1
|
Dong W, Gao X, Guan F, Pan J, Chen W, Zhang L, Zhang L. Establishment and characterization of liver-specific Apoa4-Cre and Cyp2c11-Cre rat models in juvenile and adult stages. Animal Model Exp Med 2025; 8:718-727. [PMID: 39916324 PMCID: PMC12008442 DOI: 10.1002/ame2.12504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/04/2024] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Liver diseases are a major contributor to both morbidity and mortality. Conditional knockout animals are always produced through crossing floxed animals with a tissue-specific Cre animal. The use of floxed rat resource has rapidly increased, but the liver-specific Cre rat lines for studying liver diseases and interested genes are limited, especially in a spatially and temporally restricted manner. METHODS RNA sequencing and real-time polymerase chain reaction (PCR) were used to screen and confirm the presence of liver-specific genes. Apoa4-Cre rats and Cyp2c11-Cre rats were produced by CRISPR/Cas9 knockin. Rosa26-imCherry rats were employed to hybridize with the Cre rats to obtain the Apoa4-Cre/Rosa26-imCherry and Cyp2c11-Cre/Rosa26-imCherry rats. The temporal and spatial patterns of Cre expression were determined by the observation of red fluorescence on tissue sections. Hematoxylin-eosin stain was used to evaluate the liver histopathologic changes. The blood biochemical analysis of several liver enzymes and liver lipid profile was performed to evaluate the liver function of Cre rats. RESULTS Apoa4 and Cyp2c11 were identified as two liver-specific genes. Apoa4-Cre and Cyp2c11-Cre rats were produced and hybridized with Rosa26-imCherry rats. The red fluorescence indicated that the Cre recombinases were specially expressed in the juvenile and adult liver and not in other organs of two hybridized rats. All the blood biochemical parameters except low-density lipoprotein (LDL) did not change significantly in the Cre rats. No histological alterations were detected in the livers of the Cre rats. CONCLUSIONS Liver-specific Apoa4-Cre and Cyp2c11-Cre rats have been established successfully and could be used to study gene knockout, specifically in juvenile and adult liver.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Jirong Pan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
2
|
Marcó S, Muñoz S, Bosch F, Jimenez V. Rat models of musculoskeletal lysosomal storage disorders and their role in pre-clinical evaluation of gene therapy approaches. Mamm Genome 2025:10.1007/s00335-025-10121-3. [PMID: 40100425 DOI: 10.1007/s00335-025-10121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Mice have been a cornerstone of biomedical research for decades for studying a wide range of biological processes, disease mechanisms, and the assessment of therapies. Moreover, mice present several practical advantages such as small size, low cost and ease of genetic manipulation. While mice offer numerous benefits, for certain disease areas, rat models provide a closer representation of human disease progression, offering better insights for translational research and therapeutic development. This closer resemblance is particularly important for research focusing on diseases involving the cardiovascular and musculoskeletal system. In rats, the pathophysiology of these diseases mirrors the clinical alterations observed in humans. This review focuses on the key phenotypic differences between mouse and rat models of lysosomal storage disorders that specifically manifest with cardiac, skeletal muscle, and bone and joint involvement (Pompe and Danon diseases, and Maroteaux-Lamy and Morquio A syndromes). Furthermore, we discuss the therapeutic potential of various adeno-associated viral vector-mediated gene therapies that have been evaluated in these rat models, highlighting their contributions to advancing treatment options for these debilitating conditions.
Collapse
Affiliation(s)
- Sara Marcó
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
3
|
Dwinell MR, Takizawa A, Tutaj M, Malloy L, Schilling R, Endsley A, Demos WM, Smith JR, Wang SJ, De Pons J, Kundurthi A, Geurts AM, Kwitek AE. Establishing the hybrid rat diversity program: a resource for dissecting complex traits. Mamm Genome 2025; 36:25-37. [PMID: 39907792 PMCID: PMC11880076 DOI: 10.1007/s00335-024-10102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025]
Abstract
Rat models have been a major model for studying complex disease mechanisms, behavioral phenotypes, environmental factors, and for drug development and discovery. Inbred rat strains control for genetic background and allow for repeated, reproducible, cellular and whole animal phenotyping. The Hybrid Rat Diversity Panel (HRDP) was designed to be a powerful panel of inbred rats with genomic, physiological, and behavioral data to serve as a resource for systems genetics. The HRDP consists of 96-98 inbred rat strains aimed to maximize power to detect specific genetic loci associated with complex traits while maximizing the genetic diversity among strains. The panel consists of 32-34 genetically diverse inbred strains and two panels of recombinant inbred panels. To establish the HRDP program, embryo resuscitation and breeding were done to establish colonies for distribution. Whole genome sequencing was performed to achieve 30X coverage. Genomic, phenotype, and strain information is available through the Hybrid Rat Diversity Panel Portal at the Rat Genome Database ( http://rgd.mcw.edu ).
