Res 2022; 244:126-133. [PMID: 35661550 DOI: 10.1016/j.schres.2022.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/25/2022] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND For people with a psychotic disorder lack of insight can be detrimental on their condition and recovery. For this reason, insight has been considered as a target for therapy. We conducted a systematic review of the literature on pharmacological, psychological and other treatments to test the hypothesis that these interventions could improve insight. METHODS We performed a literature search (1970-2020) across the following databases: PubMed, EMBASE, PsychINFO, Medline and Web of Science. Within each database the following search terms and the associated Boolean operatives were used: "Insight AND (treatment OR therapy) AND (psychosis OR schizophrenia) AND (awareness or denial)". Further filters were applied to identify peer reviewed controlled trials on adults. Following assessment for bias and inclusion criteria, we calculated the effect size (Cohen's d) for each study and overall, using a random effects model with 95% confidence intervals. RESULTS Of 94 articles found in the initial literature search, 30 studies that examined the treatment of insight in psychosis met the initial selection criteria and were assessed for bias. A total of 21 studies were included in the final meta-analysis. The overall calculated mean effect size for all interventions was 0.441 (95% CI, 0.23-0.66), representing a medium effect size. The effect of psychoeducation studies alone was medium (0.613, 95% CI, -0.35-2.06), but not significant. The effect of CBT studies was small (0.235, 95% CI, 0.01-0.46), and significant. The effect of combined antipsychotic medication and psychosocial intervention was of medium size and significant (0.683, 95% CI = 0.54-0.83). Finally, tDCS over the left fronto-temporal cortex, produced a very large and significant improvement of insight 1.153 (95% CI = 0.61-1.70), which was present for at least a month after the intervention. CONCLUSIONS Despite the variation and small number and size of trials into possible interventions, the hypothesis that insight could be improved was confirmed. Whilst most research focuses on psychotherapies, there is scope and potential for pharmacological, as well as other interventions (e.g. physical exercise, self-video observation, Direct Current Stimulation) to improve insight over and above treatment as usual. Given the association of insight with illness severity and treatment adherence, it is important to direct efforts in therapies that target insight improvement in psychosis.
Collapse
Affiliation(s)
- Sean Phelan
- Brighton and Sussex Medical School, University of Sussex, UK
| | - Natasha Sigala
- Brighton and Sussex Medical School, University of Sussex, UK.
| |
Collapse
|
14
|
Smigielski L, Stämpfli P, Wotruba D, Buechler R, Sommer S, Gerstenberg M, Theodoridou A, Walitza S, Rössler W, Heekeren K. White matter microstructure and the clinical risk for psychosis: A diffusion tensor imaging study of individuals with basic symptoms and at ultra-high risk. Neuroimage Clin 2022; 35:103067. [PMID: 35679786 PMCID: PMC9178487 DOI: 10.1016/j.nicl.2022.103067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/29/2022]
Abstract
This DTI cross-sectional study compared UHR, basic symptom & control groups (n = 112). The splenium of UHR individuals exhibited differences in fractional anisotropy (FA). Basic symptoms alone were not associated with white matter microstructure changes. Large differences in FA & radial diffusivity were found in converters to psychosis. Regional FA was inversely correlated with the general psychopathology domain.
Background Widespread white matter abnormalities are a frequent finding in chronic schizophrenia patients. More inconsistent results have been provided by the sparser literature on at-risk states for psychosis, i.e., emerging subclinical symptoms. However, considering risk as a homogenous construct, an approach of earlier studies, may impede our understanding of neuro-progression into psychosis. Methods An analysis was conducted of 3-Tesla MRI diffusion and symptom data from 112 individuals (mean age, 21.97 ± 4.19) within two at-risk paradigm subtypes, only basic symptoms (n = 43) and ultra-high risk (n = 37), and controls (n = 32). Between-group comparisons (involving three study groups and further split based on the subsequent transition to schizophrenia) of four diffusion-tensor-imaging-derived scalars were performed using voxelwise tract-based spatial statistics, followed by correlational analyses with Structured Interview for Prodromal Syndromes responses. Results Relative to controls, fractional anisotropy was lower in the splenium of the corpus callosum of ultra-high-risk individuals, but only before stringent multiple-testing correction, and negatively correlated with General Symptom severity among at-risk individuals. At-risk participants who transitioned to schizophrenia within 3 years, compared to those that did not transition, had more severe WM differences in fractional anisotropy and radial diffusivity (particularly in the corpus callosum, anterior corona radiata, and motor/sensory tracts), which were even more extensive compared to healthy controls. Conclusions These findings align with the subclinical symptom presentation and more extensive disruptions in converters, suggestive of severity-related demyelination or axonal pathology. Fine-grained but detectable differences among ultra-high-risk subjects (i.e., with brief limited intermittent and/or attenuated psychotic symptoms) point to the splenium as a discrete site of emerging psychopathology, while basic symptoms alone were not associated with altered fractional anisotropy.
Collapse
Affiliation(s)
- Lukasz Smigielski
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Diana Wotruba
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roman Buechler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Sommer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Miriam Gerstenberg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Campus Charité Mitte, Berlin, Germany; Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy I, LVR-Hospital, Cologne, Germany
| |
Collapse
|
15
|
Kronick J, Sabesan P, Burhan AM, Palaniyappan L. Assessment of treatment resistance criteria in non-invasive brain stimulation studies of schizophrenia. Schizophr Res 2022; 243:349-360. [PMID: 34183208 DOI: 10.1016/j.schres.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/17/2023]
Abstract
Novel treatment modalities, such as non-invasive brain stimulation (NIBS), typically focus on patient groups that have failed multiple treatment interventions. Despite its promise, the clinical translation of NIBS in schizophrenia has been limited. One important obstacle to implementation is the inconsistent reporting of treatment resistance in the clinical trial literature contributing to heterogeneity in reported effects. In response, we develop a numerical approach to synthesize quality of assessment of Treatment-Resistant Schizophrenia (TRS) and apply this to studies investigating therapeutic response to NIBS in patients with schizophrenia. Literature search conducted through PubMed database identified 119 studies investigating Transcranial Magnetic Stimulation and Transcranial Electrical Stimulation in treating resistant schizophrenia symptoms. A quality score out of 11 was assigned to each study based on adherence to the international consensus guidelines for TRS developed by the Treatment Response and Resistance in Psychosis (TRRIP) group. Results revealed an overall paucity of studies with thorough assessment and/or reporting of TRS phenomenon, as evidenced by a mean quality score of 3.38/11 (SD: 1.01) for trials and 5.16/11 (SD: 1.57) for case reports, though this improved minimally since the publication of consensus criteria. Most studies considered treatment-resistance as a single dimensional construct by reporting resistance of a single symptom, and failed to establish treatment adherence, resistance time course and functional impairment. We conclude that the current NIBS literature in schizophrenia do not reflect its true effects on treatment-resistance. There is an urgent need to improve assessment and reporting standards of clinical trials that target TRS.
Collapse
Affiliation(s)
- Jami Kronick
- Schulich School of Medicine & Dentistry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada.
| | - Priyadharshini Sabesan
- Department of Psychiatry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.
| | - Amer M Burhan
- Department of Psychiatry, University of Toronto, 250 College Street 8th floor, Toronto, Ontario M5T 1R8, Canada; Ontario Shores Centre for Mental Health Sciences, 700 Gordon Street, Whitby, Ontario L1N 5S9, Canada; Department of Psychiatry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; Robarts Research Institute, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; Lawson Health Research Institute, 750 Base Line Road East Suite 300, London, Ontario N6C 2R5, Canada.
| |
Collapse
|
16
|
Mathematical Model Insights into EEG Origin under Transcranial Direct Current Stimulation (tDCS) in the Context of Psychosis. J Clin Med 2022; 11:jcm11071845. [PMID: 35407453 PMCID: PMC8999473 DOI: 10.3390/jcm11071845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a psychotic disease that develops progressively over years with a transition from prodromal to psychotic state associated with a disruption in brain activity. Transcranial Direct Current Stimulation (tDCS), known to alleviate pharmaco-resistant symptoms in patients suffering from schizophrenia, promises to prevent such a psychotic transition. To understand better how tDCS affects brain activity, we propose a neural cortico-thalamo-cortical (CTC) circuit model involving the Ascending Reticular Arousal System (ARAS) that permits to describe major impact features of tDCS, such as excitability for short-duration stimulation and electroencephalography (EEG) power modulation for long-duration stimulation. To this end, the mathematical model relates stimulus duration and Long-Term Plasticity (LTP) effect, in addition to describing the temporal LTP decay after stimulus offset. This new relation promises to optimize future stimulation protocols. Moreover, we reproduce successfully EEG-power modulation under tDCS in a ketamine-induced psychosis model and confirm the N-methyl-d-aspartate (NMDA) receptor hypofunction hypothesis in the etiopathophysiology of schizophrenia. The model description points to an important role of the ARAS and the δ-rhythm synchronicity in CTC circuit in early-stage psychosis.