Collapse
Affiliation(s)
- M R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - A Takizawa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Tutaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L Malloy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - R Schilling
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A Endsley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - W M Demos
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J R Smith
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S J Wang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J De Pons
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A Kundurthi
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Lu M, Li K, Zhou Y, Xiao J. Identification of the genetic background of laboratory rats through amplicon-based next-generation sequencing for single-nucleotide polymorphism genotyping. BMC Genom Data 2024; 25:84. [PMID: 39363223 PMCID: PMC11451121 DOI: 10.1186/s12863-024-01267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Laboratory rats, as model animals, have been extensively used in the fields of life science and medicine. It is crucial to routinely monitor the genetic background of laboratory rats. The conventional approach relies on gel electrophoresis and capillary electrophoresis (CE) technologies. However, the experimental and data analysis procedures for both of these methods are time consuming and costly. RESULTS We established a single-nucleotide polymorphism (SNP) typing scheme using multiplex polymerase chain reaction (PCR) and next-generation sequencing (NGS) to address the genetic background ambiguity in laboratory rats. This methodology involved three rounds of PCR and two rounds of magnetic bead selection to improve the quality of the sequencing data. We simultaneously analysed 100 laboratory rats (including rats of 5 inbred strains and 2 in-house closed colonies), and the sequencing depth varied from an average of 108.25 to 5189.89, with sample uniformity ranging from 82.5 to 97.5%. A total of 98.9% of the amplicons were successfully genotyped (≥ 30 reads). Genetic background analysis revealed that all 38 experimental rats from the 5 inbred strains were successfully identified (without a heterozygous allele). For the 2 in-house closed colonies, the average heterozygosity (0.162 and 0.169) deviated from the typical range of 0.5-0.7, indicating a departure from the ideal heterozygosity level. Additionally, we employed multiplex PCR-CE to validate the NGS-based method, which yielded consistent results for all the rat strains. These results demonstrated that this approach significantly improves efficiency, saves time, reduces costs and ensures accuracy. CONCLUSION By utilizing NGS technology, our developed method leverages SNP genotyping for genetic background identification in laboratory rats, demonstrating advantages in terms of labour efficiency and cost-effectiveness, thereby rendering it well suited for projects involving extensive sample cohorts.
Collapse
Affiliation(s)
- Meng Lu
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620, China
| | - Kai Li
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620, China
| | - Yuxun Zhou
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620, China
| | - Junhua Xiao
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620, China.
| |
Collapse
|
5
|
Barrientos-Bonilla AA, Pensado-Guevara PB, Puga-Olguín A, Nadella R, Sánchez-García ADC, Zavala-Flores LM, Villanueva-Olivo A, Cibrián-Llanderal IT, Rovirosa-Hernández MDJ, Hernandez-Baltazar D. BrdU does not induce hepatocellular damage in experimental Wistar rats. Acta Histochem 2024; 126:152117. [PMID: 38016413 DOI: 10.1016/j.acthis.2023.152117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Bromodeoxyuridine (BrdU) is used in studies related to cell proliferation and neurogenesis. The multiple intraperitoneal injections of this molecule could favor liver function profile changes. In this study, we evaluate the systemic and hepatocellular impact of BrdU in male adult Wistar rats in 30 %-partial hepatectomy (PHx) model. The rats received BrdU 50 mg/Kg by intraperitoneal injection at 0.5, 1, 2, 3, 6, 9 and 16 days after 30 %-PH. The rats were distributed into four groups as follows, control, sham, PHx/BrdU(-) and PHx/BrdU(+). On day 16, we evaluated hepatocellular nuclei and analyzed histopathological features by haematoxylin-eosin stain and apoptotic profile was qualified by caspase-3 presence. The systemic effect was evaluated by liver markers such as alanine transferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (AP), bilirubin, total proteins and serum albumin content. The statistical analysis consisted of a student t-test and one-way ANOVA. BrdU did not induce apoptosis or hepatocellular damage in male rats. Multiple administrations of BrdU in male rats did not induce significant decrease body weight, but increased serum ALT and LDH levels were found. Our results show that the BrdU does not produce hepatocellular damage.
Collapse
Affiliation(s)
| | | | - Abraham Puga-Olguín
- Unidad de Salud Integrativa, Centro de EcoAlfabetización y Diálogo de Saberes, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | | | | - Arnulfo Villanueva-Olivo
- Departamento de Histología. Facultad de Medicina. Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | | | - Daniel Hernandez-Baltazar
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico; Investigadoras e investigadores por México CONAHCyT-Instituto de Neuroetología, Universidad Veracruzana, Mexico.
| |
Collapse
|
6
|
Seki S, Kawabe T, Yamazaki W, Matsumura K, Oikawa T, Obata T, Higashiya M, Yano M, Eto T. Cryopreservation of rat embryos at all developmental stages by small-volume vitrification procedure and rapid warming in cryotubes. Sci Rep 2023; 13:20903. [PMID: 38017006 PMCID: PMC10684866 DOI: 10.1038/s41598-023-47394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Intracellular ice formation during cryopreservation is lethal to the cell, including during warming. Here, we examined the effect of sample volume and warming rate on the cryopreservation success of 1-cell rat embryos based on successful development into blastocysts in vitro and to term in vivo following embryo transfer. Embryos were equilibrated in 5% propylene glycol solution for 10 min, held for 40 s at 0 °C in cryopreservation solution (5%PG + PEPeS), and cooled by immersion in liquid nitrogen. When 1-cell embryos were cryopreserved in a volume of 30-100 μL at a cooling rate of 5830-7160 °C/min and warmed at 35,480-49,400 °C/min by adding 1 mL of 0.3 M sucrose solution at 50 °C, 17.3-28.8% developed into blastocysts, compared with 57.0% of untreated embryos. However, when 1-cell embryos were cryopreserved in a smaller volume of 15 μl at 7950 °C/min and warmed at 68,850 °C/min, 58.8 ± 10.6% developed into blastocysts and 50.0 ± 7.4% developed to term, comparable to that of non-treated embryos (57.0 ± 5.4% and 51.4 ± 3.1%, respectively). Cryopreserved embryos at other developmental stages also showed high in vitro culture potential similar to that of the control. Using a conventional cryotube and a small-volume vitrification procedure with rapid warming, we achieved high levels of subsequent rat embryonic development at all developmental stages.