Collapse
|
17
|
Chen C, Huang H, Qin X, Zhang L, Rong B, Wang G, Wang H. Reduced inter-hemispheric auditory and memory-related network interactions in patients with schizophrenia experiencing auditory verbal hallucinations. Front Psychiatry 2022; 13:956895. [PMID: 35990049 PMCID: PMC9381966 DOI: 10.3389/fpsyt.2022.956895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Inter-hemispheric disconnection is a primary pathological finding in schizophrenia. However, given the inherent complexity of this disease and its development, it remains unclear as to whether associated inter-hemispheric changes play an important role in auditory verbal hallucination (AVH) development. As such, this study was developed to explore inter-hemispheric connectivity in the context of schizophrenia with AVH while excluding positive symptoms and other factors with the potential to confound these results. METHOD In total, resting-state functional magnetic resonance imaging (fMRI) was used to assess 42 patients with AVH (APG), 26 without AVH (NPG), and 82 normal control (NC) individuals. Inter-hemispheric connectivity in these subjects was then assessed through the use of voxel-mirrored homotopic connectivity (VMHC) and Pearson correlation analyses. RESULT Relative to HC and NPG subjects, APG individuals exhibited a decrease in VMHC in the superior temporal gyrus (STG) extending into Heschl's gyrus, the insula, and the Rolandic operculum as well as in the fusiform gyrus extending into the para-hippocampus (Corrected p < 0.005, cluster size = 52). Among APG individuals, these observed impairments of inter-hemispheric connectivity were negatively correlated with Hoffman auditory hallucination scores. CONCLUSION These results support the schizophrenia hemitropic disconnection hypothesis, and provide novel evidence suggesting that there may be a relationship between reductions in inter-hemispheric connectivity in auditory and memory-related networks and the pathogenesis of AVH in patients with schizophrenia following the exclusion of confounding factors from other positive symptoms.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xucong Qin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liang Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bei Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Institute of Neurology and Psychiatry Research, Wuhan, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
18
|
Stuchlíková Z, Klírová M. A Literature Mini-Review of Transcranial Direct Current Stimulation in Schizophrenia. Front Psychiatry 2022; 13:874128. [PMID: 35530026 PMCID: PMC9069055 DOI: 10.3389/fpsyt.2022.874128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neurostimulation method that utilizes the effect of low-current on brain tissue. In recent years, the effect of transcranial direct current stimulation has been investigated as a therapeutic modality in various neuropsychiatric indications, one of them being schizophrenia. This article aims to provide an overview of the potential application and effect of tDCS in treating patients with schizophrenia. A literature search was performed using the PubMed, Web of Science, and Google Scholar databases for relevant research published from any date until December 2021. Eligible studies included those that used randomized controlled parallel-group design and focused on the use of transcranial direct current stimulation for the treatment of positive, negative, or cognitive symptoms of schizophrenia. Studies were divided into groups based on the focus of research and an overview is provided in separate sections and tables in the article. The original database search yielded 705 results out of which 27 randomized controlled trials met the eligibility criteria and were selected and used for the purpose of this article. In a review of the selected trials, transcranial direct current stimulation is a safe and well-tolerated method that appears to have the potential as an effective modality for the treatment of positive and negative schizophrenic symptoms and offers promising results in influencing cognition. However, ongoing research is needed to confirm these conclusions and to further specify distinct application parameters.
Collapse
Affiliation(s)
- Zuzana Stuchlíková
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia.,Hospital České Budĕjovice, a.s., České Budĕjovice, Czechia
| | - Monika Klírová
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
19
|
Brunelin J, Mondino M, Haesebaert J, Attal J, Benoit M, Chupin M, Dollfus S, El-Hage W, Galvao F, Jardri R, Llorca PM, Magaud L, Plaze M, Schott-Pethelaz AM, Suaud-Chagny MF, Szekely D, Fakra E, Poulet E. Examining transcranial random noise stimulation as an add-on treatment for persistent symptoms in schizophrenia (STIM'Zo): a study protocol for a multicentre, double-blind, randomized sham-controlled clinical trial. Trials 2021; 22:964. [PMID: 34963486 PMCID: PMC8715588 DOI: 10.1186/s13063-021-05928-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background One out of three patients with schizophrenia failed to respond adequately to antipsychotics and continue to experience debilitating symptoms such as auditory hallucinations and negative symptoms. The development of additional therapeutic approaches for these persistent symptoms constitutes a major goal for patients. Here, we develop a randomized-controlled trial testing the efficacy of high-frequency transcranial random noise stimulation (hf-tRNS) for the treatment of resistant/persistent symptoms of schizophrenia in patients with various profiles of symptoms, cognitive deficits and illness duration. We also aim to investigate the biological and cognitive effects of hf-tRNS and to identify the predictors of clinical response. Methods In a randomized, double-blind, 2-arm parallel-group, controlled, multicentre study, 144 patients with schizophrenia and persistent symptoms despite the prescription of at least one antipsychotic treatment will be randomly allocated to receive either active (n = 72) or sham (n = 72) hf-tRNS. hf-tRNS (100–500 Hz) will be delivered for 20 min with a current intensity of 2 mA and a 1-mA offset twice a day on 5 consecutive weekdays. The anode will be placed over the left dorsolateral prefrontal cortex and the cathode over the left temporoparietal junction. Patients’ symptoms will be assessed prior to hf-tRNS (baseline), after the 10 sessions, and at 1-, 3- and 6-month follow-up. The primary outcome will be the number of responders defined as a reduction of at least 25% from the baseline scores on the Positive and Negative Syndrome Scale (PANSS) after the 10 sessions. Secondary outcomes will include brain activity and connectivity, source monitoring performances, social cognition, other clinical (including auditory hallucinations) and biological variables, and attitude toward treatment. Discussion The results of this trial will constitute a first step toward establishing the usefulness of hf-tRNS in schizophrenia whatever the stage of the illness and the level of treatment resistance. We hypothesize a long-lasting effect of active hf-tRNS on the severity of schizophrenia symptoms as compared to sham. This trial will also have implications for the use of hf-tRNS as a preventive intervention of relapse in patients with schizophrenia. Trial registration ClinicalTrials.gov NCT02744989. Prospectively registered on 20 April 2016
Collapse
Affiliation(s)
- Jerome Brunelin
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France. .,INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France. .,Lyon 1 University, F-69000, Villeurbanne, France. .,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France.
| | - Marine Mondino
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France.,INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France
| | - Julie Haesebaert
- Hospices Civils de Lyon, Pôle Santé Publique, Service Recherche et Epidémiologie Cliniques, F-69003, Lyon, France.,Research on Healthcare Performance RESHAPE, INSERM U1290, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | - Marie Chupin
- Paris Brain Institute - Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France.,CATI Multicenter Neuroimaging Platform, F-75000, Paris, France
| | | | - Wissam El-Hage
- CHRU de Tours, CIC 1415, INSERM, Tours; UMR 1253, iBrain, Université de Tours, INSERM, F-37044, Tours, France
| | - Filipe Galvao
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France
| | - Renaud Jardri
- University in Lille, INSERM U1172, CHU Lille, Lille Neuroscience & Cognition Research Centre, Plasticity & SubjectivitY (PSY) team, CURE Platform, Lille, France
| | | | - Laurent Magaud
- Hospices Civils de Lyon, Pôle Santé Publique, Service Recherche et Epidémiologie Cliniques, F-69003, Lyon, France
| | - Marion Plaze
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, F-75014, Paris, France.,Université de Paris, F-75005, Paris, France
| | - Anne Marie Schott-Pethelaz
- Hospices Civils de Lyon, Pôle Santé Publique, Service Recherche et Epidémiologie Cliniques, F-69003, Lyon, France.,Research on Healthcare Performance RESHAPE, INSERM U1290, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Marie-Françoise Suaud-Chagny
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France
| | | | - Eric Fakra
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France.,CHU de Saint Etienne, F-42000, Saint Etienne, France
| | - Emmanuel Poulet
- Centre Hospitalier Le Vinatier, PSYR2 team, Bat 416 - 1st floor; 95 boulevard Pinel, 69678, F-69500, Bron cedex, France.,INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PSYR2 Team, F-69000, Lyon, France.,Lyon 1 University, F-69000, Villeurbanne, France.,Université Jean Monnet Saint Etienne, F-42000, Saint Etienne, France.,Psychiatric emergency service, Hospices civils de Lyon, F-69005, Lyon, France
| |
Collapse
|
20
|
Blay M, Adam O, Bation R, Galvao F, Brunelin J, Mondino M. Improvement of Insight with Non-Invasive Brain Stimulation in Patients with Schizophrenia: A Systematic Review. J Clin Med 2021; 11:jcm11010040. [PMID: 35011780 PMCID: PMC8745271 DOI: 10.3390/jcm11010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with schizophrenia are often unaware of their condition and the consequences of their illness. This lack of insight results in impaired functioning, treatment non-adherence and poor prognosis. Here, we aimed to investigate the effects of non-invasive brain stimulation (NIBS) on two forms of insight, clinical and cognitive, in patients with schizophrenia. We conducted a systematic review of the literature registered in the PROSPERO database (CRD42020220323) according to PRISMA guidelines. The literature search was conducted in Medline and Web of Science databases based on studies published up until October 2020 that included pre-NIBS and post-NIBS measurements of clinical and/or cognitive insight in adults with schizophrenia. A total of 14 studies were finally included, and their methodological quality was assessed by using the QualSyst tool. Despite the lack of well-conducted large randomized-controlled studies using insight as the primary outcome, the available findings provide preliminary evidence that NIBS can improve clinical insight in patients with schizophrenia, with a majority of studies using transcranial direct current stimulation with a left frontotemporal montage. Further studies should investigate the effect of NIBS on insight as a primary outcome and how these effects on insight could translate into clinical and functional benefits in patients with schizophrenia.
Collapse
Affiliation(s)
- Martin Blay
- Centre Hospitalier le Vinatier, F-69500 Bron, France; (M.B.); (O.A.); (F.G.); (J.B.)
- Université Lyon 1, Lyon University, F-69100 Villeurbanne, France;
| | - Ondine Adam
- Centre Hospitalier le Vinatier, F-69500 Bron, France; (M.B.); (O.A.); (F.G.); (J.B.)
- Université Lyon 1, Lyon University, F-69100 Villeurbanne, France;
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, F-69000 Lyon, France
| | - Rémy Bation
- Université Lyon 1, Lyon University, F-69100 Villeurbanne, France;
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, F-69000 Lyon, France
- Psychiatric Unit, Wertheimer Neurologic Hospital, F-69500 Bron, France
| | - Filipe Galvao
- Centre Hospitalier le Vinatier, F-69500 Bron, France; (M.B.); (O.A.); (F.G.); (J.B.)
| | - Jérôme Brunelin
- Centre Hospitalier le Vinatier, F-69500 Bron, France; (M.B.); (O.A.); (F.G.); (J.B.)
- Université Lyon 1, Lyon University, F-69100 Villeurbanne, France;
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, F-69000 Lyon, France
| | - Marine Mondino
- Centre Hospitalier le Vinatier, F-69500 Bron, France; (M.B.); (O.A.); (F.G.); (J.B.)
- Université Lyon 1, Lyon University, F-69100 Villeurbanne, France;
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, F-69000 Lyon, France
- Correspondence:
| |
Collapse
|
21
|
Wu Q, Wang X, Wang Y, Long YJ, Zhao JP, Wu RR. Developments in Biological Mechanisms and Treatments for Negative Symptoms and Cognitive Dysfunction of Schizophrenia. Neurosci Bull 2021; 37:1609-1624. [PMID: 34227057 PMCID: PMC8566616 DOI: 10.1007/s12264-021-00740-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
The causal mechanisms and treatment for the negative symptoms and cognitive dysfunction in schizophrenia are the main issues attracting the attention of psychiatrists over the last decade. The first part of this review summarizes the pathogenesis of schizophrenia, especially the negative symptoms and cognitive dysfunction from the perspectives of genetics and epigenetics. The second part describes the novel medications and several advanced physical therapies (e.g., transcranial magnetic stimulation and transcranial direct current stimulation) for the negative symptoms and cognitive dysfunction that will optimize the therapeutic strategy for patients with schizophrenia in future.
Collapse
Affiliation(s)
- Qiongqiong Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoyi Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ying Wang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yu-Jun Long
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jing-Ping Zhao
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
22
|
Guttesen LL, Albert N, Nordentoft M, Hjorthøj C. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation for auditory hallucinations in schizophrenia: Systematic review and meta-analysis. J Psychiatr Res 2021; 143:163-175. [PMID: 34500345 DOI: 10.1016/j.jpsychires.2021.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Through imaging studies, a significant increase in cerebral activity has been detected in fronto-temporal areas in patients experiencing auditory verbal hallucinations. Therefore, non-invasive neuromodulation, in particular transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), has been considered as a therapeutic intervention for medication-resistant auditory verbal hallucinations in schizophrenia. We aimed to synthesize results from randomized trials on either rTMS or tDCS versus placebo in patients with schizophrenia by including five recently published trials in the field. A systematic review and meta-analysis of relevant literature was conducted. Studies were included on the basis of pre-defined selection criteria. The quality of the studies was assessed by the Cochrane Risk of Bias Tool for Randomized Controlled Trials. RevMan 5.3 was used to conduct the statistical analysis. Including 465 and 960 patients, respectively, 12 tDCS and 27 rTMS studies were included. Regarding treatment of medication refractory auditory verbal hallucinations, no significant effect of tDCS (-0.23 [-0.49, 0.02], p = 0.08) or rTMS (-0.19 [-0.50, 0,11], p = 0.21) was found compared to sham in this meta-analysis. The current study found that it cannot be concluded that rTMS and tDCS are efficacious in treating medication-resistant auditory verbal hallucinations. Larger randomized controlled tDCS trials of a higher quality should be conducted in the future to establish substantial evidence of tDCS. The interventions appear safe and may have beneficial effects on other outcomes.
Collapse
Affiliation(s)
- Liv Liebach Guttesen
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Denmark; Psychiatric Center of Ballerup, Copenhagen University Hospital, Denmark
| | - Nikolai Albert
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Denmark; Psychiatry Region Zealand East, Roskilde, Denmark
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Denmark
| | - Carsten Hjorthøj
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Denmark; University of Copenhagen, Department of Public Health, Section of Epidemiology, Denmark.
| |
Collapse
|
23
|
Raucher-Chéné D, Bodnar M, Lavigne KM, Malla A, Joober R, Lepage M. Dynamic Interplay Between Insight and Persistent Negative Symptoms in First Episode of Psychosis: A Longitudinal Study. Schizophr Bull 2021; 48:211-219. [PMID: 34230974 PMCID: PMC8781342 DOI: 10.1093/schbul/sbab079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Persistent negative symptoms (PNS) are an important factor of first episode of psychosis (FEP) that present early on in the course of illness and have a major impact on long-term functional outcome. Lack of clinical insight is consistently associated with negative symptoms during the course of schizophrenia, yet only a few studies have explored its evolution in FEP. We sought to explore clinical insight change over a 24-month time period in relation to PNS in a large sample of FEP patients. Clinical insight was assessed in 515 FEP patients using the Scale to assess Unawareness of Mental Disorder. Data on awareness of illness, belief in response to medication, and belief in need for medication were analyzed. Patients were divided into 3 groups based on the presence of negative symptoms: idiopathic (PNS; n = 135), secondary (sPNS; n = 98), or absence (non-PNS; n = 282). Secondary PNS were those with PNS but also had clinically relevant levels of positive, depressive, or extrapyramidal symptoms. Our results revealed that insight improved during the first 2 months for all groups. Patients with PNS and sPNS displayed poorer insight across the 24-month period compared to the non-PNS group, but these 2 groups did not significantly differ. This large longitudinal study supported the strong relationship known to exist between poor insight and negative symptoms early in the course of the disorder and probes into potential factors that transcend the distinction between idiopathic and secondary negative symptoms.
Collapse
Affiliation(s)
- Delphine Raucher-Chéné
- Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada,Cognition, Health, and Society Laboratory (EA 6291), University of Reims Champagne-Ardenne, Reims, France,Academic Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France
| | - Michael Bodnar
- The Royal’s Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Katie M Lavigne
- Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada,McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Ashok Malla
- Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada,Prevention and Early Intervention Program for Psychoses (PEPP-Montreal), Douglas Mental Health University Institute, Montreal, Québec, Canada,Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Ridha Joober
- Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada,Prevention and Early Intervention Program for Psychoses (PEPP-Montreal), Douglas Mental Health University Institute, Montreal, Québec, Canada,Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Martin Lepage
- Douglas Mental Health University Institute, McGill University, Montreal, Québec, Canada,Prevention and Early Intervention Program for Psychoses (PEPP-Montreal), Douglas Mental Health University Institute, Montreal, Québec, Canada,Department of Psychiatry, McGill University, Montreal, Québec, Canada,To whom correspondence should be addressed; Douglas Mental Health University Institute, Frank B Common Pavilion, F1143, 6875 LaSalle Blvd., Verdun, Quebec H4H 1R3, Canada; tel: (514) 761-6131 ext. 4393, fax: (514) 888-4064, e-mail:
| |
Collapse
|
24
|
Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:256-313. [PMID: 32710772 PMCID: PMC8059493 DOI: 10.1093/ijnp/pyaa051] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.
Collapse
Affiliation(s)
- Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Mirret M El-Hagrassy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Sandra Carvalho
- Neurotherapeutics and experimental Psychopathology Group (NEP), Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Universidade Portucalense, Porto, Portugal
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Sao Paulo, Brazil
| | - Jerome Brunelin
- CH Le Vinatier, PSYR2 team, Lyon Neuroscience Research Center, UCB Lyon 1, Bron, France
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brasil (Dr Nakamura-Palacios)
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS) Surgery Department, School of Medicine, UFRGS; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA) Laboratory of Pain and Neuromodulation at HCPA, Porto Alegre, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, New York
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry & Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Rashidi S, Jones M, Murillo-Rodriguez E, Machado S, Hao Y, Yadollahpour A. Transcranial direct current stimulation for auditory verbal hallucinations: a systematic review of clinical trials. Neural Regen Res 2021; 16:666-671. [PMID: 33063718 PMCID: PMC8067931 DOI: 10.4103/1673-5374.295315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/14/2019] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been reportedly beneficial for different neurodegenerative disorders. tDCS has been reported as a potential adjunctive or alternative treatment for auditory verbal hallucination (AVH). This study aims to review the effects of tDCS on AVH in patients with schizophrenia through combining the evidence from randomized clinical trials (RCTs). The databases of PsycINFO (2000-2019), PubMed (2000-2019), EMBASE (2000-2019), CINAHL (2000-2019), Web of Science (2000-2019), and Scopus (2000-2019) were systematically searched. The clinical trials with RCT design were selected for final analysis. A total of nine RCTs were eligible and included in the review. Nine RCTs were included in the final analysis. Among them, six RCTs reported a significant reduction of AVH after repeated sessions of tDCS, whereas three RCTs did not show any advantage of active tDCS over sham tDCS. The current studies showed an overall decrease of approximately 28% of AVH after active tDCS and 10% after sham tDCS. The tDCS protocols targeting the sensorimotor frontal-parietal network showed greater treatment effects compared with the protocols targeting other regions. In this regard, cathodal tDCS over the left temporoparietal area showed inhibitory effects on AVHs. The most effective tDCS protocol on AVHs was twice-daily sessions (2 mA, 20-minute duration) over 5 consecutive days (10 sessions) with the anode over the left dorsolateral prefrontal cortex and the cathode over the left temporal area. Some patient-specific and disease-specific factors such as young age, nonsmoking status, and higher frequencies of AVHs seemed to be the predictors of treatment response. Taken together, the results of tDCS as an alternative treatment option for AVH show controversy among current literatures, since not all studies were positive. However, the studies targeting the same site of the brain showed that the tDCS could be a promising treatment option to reduce AVH. Further RCTs, with larger sample sizes, should be conducted to reach a conclusion on the efficacy of tDCS for AVH and to develop an effective therapeutic protocol for clinical setting.