Collapse
Affiliation(s)
- Shinsuke Seki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan.
| | - Toshiaki Kawabe
- ARK Resource Co., Ltd., 456 Osozu, Misato-machi, Shimomashiki-gun, Kumamoto, 861-4401, Japan
| | - Wataru Yamazaki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa, 923-1292, Japan
| | - Takanori Oikawa
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Takahiro Obata
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Misako Higashiya
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Megumi Yano
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Tomoo Eto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| |
Collapse
|
7
|
Arnold AP, Chen X, Grzybowski MN, Ryan JM, Sengelaub DR, Mohanroy T, Furlan VA, Grisham W, Malloy L, Takizawa A, Wiese CB, Vergnes L, Skaletsky H, Page DC, Reue K, Harley VR, Dwinell MR, Geurts AM. A "Four Core Genotypes" rat model to distinguish mechanisms underlying sex-biased phenotypes and diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527738. [PMID: 36798326 PMCID: PMC9934672 DOI: 10.1101/2023.02.09.527738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background We have generated a rat model similar to the Four Core Genotypes mouse model, allowing comparison of XX and XY rats with the same type of gonad. The model detects novel sex chromosome effects (XX vs. XY) that contribute to sex differences in any rat phenotype. Methods XY rats were produced with an autosomal transgene of Sry , the testis-determining factor gene, which were fathers of XX and XY progeny with testes. In other rats, CRISPR-Cas9 technology was used to remove Y chromosome factors that initiate testis differentiation, producing fertile XY gonadal females that have XX and XY progeny with ovaries. These groups can be compared to detect sex differences caused by sex chromosome complement (XX vs. XY) and/or by gonadal hormones (rats with testes vs. ovaries). Results We have measured numerous phenotypes to characterize this model, including gonadal histology, breeding performance, anogenital distance, levels of reproductive hormones, body and organ weights, and central nervous system sexual dimorphisms. Serum testosterone levels were comparable in adult XX and XY gonadal males. Numerous phenotypes previously found to be sexually differentiated by the action of gonadal hormones were found to be similar in XX and XY rats with the same type of gonad, suggesting that XX and XY rats with the same type of gonad have comparable levels of gonadal hormones at various stages of development. Conclusion The results establish a powerful new model to discriminate sex chromosome and gonadal hormone effects that cause sexual differences in rat physiology and disease.
Collapse
|
8
|
A bioinformatics framework for targeted gene expression assay design: Application to in vitro developmental neurotoxicity screening in a rat model. Regul Toxicol Pharmacol 2022; 133:105211. [PMID: 35724854 DOI: 10.1016/j.yrtph.2022.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/05/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
Brain development involves a series of intricately choreographed neuronal differentiation and maturation steps that are acutely vulnerable to interferences from chemical exposures. Many genes involved in neurodevelopmental processes show evolutionarily conserved expression patterns in mammals and may constitute useful indicators/biomarkers for the evaluation of potential developmental neurotoxicity. Based on these premises, this study developed a bioinformatics framework to guide the design of a gene expression-based in vitro developmental neurotoxicity assay targeting evolutionary conserved genes associated with neuronal differentiation and maturation in rat cerebellar granule cells (CGCs). Rat, mouse and human genes involved in neurodevelopment and presenting one-to-one orthology were selected and orthologous exons within these genes were identified. PCR primer sets were designed within these orthologous exons and their specificity was evaluated in silico. The performance and specificity of rat, mouse and human PCR primer sets were then confirmed experimentally. Finally, RT-qPCR analyses in CGCs exposed in vitro to well-known neurotoxicants (Chlorpyrifos and Chlorpyrifos oxon) uncovered perturbations of expression levels for most of the selected genes. This bioinformatics framework for gene and target sequence selection may facilitate the identification of transcriptional biomarkers for developmental neurotoxicity assays and the comparison of gene expression data across experimental models from different mammalian species.
Collapse
|
9
|
Clark KC, Kwitek AE. Multi-Omic Approaches to Identify Genetic Factors in Metabolic Syndrome. Compr Physiol 2021; 12:3045-3084. [PMID: 34964118 PMCID: PMC9373910 DOI: 10.1002/cphy.c210010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is a highly heritable disease and a major public health burden worldwide. MetS diagnosis criteria are met by the simultaneous presence of any three of the following: high triglycerides, low HDL/high LDL cholesterol, insulin resistance, hypertension, and central obesity. These diseases act synergistically in people suffering from MetS and dramatically increase risk of morbidity and mortality due to stroke and cardiovascular disease, as well as certain cancers. Each of these component features is itself a complex disease, as is MetS. As a genetically complex disease, genetic risk factors for MetS are numerous, but not very powerful individually, often requiring specific environmental stressors for the disease to manifest. When taken together, all sequence variants that contribute to MetS disease risk explain only a fraction of the heritable variance, suggesting additional, novel loci have yet to be discovered. In this article, we will give a brief overview on the genetic concepts needed to interpret genome-wide association studies (GWAS) and quantitative trait locus (QTL) data, summarize the state of the field of MetS physiological genomics, and to introduce tools and resources that can be used by the physiologist to integrate genomics into their own research on MetS and any of its component features. There is a wealth of phenotypic and molecular data in animal models and humans that can be leveraged as outlined in this article. Integrating these multi-omic QTL data for complex diseases such as MetS provides a means to unravel the pathways and mechanisms leading to complex disease and promise for novel treatments. © 2022 American Physiological Society. Compr Physiol 12:1-40, 2022.