Collapse
Affiliation(s)
- Samaneh Rashidi
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Myles Jones
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Eric Murillo-Rodriguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, México
| | - Sergio Machado
- Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Youguo Hao
- Department of Rehabilitation, Shanghai Putuo People's Hospital, Shanghai, China
| | - Ali Yadollahpour
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Mondino M, Fonteneau C, Simon L, Dondé C, Haesebaert F, Poulet E, Brunelin J. Advancing clinical response characterization to frontotemporal transcranial direct current stimulation with electric field distribution in patients with schizophrenia and auditory hallucinations: a pilot study. Eur Arch Psychiatry Clin Neurosci 2021; 271:85-92. [PMID: 32533249 DOI: 10.1007/s00406-020-01149-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been proposed as a therapeutic option for treatment-resistant auditory verbal hallucinations (AVH) in schizophrenia. In such cases, repeated sessions of tDCS are delivered with the anode over the left prefrontal cortex and the cathode over the left temporoparietal junction. Despite promising findings, the clinical response to tDCS is highly heterogeneous among patients. Here, we explored baseline differences between responders and nonresponders to frontotemporal tDCS using electric field modeling. We hypothesized that responders would display different tDCS-induced electric field strength in the brain areas involved in AVH compared to nonresponders.Using baseline structural MRI scans of 17 patients with schizophrenia and daily AVH who received 10 sessions of active frontotemporal tDCS, we constructed individual realistic whole brain models estimating electric field strength. Electric field maps were compared between responders (n = 6) and nonresponders to tDCS (n = 11) using an independent two-sample t test. Clinical response was defined as at least a 50% decrease of AVH 1 month after the last tDCS session.Results from the electric field map comparison showed that responders to tDCS displayed higher electric field strength in the left transverse temporal gyrus at baseline compared to nonresponders (T = 2.37; p = 0.016; 32 voxels).These preliminary findings suggested that the strength of the tDCS-induced electric field reaching the left transverse temporal gyrus could play an important role in the response to frontotemporal tDCS. In addition, this work suggests the interest of using electric field modeling to individualize tDCS and increase response rate.
Collapse
Affiliation(s)
- Marine Mondino
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center; PSYR2 Team, 95 bd pinel, F-69000, Lyon, France
- Lyon University, Université Lyon 1, UCBL, 69000, Villeurbanne, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Clara Fonteneau
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center; PSYR2 Team, 95 bd pinel, F-69000, Lyon, France
- Lyon University, Université Lyon 1, UCBL, 69000, Villeurbanne, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Louis Simon
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center; PSYR2 Team, 95 bd pinel, F-69000, Lyon, France
- Lyon University, Université Lyon 1, UCBL, 69000, Villeurbanne, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Clément Dondé
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center; PSYR2 Team, 95 bd pinel, F-69000, Lyon, France
- Lyon University, Université Lyon 1, UCBL, 69000, Villeurbanne, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Frédéric Haesebaert
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center; PSYR2 Team, 95 bd pinel, F-69000, Lyon, France
- Lyon University, Université Lyon 1, UCBL, 69000, Villeurbanne, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Emmanuel Poulet
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center; PSYR2 Team, 95 bd pinel, F-69000, Lyon, France
- Lyon University, Université Lyon 1, UCBL, 69000, Villeurbanne, France
- Centre Hospitalier Le Vinatier, Bron, France
- Emergency Psychiatry Unit, Edouard Herriot Hospital, Lyon University Hospital, Lyon, France
| | - Jerome Brunelin
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center; PSYR2 Team, 95 bd pinel, F-69000, Lyon, France.
- Lyon University, Université Lyon 1, UCBL, 69000, Villeurbanne, France.
- Centre Hospitalier Le Vinatier, Bron, France.
| |
Collapse
|
27
|
Haller N, Hasan A, Padberg F, Strube W, da Costa Lane Valiengo L, Brunoni AR, Brunelin J, Palm U. [Transcranial electrical brain stimulation methods for treatment of negative symptoms in schizophrenia]. DER NERVENARZT 2021; 93:41-50. [PMID: 33492411 PMCID: PMC8763819 DOI: 10.1007/s00115-021-01065-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 11/24/2022]
Abstract
Über die letzten Jahre entwickelten sich Neuromodulationsverfahren zu einer dritten Säule neben Pharmakotherapie und Psychotherapie in der Behandlung psychischer Erkrankungen. Besonders in der Behandlung von Menschen mit einer Schizophrenie könnten Hirnstimulationsverfahren eine Alternative oder Ergänzung zu den etablierten Therapiestrategien darstellen. Die meist vorhandenen Positivsymptome können zumeist mit Antipsychotika adäquat behandelt werden. Gerade bei Patienten mit Schizophrenie besitzen jedoch Negativsymptome einen überdauernden Krankheitswert und beeinflussen den Verlauf durch globale Antriebsverarmung und beeinträchtigte Kognition im alltäglichen Leben negativ. Dieser Übersichtsartikel stellt eine Zusammenfassung über die verschiedenen nichtinvasiven Hirnstimulationsverfahren transkranielle Gleichstromstimulation (transcranial direct current stimulation, tDCS), Wechselstromstimulation (transcranial alternating current stimulation, tACS) sowie Rauschstromstimulation (transcranial random noise stimulation, tRNS) zur Behandlung der Negativsymptomatik bei Schizophrenie dar. Die neuen transkraniellen Hirnstimulationsverfahren könnten dabei helfen, gestörte neuronale Vernetzungen wieder herzustellen und die Konnektivität vor allem der dorsolateralen präfrontalen Anteile des Kortex zu verbessern. Einige Studien weisen auf eine Verbesserung der Negativsymptome durch Behandlung mit tDCS, tACS bzw. tRNS hin und könnten so neue Therapiemöglichkeiten in der Behandlung der Schizophrenie darstellen.
Collapse
Affiliation(s)
- Nikolas Haller
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München, Deutschland
| | - Alkomiet Hasan
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München, Deutschland.,Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Universität Augsburg, Medizinische Fakultät, BKH Augsburg, Augsburg, Deutschland
| | - Frank Padberg
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München, Deutschland
| | - Wolfgang Strube
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Universität Augsburg, Medizinische Fakultät, BKH Augsburg, Augsburg, Deutschland
| | - Leandro da Costa Lane Valiengo
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasilien
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasilien
| | - Jerome Brunelin
- CH le Vinatier, INSERM U 1028, CNRS UMR 5292, PSYR2 Team, Centre de recherche en neuroscience de Lyon, Université de Lyon, Lyon, Frankreich
| | - Ulrich Palm
- Klinik für Psychiatrie und Psychotherapie, Klinikum der Universität München, München, Deutschland. .,Medical Park Chiemseeblick, Rasthausstr. 25, 83233, Bernau-Felden, Deutschland.
| |
Collapse
|
28
|
Homan S, Muscat W, Joanlanne A, Marousis N, Cecere G, Hofmann L, Ji E, Neumeier M, Vetter S, Seifritz E, Dierks T, Homan P. Treatment effect variability in brain stimulation across psychiatric disorders: A meta-analysis of variance. Neurosci Biobehav Rev 2021; 124:54-62. [PMID: 33482243 DOI: 10.1016/j.neubiorev.2020.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/26/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Noninvasive brain stimulation methods such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are promising add-on treatments for a number of psychiatric conditions. Yet, some of the initial excitement is wearing off. Randomized controlled trials (RCT) have found inconsistent results. This inconsistency is suspected to be the consequence of variation in treatment effects and solvable by identifying responders in RCTs and individualizing treatment. However, is there enough evidence from RCTs that patients respond differently to treatment? This question can be addressed by comparing the variability in the active stimulation group with the variability in the sham group. We searched MEDLINE/PubMed and included all double-blinded, sham-controlled RCTs and crossover trials that used TMS or tDCS in adults with a unipolar or bipolar depression, bipolar disorder, schizophrenia spectrum disorder, or obsessive compulsive disorder. In accordance with the PRISMA guidelines to ensure data quality and validity, we extracted a measure of variability of the primary outcome. A total of 130 studies with 5748 patients were considered in the analysis. We calculated variance-weighted variability ratios for each comparison of active stimulation vs sham and entered them into a random-effects model. We hypothesized that treatment effect variability in TMS or tDCS would be reflected by increased variability after active compared with sham stimulation, or in other words, a variability ratio greater than one. Across diagnoses, we found only a minimal increase in variability after active stimulation compared with sham that did not reach statistical significance (variability ratio = 1.03; 95% CI, 0.97, 1.08, P = 0.358). In conclusion, this study found little evidence for treatment effect variability in brain stimulation, suggesting that the need for personalized or stratified medicine is still an open question.
Collapse
Affiliation(s)
- Stephanie Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Whitney Muscat
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | - Andrea Joanlanne
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | | | - Giacomo Cecere
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Lena Hofmann
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Ellen Ji
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Maria Neumeier
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Stefan Vetter
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Erich Seifritz
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Philipp Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA.
| |
Collapse
|
29
|
Chang CC, Lin YY, Tzeng NS, Kao YC, Chang HA. Adjunct high-frequency transcranial random noise stimulation over the lateral prefrontal cortex improves negative symptoms of schizophrenia: A randomized, double-blind, sham-controlled pilot study. J Psychiatr Res 2021; 132:151-160. [PMID: 33096356 DOI: 10.1016/j.jpsychires.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
High-frequency transcranial random noise stimulation (hf-tRNS) is a non-invasive neuromodulatory technique capable of increasing human cortex excitability. There were only published case reports on the use of hf-tRNS targeting the lateral prefrontal cortex in treating negative symptoms of schizophrenia, thus necessitating systematic investigation. We designed a randomized, double-blind, sham-controlled trial in a cohort of stabilized schizophrenia patients to examine the efficacy of add-on hf-tRNS (100-640 Hz; 2 mA; 20 min) using a high definition 4 × 1 electrode montage (anode AF3, cathodes AF4, F2, F6, and FC4) in treating negative symptoms (ClinicalTrials.gov ID: NCT04038788). Participants received either active hf-tRNS or sham twice daily for 5 consecutive weekdays. Primary outcome measure was the change over time in the Positive and Negative Syndrome Scale Factor Score for Negative Symptoms (PANSS-FSNS), which was measured at baseline, after 10-session stimulation, and at one-week and one-month follow-ups. Among 36 randomized patients, 35 (97.2%) completed the trial. Intention-to-treat analysis showed a significantly greater decrease in PANSS-FSNS score after active (-17.11%) than after sham stimulation (-1.68%), with a large effect size (Cohen's d = 2.16, p < 0.001). The beneficial effect lasted for up to one month. In secondary-outcome analyses, the authors observed improvements with hf-tRNS of disorganization symptoms, unawareness of negative symptoms, subjective response to taking antipsychotics, and antipsychotic-induced extrapyramidal symptoms. No effects were observed on the neurocognitive performance and other outcome measures. Overall, hf-tRNS was safe and efficacious in improving negative symptoms. Our promising findings should be confirmed in a larger sample of patients with predominant negative symptoms.
Collapse
Affiliation(s)
- Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
30
|
Ma CC, Kao YC, Tzeng NS, Chao CY, Chang CC, Chang HA. A higher degree of insight impairment in stabilized schizophrenia patients is associated with reduced cardiac vagal tone as indexed by resting-state high-frequency heart rate variability. Asian J Psychiatr 2020; 53:102171. [PMID: 32454438 DOI: 10.1016/j.ajp.2020.102171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023]
Abstract
Varying degrees of impaired clinical insight in schizophrenia differentially impact medication adherence and clinical outcomes, prompting in-depth investigations of the deficits. Research is scarce on the differences in peripheral physiological markers between varying degrees of impaired insight. The aims of this study were to examine the differences in (1) resting-state high-frequency heart rate variability (HF-HRV) and (2) crucial clinical outcomes between schizophrenia patients with varying degrees of insight impairment as measured by the Positive and Negative Syndrome Scale (PANSS) item G12 (lack of judgment and insight). The study recruited a sample of 95 stabilized schizophrenia patients with insight impairment. Patients were divided into 2 groups of either minimal insight impairment (n = 25, PANSS G12 = 2-3) or moderate-to-severe insight impairment (n = 70, PANSS G12 ≥ 4). Patients with moderate-to-severe insight impairment displayed lower HF-HRV, clinician-rated psychosocial function, medication adherence, and working memory capacity, and higher self-reported psychosocial function and life quality, but comparable cognitive insight compared to those with minimal insight impairment. A logistic regression model predicted moderate-to-severe insight impairment based on HF-HRV values at the optimal cut-off point of 3.655, with the sensitivity and specificity 84% and 72%, respectively. HF-HRV seems a peripheral marker sensitively reflecting central pathophysiology implicated in insight impairment of schizophrenia.
Collapse
Affiliation(s)
- Chin-Chao Ma
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Beitou Branch, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Chao
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
31
|
Efficacy of transcranial direct current stimulation in ameliorating negative symptoms and cognitive impairments in schizophrenia: A systematic review and meta-analysis. Schizophr Res 2020; 224:2-10. [PMID: 33129639 DOI: 10.1016/j.schres.2020.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/08/2020] [Accepted: 10/17/2020] [Indexed: 12/29/2022]
Abstract
AIMS Negative symptoms and cognitive impairments in schizophrenia patients are associated with the patients' functional outcomes and quality of life. However, pharmacotherapy has little effect on such symptoms. This study aimed to systematically evaluate the efficacy of transcranial direct current stimulation (tDCS) in ameliorating negative symptoms and cognitive impairments in schizophrenia patients. METHODS A literature search was performed in the PubMed, Embase, PsycINFO and Cochrane Library databases through March 23, 2020. Studies were included if they met all the following criteria: (1) subjects were exclusively patients with schizophrenia, schizoaffective disorder or psychosis, (2) active tDCS and shame stimulation were conducted in two parallel groups, (3) sufficient data were present, and (4) the study design was based on a randomized controlled trial. Two authors conducted the search strategy, publication assessment and data extraction independently, and a third person was consulted when any disagreement emerged. RESULTS A total of 14 studies were included (12 studies included negative symptoms and 7 studies included cognitive impairments). The overall meta-analysis showed no significant difference between active and sham tDCS in ameliorating negative symptoms in schizophrenia patients (SMD: -0.14, 95% CI: -0.33- 0.05). Subgroup analysis including studies with a high stimulation frequency, twice daily, revealed a significant difference in therapeutic effects between active tDCS and sham stimulation (SMD: -0.31, 95% CI: -0.58 to -0.05). With respect to cognitive impairments, there was a trend indicating that active tDCS might improve cognitive impairment (SMD: -0.21, 95% CI: -0.46- 0.04), but the overall meta-analysis failed to obtain statistically significant results. CONCLUSION Our meta-analysis indicates that tDCS is a potential strategy for improving negative symptoms, but the therapeutic benefit for negative symptoms requires a high stimulation frequency (twice a day).
Collapse
|
32
|
Straube B, van Kemenade BM, Kircher T, Schülke R. Transcranial direct current stimulation improves action-outcome monitoring in schizophrenia spectrum disorder. Brain Commun 2020; 2:fcaa151. [PMID: 33543133 PMCID: PMC7850031 DOI: 10.1093/braincomms/fcaa151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
Patients with schizophrenia spectrum disorder often demonstrate impairments in action-outcome monitoring. Passivity phenomena and hallucinations, in particular, have been related to impairments of efference copy-based predictions which are relevant for the monitoring of outcomes produced by voluntary action. Frontal transcranial direct current stimulation has been shown to improve action-outcome monitoring in healthy subjects. However, whether transcranial direct current stimulation can improve action monitoring in patients with schizophrenia spectrum disorder remains unknown. We investigated whether transcranial direct current stimulation can improve the detection of temporal action-outcome discrepancies in patients with schizophrenia spectrum disorder. On 4 separate days, we applied sham or left cathodal/right anodal transcranial direct current stimulation in a randomized order to frontal (F3/F4), parietal (CP3/CP4) and frontoparietal (F3/CP4) areas of 19 patients with schizophrenia spectrum disorder and 26 healthy control subjects. Action-outcome monitoring was assessed subsequent to 10 min of sham/transcranial direct current stimulation (1.5 mA). After a self-generated (active) or externally generated (passive) key press, subjects were presented with a visual outcome (a dot on the screen), which was presented after various delays (0-417 ms). Participants had to detect delays between the key press and the visual consequence. Symptom subgroups were explored based on the presence or absence of symptoms related to a paranoid-hallucinatory syndrome. In general, delay-detection performance was impaired in the schizophrenia spectrum disorder compared to the healthy control group. Interaction analyses showed group-specific (schizophrenia spectrum disorder versus healthy control group) and symptom-specific (with/without relevant paranoid-hallucinatory symptoms) transcranial direct current stimulation effects. Post hoc tests revealed that frontal transcranial direct current stimulation improved the detection of long delays in active conditions and reduced the proportion of false alarms in undelayed trials of the passive condition in patients. The patients with no or few paranoid-hallucinatory symptoms benefited especially from frontal transcranial direct current stimulation in active conditions, while improvement in the patients with paranoid-hallucinatory symptoms was predominantly reflected in reduced false alarm rates in passive conditions. These data provide some first evidence for the potential utility of transcranial direct current stimulation in improving efference copy mechanisms and action-outcome monitoring in schizophrenia spectrum disorder. Current data indicate that improving efference copy-related processes can be especially effective in patients with no or few positive symptoms, while intersensory matching (i.e. task-relevant in passive conditions) could be more susceptible to improvement in patients with paranoid-hallucinatory symptoms.
Collapse
Affiliation(s)
- Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Rasmus Schülke
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
33
|
Chang CC, Kao YC, Chao CY, Tzeng NS, Chang HA. The Effects of Bi-Anodal tDCS Over the Prefrontal Cortex Regions With Extracephalic Reference Placement on Insight Levels and Cardio-Respiratory and Autonomic Functions in Schizophrenia Patients and Exploratory Biomarker Analyses for Treatment Response. Int J Neuropsychopharmacol 2020; 24:40-53. [PMID: 32808025 PMCID: PMC7816677 DOI: 10.1093/ijnp/pyaa063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/05/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We previously showed the efficacy of bi-anodal transcranial direct current stimulation (tDCS) over the prefrontal cortex (PFC) regions with extracephalic reference placement in improving negative symptoms in schizophrenia. In this ancillary investigation, the effects of this intervention on insight levels, other clinical outcomes, and cardio-respiratory and autonomic functions were examined and the potential of biomarkers for treatment response was explored. METHODS Schizophrenia patients were randomly allocated to receive 10 sessions of bi-anodal tDCS over the PFC regions with extracephalic reference placement (2 mA, 20 minutes, twice daily for 5 weeks) or sham stimulation. We examined, in 60 patients at baseline, immediately after stimulation and at follow-up visits, the insight levels, other clinical outcomes, blood pressure, respiratory rate, heart rate, and heart rate variability. RESULTS Insight levels as assessed by the abbreviated version of the Scale to Assess Unawareness in Mental Disorder in schizophrenia awareness of the disease, positive and negative symptoms dimensions, and beliefs about medication compliance as assessed by Medication Adherence Rating Scale were significantly enhanced by active stimulation relative to sham. No effects were observed on cognitive insight, other clinical outcomes, or cardio-respiratory and autonomic functions. Heart rate variability indices as biomarkers were not associated with the clinical response to the intervention. CONCLUSIONS Our results provide evidence for bi-anodal tDCS over the PFC regions with extracephalic reference placement in heightening the levels of insight into the disease and symptoms, as well as beliefs about medication compliance in schizophrenia, without impacting other clinical outcomes and cardio-respiratory/autonomic functions.
Collapse
Affiliation(s)
- Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,Correspondence: Hsin-An Chang, MD, Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, No. 325, Cheng-Kung Road, Sec. 2, Nei-Hu District, Taipei, 114, Taiwan, Tel/Fax: 011-886-2-8792-7220 / 011-886-2-8792-7221 ()
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Chao
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
34
|
Modulation of self-appraisal of illness, medication adherence, life quality and autonomic functioning by transcranial direct current stimulation in schizophrenia patients. Clin Neurophysiol 2020; 131:1997-2007. [DOI: 10.1016/j.clinph.2020.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
|
35
|
Improving insight to facilitate antipsychotic medication adherence in patients with schizophrenia. Clin Neurophysiol 2020; 131:1968-1970. [DOI: 10.1016/j.clinph.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/01/2023]
|
36
|
Pijnenborg GHM, Larabi DI, Xu P, Hasson-Ohayon I, de Vos AE, Ćurčić-Blake B, Aleman A, Van der Meer L. Brain areas associated with clinical and cognitive insight in psychotic disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 116:301-336. [PMID: 32569706 DOI: 10.1016/j.neubiorev.2020.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/04/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
In the past years, ample interest in brain abnormalities related to clinical and cognitive insight in psychosis has contributed several neuroimaging studies to the literature. In the current study, published findings on the neural substrates of clinical and cognitive insight in psychosis are integrated by performing a systematic review and meta-analysis. Coordinate-based meta-analyses were performed with the parametric coordinate-based meta-analysis approach, non-coordinate based meta-analyses were conducted with the metafor package in R. Papers that could not be included in the meta-analyses were systematically reviewed. Thirty-seven studies were retrieved, of which 21 studies were included in meta-analyses. Poorer clinical insight was related to smaller whole brain gray and white matter volume and gray matter volume of the frontal gyri. Cognitive insight was predominantly positively associated with structure and function of the hippocampus and ventrolateral prefrontal cortex. Impaired clinical insight is not associated with abnormalities of isolated brain regions, but with spatially diffuse global and frontal abnormalities suggesting it might rely on a range of cognitive and self-evaluative processes. Cognitive insight is associated with specific areas and appears to rely more on retrieving and integrating self-related information.