Collapse
Affiliation(s)
- Karen C Clark
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Montana V, Flint D, Waagepetersen HS, Schousboe A, Parpura V. Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochem Res 2021; 46:2551-2579. [PMID: 34057673 PMCID: PMC9015689 DOI: 10.1007/s11064-021-03340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels, glucose and lactate. Thus, we investigated the role of these energy/carbon sources in exocytotic glutamate release from astrocytes. Purified astrocyte cultures were acutely incubated (1 h) in glucose and/or lactate-containing media. Astrocytes were mechanically stimulated, a procedure known to increase intracellular Ca2+ levels and cause exocytotic glutamate release, the dynamics of which were monitored using single cell fluorescence microscopy. Our data indicate that glucose, either taken-up from the extracellular space or mobilized from the intracellular glycogen storage, sustained glutamate release, while the availability of lactate significantly reduced the release of glutamate from astrocytes. Based on further pharmacological manipulation during imaging along with tandem mass spectrometry (proteomics) analysis, lactate alone, but not in the hybrid fuel, caused metabolic changes consistent with an increased synthesis of fatty acids. Proteomics analysis further unveiled complex changes in protein profiles, which were condition-dependent and generally included changes in levels of cytoskeletal proteins, proteins of secretory organelle/vesicle traffic and recycling at the plasma membrane in aglycemic, lactate or hybrid-fueled astrocytes. These findings support the notion that the availability of energy sources and metabolic milieu play a significant role in gliotransmission.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Daniel Flint
- Luxumbra Strategic Research, LLC, Arlington, VA, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
|
12
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
13
|
Fukuda Y, Higashiya M, Obata T, Basaki K, Yano M, Matsumura K, Ono K, Ohba T, Okamoto Y, Nishijima K, Seki S. Small-volume vitrification and rapid warming yield high survivals of one-cell rat embryos in cryotubes†. Biol Reprod 2021; 105:258-266. [PMID: 33783478 DOI: 10.1093/biolre/ioab059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 01/28/2023] Open
Abstract
To cryopreserve cells, it is essential to avoid intracellular ice formation during cooling and warming. One way to achieve this is to convert the water inside the cells into a non-crystalline glass. It is currently believed that to accomplish this vitrification, the cells must be suspended in a very high concentration (20-40%) of a glass-inducing solute, and subsequently cooled very rapidly. Herein, we report that this belief is erroneous with respect to the vitrification of one-cell rat embryos. In the present study, one-cell rat embryos were vitrified with 5 μL of EFS10 (a mixture of 10% ethylene glycol (EG), 27% Ficoll, and 0.45 M sucrose) in cryotubes at a moderate cooling rate, and warmed at various rates. Survival was assessed according to the ability of the cells to develop into blastocysts and to develop to term. When embryos were vitrified at a 2613 °C/min cooling rate and thawed by adding 1 mL of sucrose solution (0.3 M, 50 °C) at a warming rate of 18 467 °C/min, 58.1 ± 3.5% of the EFS10-vitrified embryos developed into blastocysts, and 50.0 ± 4.7% developed to term. These rates were similar to those of non-treated intact embryos. Using a conventional cryotube, we achieved developmental capabilities in one-cell rat embryos by rapid warming that were comparable to those of intact embryos, even using low concentrations (10%) of cell-permeating cryoprotectant and at low cooling rates.
Collapse
Affiliation(s)
- Yasuyoshi Fukuda
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
- Department of Cell Physiology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | - Misako Higashiya
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Takahiro Obata
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Keita Basaki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Megumi Yano
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Kyoichi Ono
- Department of Cell Physiology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | | | - Yosuke Okamoto
- Department of Cell Physiology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | - Kazutoshi Nishijima
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
- National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Center for Experimental Animals, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Shinsuke Seki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| |
Collapse
|
14
|
Zinski AL, Carrion S, Michal JJ, Gartstein MA, Quock RM, Davis JF, Jiang Z. Genome-to-phenome research in rats: progress and perspectives. Int J Biol Sci 2021; 17:119-133. [PMID: 33390838 PMCID: PMC7757052 DOI: 10.7150/ijbs.51628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023] Open
Abstract
Because of their relatively short lifespan (<4 years), rats have become the second most used model organism to study health and diseases in humans who may live for up to 120 years. First-, second- and third-generation sequencing technologies and platforms have produced increasingly greater sequencing depth and accurate reads, leading to significant advancements in the rat genome assembly during the last 20 years. In fact, whole genome sequencing (WGS) of 47 strains have been completed. This has led to the discovery of genome variants in rats, which have been widely used to detect quantitative trait loci underlying complex phenotypes based on gene, haplotype, and sweep association analyses. DNA variants can also reveal strain, chromosome and gene functional evolutions. In parallel, phenome programs have advanced significantly in rats during the last 15 years and more than 10 databases host genome and/or phenome information. In order to discover the bridges between genome and phenome, systems genetics and integrative genomics approaches have been developed. On the other hand, multiple level information transfers from genome to phenome are executed by differential usage of alternative transcriptional start (ATS) and polyadenylation (APA) sites per gene. We used our own experiments to demonstrate how alternative transcriptome analysis can lead to enrichment of phenome-related causal pathways in rats. Development of advanced genome-to-phenome assays will certainly enhance rats as models for human biomedical research.
Collapse
Affiliation(s)
- Amy L. Zinski
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Shane Carrion
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Raymond M. Quock
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| |
Collapse
|
15
|
Arnold AP. Four Core Genotypes and XY* mouse models: Update on impact on SABV research. Neurosci Biobehav Rev 2020; 119:1-8. [PMID: 32980399 PMCID: PMC7736196 DOI: 10.1016/j.neubiorev.2020.09.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
The impact of two mouse models is reviewed, the Four Core Genotypes and XY* models. The models are useful for determining if the causes of sex differences in phenotypes are either hormonal or sex chromosomal, or both. Used together, the models also can distinguish between the effects of X or Y chromosome genes that contribute to sex differences in phenotypes. To date, the models have been used to uncover sex chromosome contributions to sex differences in a wide variety of phenotypes, including brain and behavior, autoimmunity and immunity, cardiovascular disease, metabolism, and Alzheimer's Disease. In some cases, use of the models has been a strategy leading to discovery of specific X or Y genes that protect from or exacerbate disease. Sex chromosome and hormonal factors interact, in some cases to reduce the effects of each other. Future progress will come from more extensive application of these models, and development of similar models in other species.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095-7239, United States.
| |
Collapse
|
16
|
Carter CS, Richardson A, Huffman DM, Austad S. Bring Back the Rat! J Gerontol A Biol Sci Med Sci 2020; 75:405-415. [PMID: 31894235 DOI: 10.1093/gerona/glz298] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
As 2020 is "The Year of the Rat" in the Chinese astrological calendar, it seems an appropriate time to consider whether we should bring back the laboratory rat to front-and-center in research on the basic biology of mammalian aging. Beginning in the 1970s, aging research with rats became common, peaking in 1992 but then declined dramatically by 2018 as the mouse became preeminent. The purpose of this review is to highlight some of the historical contributions as well as current advantages of the rat as a mammalian model of human aging, because we suspect at least a generation of researchers is no longer aware of this history or these advantages. Herein, we compare and contrast the mouse and rat in the context of several biological domains relevant to their use as appropriate models of aging: phylogeny/domestication, longevity interventions, pathology/physiology, and behavior/cognition. It is not the goal of this review to give a complete characterization of the differences between mice and rats, but to provide important examples of why using rats as well as mice is important to advance our understanding of the biology of aging.
Collapse
Affiliation(s)
- Christy S Carter
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham
| | - Arlan Richardson
- Department of Biochemistry and Molecular Biology, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Science Center, and the Oklahoma City VA Medical Center
| | - Derek M Huffman
- Department of Molecular Pharmacology, Department of Medicine, and Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
| | - Steven Austad
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham
| |
Collapse
|
17
|
Školníková E, Šedová L, Chylíková B, Kábelová A, Liška F, Šeda O. Maternal High-Sucrose Diet Affects Phenotype Outcome in Adult Male Offspring: Role of Zbtb16. Front Genet 2020; 11:529421. [PMID: 33061941 PMCID: PMC7518089 DOI: 10.3389/fgene.2020.529421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022] Open
Abstract
Overnutrition in pregnancy and lactation affects fetal and early postnatal development, which can result in metabolic disorders in adulthood. We tested a hypothesis that variation of the Zbtb16 gene, a significant energy metabolism regulator, modulates the effect of maternal high-sucrose diet (HSD) on metabolic and transcriptomic profiles of the offspring. We used the spontaneously hypertensive rat (SHR) strain and a minimal congenic rat strain SHR-Zbtb16, carrying the Zbtb16 gene allele originating from the PD/Cub rat, a metabolic syndrome model. Sixteen-week-old SHR and SHR-Zbtb16 rat dams were fed either standard diet (control groups) or a high-sucrose diet (HSD, 70% calories as sucrose) during pregnancy and 4 weeks of lactation. In dams of both strains, we observed an HSD-induced increase of cholesterol and triacylglycerol concentrations in VLDL particles and a decrease of cholesterol and triacylglycerols content in medium to very small LDL particles. In male offspring, exposure to maternal HSD substantially increased brown fat weight in both strains, decreased triglycerides in LDL particles, and impaired glucose tolerance exclusively in SHR. The transcriptome assessment revealed networks of transcripts reflecting the shifts induced by maternal HSD with major nodes including mir-126, Hsd11b1 in the brown adipose tissue, Pcsk9, Nr0b2 in the liver and Hsd11b1, Slc2a4 in white adipose tissue. In summary, maternal HSD feeding during pregnancy and lactation affected brown fat deposition and lipid metabolism in adult male offspring and induced major transcriptome shifts in liver, white, and brown adipose tissues. The Zbtb16 variation present in the SHR-Zbtb16 led to several strain-specific effects of the maternal HSD, particularly the transcriptomic profile shifts of the adult male offspring.
Collapse
Affiliation(s)
- Elena Školníková
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Lucie Šedová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Blanka Chylíková
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Adéla Kábelová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - František Liška
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Ondřej Šeda
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
18
|
Putz EJ, Nally JE. Investigating the Immunological and Biological Equilibrium of Reservoir Hosts and Pathogenic Leptospira: Balancing the Solution to an Acute Problem? Front Microbiol 2020; 11:2005. [PMID: 32922382 PMCID: PMC7456838 DOI: 10.3389/fmicb.2020.02005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Leptospirosis is a devastating zoonotic disease affecting people and animals across the globe. Pathogenic leptospires are excreted in urine of reservoir hosts which directly or indirectly leads to continued disease transmission, via contact with mucous membranes or a breach of the skin barrier of another host. Human fatalities approach 60,000 deaths per annum; though most vertebrates are susceptible to leptospirosis, complex interactions between host species and serovars of Leptospira can yield disease phenotypes that vary from asymptomatic shedding in reservoir hosts, to multi-organ failure in incidental hosts. Clinical symptoms of acute leptospirosis reflect the diverse range of pathogenic species and serovars that cause infection, the level of exposure, and the relationship of the pathogen with the given host. However, in all cases, pathogenic Leptospira are excreted into the environment via urine from reservoir hosts which are uniformly recognized as asymptomatic carriers. Therefore, the reservoir host serves as the cornerstone of persistent disease transmission. Although bacterin vaccines can be used to abate renal carriage and excretion in domestic animal species, there is an urgent need to advance our understanding of immune-mediated host–pathogen interactions that facilitate persistent asymptomatic carriage. This review summarizes the current understanding of host–pathogen interactions in the reservoir host and prioritizes research to unravel mechanisms that allow for colonization but not destruction of the host. This information is required to understand, and ultimately control, the transmission of pathogenic Leptospira.