Collapse
Affiliation(s)
- G H M Pijnenborg
- Department of Psychotic Disorders, GGZ Drenthe, Dennenweg 9, 9404 LA, Assen, the Netherlands; Department of Clinical and Developmental Neuropsychology and Experimental Psychopathology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands.
| | - D I Larabi
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, A. Deusinglaan 2, 9713 AW, Groningen, the Netherlands; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - P Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen 518060, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen 518054, China; Great Bay Neuroscience and Technology Research Institute (Hong Kong), Kwun Tong, Hong Kong
| | - I Hasson-Ohayon
- Department of Psychology, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - A E de Vos
- Department of Psychotic Disorders, GGZ Drenthe, Dennenweg 9, 9404 LA, Assen, the Netherlands
| | - B Ćurčić-Blake
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, A. Deusinglaan 2, 9713 AW, Groningen, the Netherlands
| | - A Aleman
- Department of Psychotic Disorders, GGZ Drenthe, Dennenweg 9, 9404 LA, Assen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, A. Deusinglaan 2, 9713 AW, Groningen, the Netherlands; Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen 518060, China
| | - L Van der Meer
- Department of Rehabilitation, Lentis Mental Health Care, PO box 128, 9470 KA, Zuidlaren, the Netherlands; Department of Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands
| |
Collapse
|
37
|
Zhuo C, Ji F, Lin X, Tian H, Wang L, Xu Y, Wang W, Jiang D. Global functional connectivity density alterations in patients with bipolar disorder with auditory verbal hallucinations and modest short-term effects of transcranial direct current stimulation augmentation treatment-Baseline and follow-up study. Brain Behav 2020; 10:e01637. [PMID: 32304288 PMCID: PMC7303392 DOI: 10.1002/brb3.1637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To investigate the neuroimaging characteristics of auditory verbal hallucinations (AVHs) in patients with bipolar disorder (BP) experiencing depressive episodes with and without AVHs, and alterations in those characteristics after transcranial direct current stimulation (tDCS). METHODS For a baseline pilot study, we recruited 80 patients with BP and depressive status (40 with and 40 without AVHs), and 40 healthy controls (HCs). Their global functional connectivity density (gFCD) was screened by functional magnetic resonance imaging (fMRI). Voxel-wise one-way analysis of covariance (ANCOVA) was conducted to detect intergroup differences in gFCD. In a follow-up study, the effects of 5 weeks of tDCS augmentation treatment on clinical symptoms and gFCD were assessed in the 40 BP patients with AVHs. RESULTS Compared to HCs, BP patients with and without AVHs exhibited increased gFCD in the central parietal lobe, insular lobe, and middle cingulate cortex, with decreased gFCD in the posterior parietal cortex, lateral prefrontal cortex, and occipital lobe (all bilateral). Only patients with AVHs showed increased gFCD in the Broca and Wernicke regions, and decreased gFCD in the hippocampus (all bilateral). After 5 weeks of tDCS, AVHs were slightly alleviated and gFCD abnormalities in the hippocampus were mildly attenuated. CONCLUSIONS Patients with BP and AVHs showed disturbances in the brain's communication capacity mainly in the left frontoparietal network, control network, and memory circuitry. Five weeks of tDCS alleviated AVHs slightly, without improving depressive symptoms, and attenuated hippocampal gFCD alterations in these patients.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- School of Mental Health, Jining Medical University, Jining, China.,Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, China.,Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China.,Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Hongjun Tian
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Lina Wang
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenqiang Wang
- Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, China
| | - Deguo Jiang
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, China
| |
Collapse
|
38
|
Ogyu K, Noda Y, Yoshida K, Kurose S, Masuda F, Mimura Y, Nishida H, Plitman E, Tarumi R, Tsugawa S, Wada M, Miyazaki T, Uchida H, Graff-Guerrero A, Mimura M, Nakajima S. Early improvements of individual symptoms as a predictor of treatment response to asenapine in patients with schizophrenia. Neuropsychopharmacol Rep 2020; 40:138-149. [PMID: 32180369 PMCID: PMC7722672 DOI: 10.1002/npr2.12103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
Aim It is well accepted that early improvement with antipsychotics predicts subsequent response in patients with schizophrenia. However, no study has examined the contribution of individual symptoms rather than overall symptom severity as the predictors. Thus, we aimed to detect individual symptoms whose improvements could predict subsequent response in patients with schizophrenia during treatment with asenapine and examine whether a prediction model with individual symptoms would be superior to a model using overall symptom severity. Methods This study analyzed a dataset including 532 patients with schizophrenia enrolled in a 6‐week double‐blind, placebo‐controlled, randomized trial of asenapine. Response to asenapine was defined as a ≥30% decrease in Positive and Negative Syndrome Scale (PANSS) total score from baseline to week 6. Stepwise logistic regression analyses were performed to investigate the associations among response and PANSS total/individual item score improvements at week 1 or week 2. Results Response was associated with early improvement in the following PANSS items: disturbance of volition, active social avoidance, poor impulse control at week 1; and active social avoidance, poor attention, lack of judgment and insight at week 2. Prediction accuracy was almost compatible between the model with individual symptoms and the model with PANSS total score both at weeks 1 and 2 (Nagelkerke R2: .51, .42 and .55, .54, respectively). Conclusion Early improvement in negative symptoms, poor attention and impulse control, and lack of insight, in particular predicted subsequent treatment response in patients with schizophrenia during treatment with asenapine as accurately as prediction based on overall symptom severity. This study found that treatment response to asenapine was predicted by early improvements of individual symptoms such as negative symptoms, poor attention and impulse control, and lack of insight in patients with schizophrenia. In addition, prediction accuracy was almost comparable between the model with individual symptoms and the model with the PANSS total score, supporting the importance to assess both individual symptoms and the whole severity in the clinical settings.![]()
Collapse
Affiliation(s)
- Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Pharmacogenetic Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Fumi Masuda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hana Nishida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Eric Plitman
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Zhuo C, Zhou C, Lin X, Tian H, Wang L, Chen C, Ji F, Xu Y, Jian D. Common and distinct global functional connectivity density alterations in drug-naïve patients with first-episode major depressive disorder with and without auditory verbal hallucination. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109738. [PMID: 31442554 DOI: 10.1016/j.pnpbp.2019.109738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/12/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023]
Abstract
Auditory verbal hallucination (AVH), defined as the auditory perception of speech in the absence of a real external stimulus, occurs in individuals with and without mental illness. The distribution of functional abnormalities in patients with AVH suggests aberrant brain network connectivity. However, no study has measured the global functional connectivity density (gFCD) associated with AVH in patients with major depressive disorder (MDD); gFCD is used widely to examine the density distribution of whole-brain resting-state functional connectivity and can serve as an index reflecting brain metabolism disturbance. In this study, we involved drug-naïve patients with first-episode MDD with (n = 35) and without (n = 40) AVH and healthy controls (n = 50).Whole-brain resting-state functional magnetic resonance imaging data were acquired and gFCD was calculated and compared among groups. We found the following gFCD alterations that were shared by both MDD groups: (1) decreased gFCD in the bilateral postcentral gyrus, precentral gyrus, insular cortices and occipital lobe; and (2) increased gFCD in the left middle cingulate cortex. More importantly, we found AVH-specific gFCD changes in patients with MDD: increased gFCD in the left Wernicke's brain regions and bilateral hippocampus and thalamus, and decreased gFCD in the bilateral lateral prefrontal lobule. These findings reflect the disturbance of brain information communication and metabolism in patients with MDD and AVH, related mainly to the language and memory processing circuits, and to some extent provide further support for the "VOICE" model of AVH.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, School of Mental Health, Jining University, Jining, Shandong Province 272191, China; Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China; Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory, Tianjin Mental Health Center, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin 300222, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Chunhua Zhou
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050000, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China
| | - Hongjun Tian
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory, Tianjin Mental Health Center, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin 300222, China
| | - Lina Wang
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory, Tianjin Mental Health Center, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin 300222, China
| | - Ce Chen
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China
| | - Feng Ji
- Department of Psychiatry, School of Mental Health, Jining University, Jining, Shandong Province 272191, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Deguo Jian
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, China
| |
Collapse
|
40
|
Chang CC, Kao YC, Chao CY, Tzeng NS, Chang HA. Examining bi-anodal transcranial direct current stimulation (tDCS) over bilateral dorsolateral prefrontal cortex coupled with bilateral extracephalic references as a treatment for negative symptoms in non-acute schizophrenia patients: A randomized, double-blind, sham-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109715. [PMID: 31362034 DOI: 10.1016/j.pnpbp.2019.109715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
No studies have examined the efficacy of bi-anodal transcranial direct current stimulation (tDCS) over bilateral dorsolateral prefrontal cortex (DLPFC) coupled with bilateral extracephalic references in treating negative symptoms of non-acute schizophrenia patients. This study aimed to investigate the therapeutic effects of the new approach of tDCS on negative symptoms, other schizophrenia symptoms, cognitive deficits and psychosocial functioning in a double-blind, randomized, sham-controlled trial. Patients with non-acute schizophrenia (N = 60) in randomized order received sham treatment or bilaterally provided tDCS (2 mA, twice-daily sessions for five consecutive days) with the anode over the DLPFC and the reference (cathode) over the ipsilateral forearm. The negative symptoms as measured by a dimensional approach of Positive and Negative Syndrome Scale (PANSS) were rapidly reduced by bimodal tDCS relative to sham stimulation (F = 24.86, Cohen's d = 0.661, p = 6.11 × 10-6). The beneficial effect on negative symptoms lasted for up to 3 months. The authors also observed improvement with tDCS of psychosocial functioning as measured by the global score of Personal and Social Performance scale (PSP) and psychopathological symptoms especially for disorganization and cognitive symptoms as measured by the PANSS. No effects were observed on other schizophrenia symptom dimensions and the performance on a series of neurocognitive tests. Our results show promise for bi-anodal tDCS over bilateral DLPFC using bilateral extracephalic references in treating negative symptoms and other selected manifestations of schizophrenia. Further studies with electrophysiological or imaging evaluation help unravel the exact mechanism of action of this novel stimulation parameter of tDCS in schizophrenia patients. (ClinicalTrials.gov ID:NCT03701100).