Collapse
Affiliation(s)
- Ellie J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Jarlath E Nally
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
19
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
20
|
Olender T, Jones TEM, Bruford E, Lancet D. A unified nomenclature for vertebrate olfactory receptors. BMC Evol Biol 2020; 20:42. [PMID: 32295537 PMCID: PMC7160942 DOI: 10.1186/s12862-020-01607-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/27/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Olfactory receptors (ORs) are G protein-coupled receptors with a crucial role in odor detection. A typical mammalian genome harbors ~ 1000 OR genes and pseudogenes; however, different gene duplication/deletion events have occurred in each species, resulting in complex orthology relationships. While the human OR nomenclature is widely accepted and based on phylogenetic classification into 18 families and further into subfamilies, for other mammals different and multiple nomenclature systems are currently in use, thus concealing important evolutionary and functional insights. RESULTS Here, we describe the Mutual Maximum Similarity (MMS) algorithm, a systematic classifier for assigning a human-centric nomenclature to any OR gene based on inter-species hierarchical pairwise similarities. MMS was applied to the OR repertoires of seven mammals and zebrafish. Altogether, we assigned symbols to 10,249 ORs. This nomenclature is supported by both phylogenetic and synteny analyses. The availability of a unified nomenclature provides a framework for diverse studies, where textual symbol comparison allows immediate identification of potential ortholog groups as well as species-specific expansions/deletions; for example, Or52e5 and Or52e5b represent a rat-specific duplication of OR52E5. Another example is the complete absence of OR subfamily OR6Z among primate OR symbols. In other mammals, OR6Z members are located in one genomic cluster, suggesting a large deletion in the great ape lineage. An additional 14 mammalian OR subfamilies are missing from the primate genomes. While in chimpanzee 87% of the symbols were identical to human symbols, this number decreased to ~ 50% in dog and cow and to ~ 30% in rodents, reflecting the adaptive changes of the OR gene superfamily across diverse ecological niches. Application of the proposed nomenclature to zebrafish revealed similarity to mammalian ORs that could not be detected from the current zebrafish olfactory receptor gene nomenclature. CONCLUSIONS We have consolidated a unified standard nomenclature system for the vertebrate OR superfamily. The new nomenclature system will be applied to cow, horse, dog and chimpanzee by the Vertebrate Gene Nomenclature Committee and its implementation is currently under consideration by other relevant species-specific nomenclature committees.
Collapse
Affiliation(s)
- Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Tamsin E M Jones
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Elspeth Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.,Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel
| |
Collapse
|
21
|
Cowley AW, Dwinell MR. Chromosomal Substitution Strategies to Localize Genomic Regions Related to Complex Traits. Compr Physiol 2020; 10:365-388. [PMID: 32163204 DOI: 10.1002/cphy.c180029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromosomal substitution strategies provide a powerful tool to anonymously reveal the relationship between DNA sequence variants and a normal or disease phenotype of interest. Even in this age of CRISPR-Cas9 genome engineering, the knockdown or overexpression of a gene provides relevant information to our understanding of complex disease only when a close association of an allelic variant with the phenotype has first been established. Limitations of genetic linkage approaches led to the development of more efficient breeding strategies to substitute chromosomal segments from one animal strain into the genetic background of a different strain, enabling a direct comparison of the phenotypes of the strains with variant(s) that differ only at a defined locus. This substitution can be a whole chromosome (consomic), a part of a chromosome (congenic), or as small as only a single or several alleles (subcongenics). In contrast to complete knockout of a specific candidate gene of interest, which simply studies the effects of complete elimination of the gene, the substitution of naturally occurring variants can provide special insights into the functional actions of wild-type alleles. Strategies for production of these inbred strains are reviewed, and a number of examples are used to illustrate the utility of these model systems. Consomic/congenic strains provide a number of experimental advantages in the study of functions of genes and their variants, which are emphasized in this article, such as replication of experimental studies; determination of temporal relationships throughout a life; rigorously controlled experiments in which relations between genotype and phenotype can be tested with the confounding effects of heterogeneous genetic backgrounds, both targeted and multilayered; and "omic" studies performed at many levels of functionality, from molecules to organelles, cells to organs, and organs to organismal behavior across the life span. The application of chromosomal substitution strategies and development of consomic/congenic rat and mouse strains have greatly expanded our knowledge of genomic variants and their phenotypic relationship to physiological functions and to complex diseases such as hypertension and cancer. © 2020 American Physiological Society. Compr Physiol 10:365-388, 2020.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
22
|
A bioinformatics workflow for the evaluation of RT-qPCR primer specificity: Application for the assessment of gene expression data reliability in toxicological studies. Regul Toxicol Pharmacol 2020; 111:104575. [PMID: 31945455 DOI: 10.1016/j.yrtph.2020.104575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
The reliability of Reverse Transcription quantitative real-time PCR (RT-qPCR) gene expression data depends on proper primer design and RNA quality controls. Despite freely available genomic databases and bioinformatics tools, primer design deficiencies can be found across life science publications. In order to assess the prevalence of such deficiencies in the toxicological literature, 504 primer sets extracted from a random selection of 70 recent rat toxicological studies were evaluated. The specificity of each primer set was systematically analysed using a bioinformatics workflow developed from publicly available resources (NCBI Primer BLAST, in silico PCR in UCSC genome browser, Ensembl DNA database). Potential mismatches (9%), cross-matches (13.5%), co-amplification of multiple gene splice variants (9%) and sub-optimal amplicon sizes (25%) were identified for a significant proportion of the primer sets assessed in silico. Quality controls for gDNA contamination of RNA samples were infrequently reported in the surveyed manuscripts. Hence, the impacts of gDNA contamination on RT-qPCR data were further investigated, revealing that lowly expressed genes presented higher susceptibility to contaminating gDNA. In addition to the retrospective identification of potential primer design issues presented in this study, the described bioinformatics workflow can also be used prospectively to select candidate primer sets for experimental validation.