Collapse
Affiliation(s)
- Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Chao
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
41
|
Zhuo C, Ji F, Lin X, Tian H, Wang L, Liu S, Sang H, Wang W, Chen C. Without insight accompanied with deteriorated brain functional alterations in healthy individuals with auditory verbal hallucinations: a pilot study. Brain Imaging Behav 2019; 14:2553-2558. [PMID: 31834596 PMCID: PMC7647977 DOI: 10.1007/s11682-019-00207-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Few studies have reported on brain functional differences between healthy individuals with auditory verbal hallucinations (Hi-AVH) with and without insight, so we designed a study to address this knowledge gap. We enrolled 12 Hi-AVH with insight, 15 Hi-AVH without insight, and 15 AVH-free controls (Healthy controls). Global functional connectivity density (gFCD) mapping was used to estimate brain networks. We found that the most common alterations in both Hi-AVH groups were increased gFCD in superior parietal lobule and superior temporal gyrus. We also found that distinct brain functional patterns of Hi-AVH without insight comprised lower gFCD in the frontal lobe oculomotor area, dorsolateral prefrontal cortex, supramarginal gyrus, primary auditory cortex, sensorimotor cortex, ventral anterior, and posterior cingulate Our pilot findings support the hypothesis that abnormal reciprocal action in the circuits for processing perception, memory, language, and attentional control may be pathological features of auditory verbal hallucinations.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- School of Mental Health, Jining Medical University, Jining, 272119, Shandong Province, China. .,Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, 325000, Zhejiang Province, China. .,Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, 300222, China. .,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China. .,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Department of Psychiatry, Changchun Sixth Hospital, Changchun, 130052, Jilin Province, China.
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, 272119, Shandong Province, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, 325000, Zhejiang Province, China
| | - Hongjun Tian
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, 300222, China
| | - Lina Wang
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, 300222, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Sang
- Department of Psychiatry, Changchun Sixth Hospital, Changchun, 130052, Jilin Province, China
| | - Wenqiang Wang
- Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, 361000, China
| | - Chunmian Chen
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, 325000, Zhejiang Province, China
| |
Collapse
|
42
|
Gorwood P, Bouju S, Deal C, Gary C, Delva C, Lancrenon S, Llorca PM. Predictive factors of functional remission in patients with early to mid-stage schizophrenia treated by long acting antipsychotics and the specific role of clinical remission. Psychiatry Res 2019; 281:112560. [PMID: 31521843 DOI: 10.1016/j.psychres.2019.112560] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Functional remission has become a major therapeutic objective in schizophrenia, but the probability of such positive outcome has a large variability, ranging from 15% to 51%. Additionally, how clinical remission constitutes a prerequisite for functional remission also remains unclear. METHODS A prospective observational study was conducted in French schizophrenic patients who initiated treatment with a long-acting injectable (LAI) after an acute episode. Functional and clinical remissions were assessed using the FROGS and the Andreasen criteria, and the role of clinical remission and predictive factors of functional remission was evaluated. RESULTS Three hundred three patients with schizophrenia (DSM-IV criteria) were followed for 12 months. At 12 months, 45.1% of the patients reached functional remission while 55.1% obtained clinical remission. Clinical remission facilitated functional remission (OR = 14.74), especially in patients with psychosis for less than 5 years (OR = 23.73). Other predictive factors concerned the family environment, education level, employment status, baseline functioning levels and level of insight. CONCLUSIONS About half of patients treated with LAI reached functional remission after one year of follow-up. Reduced clinical symptoms and reaching clinical remission largely favored functional remission. These results stress the importance of continuous and appropriate symptomatic treatment to reach functional remission and maximize recovery chances.
Collapse
Affiliation(s)
- Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France; University of Paris, Paris, France; CMME (Sainte-Anne Hospital, GHU Paris), Paris, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Brain function differences in drug-naïve first-episode auditory verbal hallucination-schizophrenia patients with versus without insight. Chin Med J (Engl) 2019; 132:2199-2205. [PMID: 31478928 PMCID: PMC6797149 DOI: 10.1097/cm9.0000000000000419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Few studies have reported brain function differences in drug-naïve first-episode schizophrenia patients who had auditory verbal hallucinations (AVH) with insight vs. those without insight. This study aimed to investigate brain function differences between drug-naïve first-episode AVH-schizophrenia patients with and without insight. Methods: Forty first-episode drug-naïve AVH-schizophrenia patients with or without insight and 40 healthy controls between December 2016 and December 2018 were recruited in this study. The auditory hallucinations rating scale (AHRS) was used to assess AVH severity, while the insight and treatment attitudes questionnaire was used to distinguish insight. The global functional connectivity density (gFCD) between different groups was compared using a voxel-wise one-way analysis of covariance. The relationship between gFCD and AHRS total scores were analyzed using voxel-wise multiple regression. Results: Finally, 13 first-episode drug-naïve AVH-schizophrenia patients with insight, 15 AVH-schizophrenia patients without insight, and 20 healthy controls were included for analysis. Except for global assessment of functioning scores, there were no significant differences in sociodemographic information between the AVH-schizophrenia and healthy groups (P > 0.05). Compared to the healthy controls, AVH-schizophrenia patients with insight demonstrated a decreased gFCD in the supra-marginal gyrus within the primary auditory cortex, while those without insight demonstrated an increased gFCD in the inferior frontal gyrus and superior temporal gyrus and decreased gFCD in the supplemental motor area. Compared to the AVH-schizophrenia patients with insight, those without insight demonstrated an increased gFCD in the supra-marginal gyrus and posterior superior temporal lobule and a decreased gFCD in the frontal lobe. No significant correlation between gFCD and AVH severity (AHRS total score: r = 0.23, P = 0.590; and frequency: r = 0.42, P = 0.820) was found in both AVH-schizophrenia groups. Conclusions: The gFCD-aberrant brain regions in the AVH-schizophrenia patients without insight were wider compared to those with insight, although the AHRS scores were not significantly different. The AVH-schizophrenia patients without insight had wide functional impairment in the frontal lobule, which may underlie the lack of insight and the abnormal hyperactivity in the inferior frontal gurus and temporal lobe related to the AVH symptoms.
Collapse
|
44
|
Kim J, Plitman E, Nakajima S, Alshehri Y, Iwata Y, Chung JK, Caravaggio F, Menon M, Blumberger DM, Pollock BG, Remington G, De Luca V, Graff-Guerrero A, Gerretsen P. Modulation of brain activity with transcranial direct current stimulation: Targeting regions implicated in impaired illness awareness in schizophrenia. Eur Psychiatry 2019; 61:63-71. [DOI: 10.1016/j.eurpsy.2019.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/15/2019] [Accepted: 06/21/2019] [Indexed: 01/29/2023] Open
|
45
|
Chang CC, Kao YC, Chao CY, Chang HA. Enhancement of cognitive insight and higher-order neurocognitive function by fronto-temporal transcranial direct current stimulation (tDCS) in patients with schizophrenia. Schizophr Res 2019; 208:430-438. [PMID: 30635256 DOI: 10.1016/j.schres.2018.12.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
No studies have examined the effects of fronto-temporal transcranial direct current stimulation (tDCS) on cognitive insight and neurocognitive function in schizophrenia patients and the dynamic interplay between tDCS-induced changes in these two outcomes. In this double-blind, randomized, sham-controlled study, we investigated the effects of fronto-temporal tDCS [anode corresponding to left dorsolateral prefrontal cortex and cathode to left temporo-parietal junction; 2-mA, twice-daily sessions for 5 days] on illness severity, psychosocial functioning, cognitive insight and neurocognitive function in schizophrenia patients (N = 60). The authors observed significant trends that tDCS ameliorated the severity of total and general psychopathology as measured by the Positive and Negative Syndrome Scale. No significant effects were observed for other psychopathological symptoms and psychosocial functioning. Cognitive insight as measured by the Beck Cognitive Insight Scale (BCIS) was rapidly enhanced by 10-session tDCS (F = 10.80, Cohen's d = 0.44, p = 0.002) but the beneficial effect became borderline significant 1 month after stimulation. A trend-level improvement with tDCS of planning ability (F = 6.40, Cohen's d = 0.339, p = 0.014) as measured by the accuracy in Tower of London task was also observed. In the active tDCS group, the change in cognitive insight from baseline to immediately after tDCS assessment was positively correlated with that in planning ability (r = 0.46, p = 0.015), which was independent of the corresponding change in illness severity. The promising results regarding the fast-acting beneficial effects of tDCS on cognitive insight and planning ability in schizophrenia require confirmation in future replication studies.