Collapse
|
23
|
Medical Management and Diagnostic Approaches. THE LABORATORY RAT 2020. [PMCID: PMC7153319 DOI: 10.1016/b978-0-12-814338-4.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This chapter reviews the basic principles of medical management of rat colonies and diagnostic approaches to detect infectious diseases of rats. As is the case with all other species, rats are susceptible to a variety of injuries and diseases that can cause distress, morbidity, or mortality. Any facility that houses rats must develop monitoring programs designed to rapidly identify health-related problems so they can be communicated to appropriate veterinary or animal care personnel to be resolved. These programs generally consist of multiple components, some of which are directed toward individual animals and others that assess the health status of rat populations as a whole. Topics include individual animal monitoring and care, signs of illness and distress, colony health management, components of microbiological monitoring programs, including agents commonly targeted and sentinel programs, quarantine, biological material screening, diagnostic testing methodologies, including culture, serology, molecular diagnostic and histopathology, test profiles and interpretation, management of disease outbreaks, and treatment and prevention strategies for infectious agents.
Collapse
|
24
|
Efficient derivation of knock-out and knock-in rats using embryos obtained by in vitro fertilization. Sci Rep 2019; 9:11571. [PMID: 31399630 PMCID: PMC6689013 DOI: 10.1038/s41598-019-47964-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/27/2019] [Indexed: 01/06/2023] Open
Abstract
Rats are effective model animals and have contributed to the development of human medicine and basic research. However, the application of reproductive engineering techniques to rats is not as advanced compared with mice, and genome editing in rats has not been achieved using embryos obtained by in vitro fertilization (IVF). In this study, we conducted superovulation, IVF, and knock out and knock in using IVF rat embryos. We found that superovulation effectively occurred in the synchronized oestrus cycle and with anti-inhibin antiserum treatment in immature rats, including the Brown Norway rat, which is a very difficult rat strain to superovulate. Next, we collected superovulated oocytes under anaesthesia, and offspring derived from IVF embryos were obtained from all of the rat strains that we examined. When the tyrosinase gene was targeted by electroporation in these embryos, both alleles were disrupted with 100% efficiency. Furthermore, we conducted long DNA fragment knock in using adeno-associated virus and found that the knock-in litter was obtained with high efficiency (33.3–47.4%). Thus, in this study, we developed methods to allow the simple and efficient production of model rats.
Collapse
|
25
|
Nishiofuku H, Cortes AC, Ensor JE, Minhaj AA, Polak U, Lopez MS, Kiefer R, Hunt SJ, Kichikawa K, Hicks ME, Gade TP, Avritscher R. Factors impacting technical success rate of image-guided intra-arterial therapy in rat orthotopic liver tumor model. Am J Transl Res 2019; 11:3761-3770. [PMID: 31312386 PMCID: PMC6614632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/20/2019] [Indexed: 06/10/2023]
Abstract
Transcatheter hepatic arterial chemoembolization (TACE) is the current standard of care for intermediate stage hepatocellular carcinoma (HCC) patients. To study the effects of TACE in the tumor immune microenvironment, an immunocompetent rat model is required. The purpose of this study was to determine factors influencing technical success during hepatic arterial catheterization in immunocompetent orthotopic rat liver models. To this end, 91 Sprague-Dawley and eighty-three F344 rats underwent transcatheter hepatic arterial embolization using a transcarotid approach and were divided into a non-tumor-bearing (n = 41) and tumor-bearing (n = 133) groups. Vascular diameters of the hepatic arterial branches were evaluated from angiographic images. Catheterization of the proper hepatic artery (PHA) was achieved in 92% of the tumor-bearing and 68.3% of the non-tumor-bearing rats. We found a strong positive association between the diameter of the PHA and animals' body weight in both groups (P < 0.005), independently of the rat's strain. Results of the logistic regression model predicting a successful catheter placement into the PHA according to the animal's weight indicate that successful PHA catheterization is likely to be achieved in tumor-bearing animals weighing ≥ 250 g and > 308 g in non-tumor-bearing rats, with a sensitivity and specificity of 91.3% and 100.0% and 96.4% and 92.3%, respectively. In conclusion, animal's body weight at the time of catheterization is the principal determinant of technical success for transcatheter arterial embolization. Familiarity with these technical factors during animal selection will improve TACE technical success rates.
Collapse
Affiliation(s)
- Hideyuki Nishiofuku
- Department of Radiology, Nara Medical University840 Shijo-cho, Kashihara 634-8522, Japan
| | - Andrea C Cortes
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Joe E Ensor
- Houston Methodist Cancer Center, Houston Methodist Research InstituteHouston 77030, Texas, USA
| | - Adeeb A Minhaj
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Urszula Polak
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Mirtha S Lopez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Ryan Kiefer
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, Pennsylvania, USA
| | - Stephen J Hunt
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, Pennsylvania, USA
| | - Kimihiko Kichikawa
- Department of Radiology, Nara Medical University840 Shijo-cho, Kashihara 634-8522, Japan
| | - Marshall E Hicks
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Terence P Gade
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, Pennsylvania, USA
| | - Rony Avritscher
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| |
Collapse
|
26
|
Abstract
The laboratory rat, Rattus norvegicus, has been used in biomedical research for more than 150 years, and in many cases remains the model of choice for studies of physiology, behavior, and complex human disease. This book provides detailed information on a number of methodologies that can be used in rat. This chapter gives an introduction to rat as a species and as a biomedical model, providing historical information, a brief introduction to the current state of rat research, and a perspective on the future of rat as a model for human disease.