Collapse
Affiliation(s)
- Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Chao
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
46
|
Huang J, Zhuo C, Xu Y, Lin X. Auditory verbal hallucination and the auditory network: From molecules to connectivity. Neuroscience 2019; 410:59-67. [PMID: 31082536 DOI: 10.1016/j.neuroscience.2019.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
Auditory verbal hallucinations (AVHs) frequently occur across multiple psychiatric diseases especially in schizophrenia (SCZ) patients. Functional imaging studies have revealed the hyperactivity of the auditory cortex and disrupted auditory-verbal network activity underlying AVH etiology. This review will firstly summarize major findings from both human AVH patients and animal models, with focuses on the auditory cortex and associated cortical/sub-cortical areas. Besides mesoscale connectivity or activity data, structure and functions at synaptic level will be discussed, in conjunction with molecular mechanisms. We have summarized major findings for the pathogenesis of AVH in SCZ patients, with focuses in the auditory cortex and prefrontal cortex (PFC). Those discoveries provide explanations for AVH from different perspectives including inter-regional connectivity, local activity in specific areas, structure and functions of synapse, and potentially molecular targets. Due to the uniqueness of AVH in humans, full replica using animals seems impossible. However, we can still extract useful information from animal SCZ models based on the disruption of auditory pathway during AVH episodes. Therefore, we will further interpolate the synaptic structures and molecular targets, whose dysregulation in SCZ models may be highly related with AVH episodes. As the last part, implications for future development of treatment strategies will be discussed.
Collapse
Affiliation(s)
- Jianjie Huang
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China; Department of Psychiatry, Institute of Mental Health, Jining University, Jining Shandong Province, 272191, China; Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin, 300222, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Lin
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
47
|
Kim J, Ozzoude M, Nakajima S, Shah P, Caravaggio F, Iwata Y, De Luca V, Graff-Guerrero A, Gerretsen P. Insight and medication adherence in schizophrenia: An analysis of the CATIE trial. Neuropharmacology 2019; 168:107634. [PMID: 31077729 DOI: 10.1016/j.neuropharm.2019.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 01/11/2023]
Abstract
Adherence to antipsychotic medication is critical for the treatment of patients with schizophrenia. Impaired insight into illness is one of the principal drivers of medication nonadherence, which contributes to negative clinical outcomes. The aims of this study were to examine the relationships between impaired insight and (1) rates of antipsychotic medication nonadherence, and (2) time to medication nonadherence using data from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Insight was assessed using the Positive and Negative Syndrome Scale (PANSS) item G12 (lack of judgment and insight). Patients were divided into 3 groups based on their degree of insight impairment, i.e. no impairment (PANSS G12 = 1), minimal impairment (PANSS G12 = 2-3), and moderate-to-severe insight impairment (PANSS G12 ≥ 4). Medication nonadherence was defined as taking less than 80% of monthly pill counts. Kaplan-Meier survival and Cox regression analyses were performed to examine differences in time to medication nonadherence between insight groups. There were significant differences between insight groups in the percentage of nonadherent patients at 6 months (χ2(2) = 8.80, p = 0.012) and 18 months (χ2(2) = 10.04, p = 0.007) after study initiation. Moderate-to-severe insight impairment was associated with earlier nonadherence compared to minimal (χ2 = 4.70, p = 0.030) or no impairment (χ2 = 11.92, p = 0.001). The association remained significant after adjustment for illness severity, substance use, attitudes toward medication, cognition, level of hostility, and depression. The results of this study indicate a strong link between impaired insight and antipsychotic medication nonadherence. Interventions to enhance insight early during treatment may help improve medication adherence, and in turn, long-term clinical and functional outcomes in patients with schizophrenia. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Miracle Ozzoude
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Neuropsychiatry, Keio University, Tokyo, Japan
| | - Parita Shah
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Schizophrenia Division, CAMH, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada.
| |
Collapse
|
48
|
Gerretsen P, Rajji TK, Shah P, Shahab S, Sanches M, Graff-Guerrero A, Menon M, Pollock BG, Mamo DC, Mulsant BH, Voineskos AN. Impaired illness awareness in schizophrenia and posterior corpus callosal white matter tract integrity. NPJ SCHIZOPHRENIA 2019; 5:8. [PMID: 31036809 PMCID: PMC6488582 DOI: 10.1038/s41537-019-0076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Impaired illness awareness (Imp-IA) in schizophrenia is associated with interhemispheric imbalance, resulting in left hemisphere dominance, primarily within the posterior parietal area (PPA). This may represent an interhemispheric “disconnection syndrome” between PPAs. To test this hypothesis, we aimed to determine if diffusion-based measures of white matter integrity were disrupted in the corpus callosal tracts linking PPAs (i.e., splenium) in patients with Imp-IA in schizophrenia. T1-weighted and diffusion-weighted scans were acquired on a 1.5T GE scanner for 100 participants with a DSM-IV-TR diagnosis of schizophrenia and 134 healthy controls aged 18 to 79 years. The corpus callosal white matter tracts were compared among patients with Imp-IA (n = 40), intact illness awareness (n = 60), and healthy controls. White matter disruption was measured with fractional anisotropy (FA) and mean diffusivity (MD). Group differences in FA were found in the splenium, with patients with Imp-IA having the lowest FA, which remained significant after controlling for sex, age, global cognition, and premorbid intelligence. No group differences in MD were observed. Splenial white matter tracts of the corpus callosum appear compromised in patients with Imp-IA. Transcallosal interhemispheric PPA white matter disruption may represent a “disconnection syndrome”, manifesting as Imp-IA in schizophrenia. Future studies are required to investigate the effects of noninvasive brain stimulation interventions, such as transcranial direct current or magnetic stimulation, on Imp-IA in association with white matter changes in patients with schizophrenia.
Collapse
Affiliation(s)
- Philip Gerretsen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada. .,University of Toronto, Toronto, ON, Canada.
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | - Parita Shah
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | - Saba Shahab
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | - Marcos Sanches
- University of Toronto, Toronto, ON, Canada.,Krembil Centre for Neuroinformatics - CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | - Mahesh Menon
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | | | - Benoit H Mulsant
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, (CAMH), Toronto, Canada.,University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Gordon PC, Valiengo LDCL, de Paula VJR, Galhardoni R, Ziemann U, de Andrade DC, Brunoni AR. Changes in motor cortical excitability in schizophrenia following transcranial direct current stimulation. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:43-48. [PMID: 30423420 DOI: 10.1016/j.pnpbp.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/03/2018] [Accepted: 11/08/2018] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a disorder associated with cortical inhibition deficits. Transcranial direct current stimulation (tDCS) induces changes in cortical excitability in healthy subjects and individuals with neuropsychiatric disorders depending on the stimulation parameters. Our aim was to investigate whether a previously published tDCS protocol associated with symptomatic improvement in schizophrenia would induce changes in motor cortical excitability, assessed by transcranial magnetic stimulation paradigms, i.e., short-interval intracortical inhibition (SICI) and intra-cortical facilitation (ICF). We assessed cortical excitability measurements in 48 subjects with schizophrenia before and after a single session of active tDCS (20 min, 2 mA, anode over left dorsolateral prefrontal cortex, cathode over left temporoparietal cortex) or sham. Those who received active tDCS had a significant increase of SICI in the left motor cortex compared to those who received sham stimulation (Cohen's d = 0.54, p = .019). No changes were observed for ICF. In addition, lower SICI was associated with higher age (β = -0.448, p < .01). Increase in intracortical inhibition may indicate a mechanism of action of tDCS in this population. Future studies should investigate whether this finding is a biomarker of treatment response for schizophrenia.
Collapse
Affiliation(s)
- Pedro Caldana Gordon
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neuroscience (LIM27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Leandro da Costa Lane Valiengo
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neuroscience (LIM27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Vanessa Jesus Rodrigues de Paula
- Psychobiology Laboratory (LIM23), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Ricardo Galhardoni
- School of Medicine, University of City of São Paulo (UNICID), São Paulo, Brazil; Pain Center, Department of Neurology, `School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Daniel Ciampi de Andrade
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neuroscience (LIM27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Pain Center, Department of Neurology, `School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Andre Russowsky Brunoni
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neuroscience (LIM27) and National Institute of Biomarkers in Neuropsychiatry (INBioN), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil; Department of Psychiatry and Psychotherapy, University Hospital, LMU, Munich, Germany.
| |
Collapse
|
50
|
Kim J, Iwata Y, Plitman E, Caravaggio F, Chung JK, Shah P, Blumberger DM, Pollock BG, Remington G, Graff-Guerrero A, Gerretsen P. A meta-analysis of transcranial direct current stimulation for schizophrenia: "Is more better?". J Psychiatr Res 2019; 110:117-126. [PMID: 30639917 DOI: 10.1016/j.jpsychires.2018.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 12/06/2018] [Indexed: 01/29/2023]
Abstract
Transcranial direct current stimulation (tDCS) has generated interest in recent years as a potential adjunctive treatment for patients with schizophrenia. The primary objective of this meta-analysis was to evaluate the efficacy of tDCS on positive symptoms, particularly auditory hallucinations, and negative symptoms. A literature search of randomized sham-controlled trials was conducted using the OVID database on October 9, 2018. The standardized mean differences (SMDs) were calculated to examine changes in symptom severity between active and sham groups for the following symptom domains: auditory hallucinations, positive symptoms (including auditory hallucinations), and negative symptoms. Moderator analyses were performed to examine the effects of study design and participant demographics. We identified 10 eligible studies. Main-analyses showed no effects of tDCS on auditory hallucinations (7 studies, n = 242), positive symptoms (9 studies, n = 313), or negative symptoms (9 studies, n = 313). Subgroup analyses of studies that applied twice-daily stimulation showed a significant reduction in the severity of auditory hallucinations (4 studies, n = 138, SMD = 1.04, p = 0.02). Studies that applied ≥10 stimulation sessions showed a reduction in both auditory hallucination (5 studies, n = 186, SMD = 0.86, p = 0.009) and negative symptom severity (7 studies, n = 257, SMD = 0.41, p = 0.04). Meta-regression analyses revealed a negative association between mean age and the SMDs for auditory hallucinations and negative symptoms, and a positive association between baseline negative symptom severity and the SMDs for negative symptoms. Our findings highlight the need to optimize tDCS parameters and suggest twice-daily or 10 or more stimulation sessions may be needed to improve clinical outcomes in patients with schizophrenia.
Collapse
Affiliation(s)
- Julia Kim
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Plitman
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jun Ku Chung
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Parita Shah
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Geriatric Mental Health Division, CAMH, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|