Collapse
Affiliation(s)
- Jennifer R Smith
- Department of Biomedical Engineering, Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Elizabeth R Bolton
- Department of Biomedical Engineering, Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melinda R Dwinell
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
27
|
Foley JF, Phadke DP, Hardy O, Hardy S, Miller V, Madan A, Howard K, Kruse K, Lord C, Ramaiahgari S, Solomon GG, Shah RR, Pandiri AR, Herbert RA, Sills RC, Merrick BA. Whole exome sequencing in the rat. BMC Genomics 2018; 19:487. [PMID: 29925311 PMCID: PMC6011395 DOI: 10.1186/s12864-018-4858-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The rat genome was sequenced in 2004 with the aim to improve human health altered by disease and environmental influences through gene discovery and animal model validation. Here, we report development and testing of a probe set for whole exome sequencing (WES) to detect sequence variants in exons and UTRs of the rat genome. Using an in-silico approach, we designed probes targeting the rat exome and compared captured mutations in cancer-related genes from four chemically induced rat tumor cell lines (C6, FAT7, DSL-6A/C1, NBTII) to validated cancer genes in the human database, Catalogue of Somatic Mutations in Cancer (COSMIC) as well as normal rat DNA. Paired, fresh frozen (FF) and formalin-fixed, paraffin-embedded (FFPE) liver tissue from naive rats were sequenced to confirm known dbSNP variants and identify any additional variants. RESULTS Informatics analysis of available gene annotation from rat RGSC6.0/rn6 RefSeq and Ensembl transcripts provided 223,636 unique exons representing a total of 26,365 unique genes and untranslated regions. Using this annotation and the Rn6 reference genome, an in-silico probe design generated 826,878 probe sequences of which 94.2% were uniquely aligned to the rat genome without mismatches. Further informatics analysis revealed 25,249 genes (95.8%) covered by at least one probe and 23,603 genes (93.5%) had every exon covered by one or more probes. We report high performance metrics from exome sequencing of our probe set and Sanger validation of annotated, highly relevant, cancer gene mutations as cataloged in the human COSMIC database, in addition to several exonic variants in cancer-related genes. CONCLUSIONS An in-silico probe set was designed to enrich the rat exome from isolated DNA. The platform was tested on rat tumor cell lines and normal FF and FFPE liver tissue. The method effectively captured target exome regions in the test DNA samples with exceptional sensitivity and specificity to obtain reliable sequencing data representing variants that are likely chemically induced somatic mutations. Genomic discovery conducted by means of high throughput WES queries should benefit investigators in discovering rat genomic variants in disease etiology and in furthering human translational research.
Collapse
Affiliation(s)
- Julie F. Foley
- Biomolecular Screening Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. Research Triangle Park, Durham, NC USA
| | | | - Owen Hardy
- Agilent Technologies, Santa Clara, CA USA
| | - Sara Hardy
- Agilent Technologies, Santa Clara, CA USA
| | | | - Anup Madan
- Covance Genomics Laboratory, Redmond, WA USA
| | | | | | - Cara Lord
- Covance Genomics Laboratory, Redmond, WA USA
| | - Sreenivasa Ramaiahgari
- Biomolecular Screening Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. Research Triangle Park, Durham, NC USA
| | - Gregory G. Solomon
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC USA
| | | | - Arun R. Pandiri
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC USA
| | - Ronald A. Herbert
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC USA
| | - Robert C. Sills
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC USA
| | - B. Alex Merrick
- Biomolecular Screening Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. Research Triangle Park, Durham, NC USA
| |
Collapse
|
28
|
Krupková M, Liška F, Kazdová L, Šedová L, Kábelová A, Křenová D, Křen V, Šeda O. Single-Gene Congenic Strain Reveals the Effect of Zbtb16 on Dexamethasone-Induced Insulin Resistance. Front Endocrinol (Lausanne) 2018; 9:185. [PMID: 29731739 PMCID: PMC5919955 DOI: 10.3389/fendo.2018.00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/05/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCs) are potent therapeutic agents frequently used for treatment of number of conditions, including hematologic, inflammatory, and allergic diseases. Both their therapeutic and adverse effects display significant interindividual variation, partially attributable to genetic factors. We have previously isolated a seven-gene region of rat chromosome 8 sensitizing to dexamethasone (DEX)-induced dyslipidemia and insulin resistance (IR) of skeletal muscle. Using two newly derived congenic strains, we aimed to investigate the effect of one of the prime candidates for this pharmacogenetic interaction, the Zbtb16 gene. METHODS Adult male rats of SHR-Lx.PD5PD-Zbtb16 (n = 9) and SHR-Lx.PD5SHR-Zbtb16 (n = 8) were fed standard diet (STD) and subsequently treated with DEX in drinking water (2.6 µg/ml) for 3 days. The morphometric and metabolic profiles of both strains including oral glucose tolerance test, triacylglycerols (TGs), free fatty acids, insulin, and C-reactive protein levels were assessed before and after the DEX treatment. Insulin sensitivity of skeletal muscle and visceral adipose tissue was determined by incorporation of radioactively labeled glucose. RESULTS The differential segment of SHR-Lx.PD5SHR-Zbtb16 rat strain spans 563 kb and contains six genes: Htr3a, Htr3b, Usp28, Zw10, Tmprss5, and part of Drd2. The SHR-Lx.PD5PD-Zbtb16 minimal congenic strain contains only Zbtb16 gene on SHR genomic background and its differential segment spans 254 kb. Total body weight was significantly increased in SHR-Lx.PD5PD-Zbtb16 strain compared with SHR-Lx.PD5SHR-Zbtb16 , however, no differences in the weights of adipose tissue depots were observed. While STD-fed rats of both strains did not show major differences in their metabolic profiles, after DEX treatment the SHR-Lx.PD5PD-Zbtb16 congenic strain showed increased levels of TGs, glucose, and blunted inhibition of lipolysis by insulin. Both basal and insulin-stimulated incorporation of radioactively labeled glucose into skeletal muscle glycogen were significantly reduced in SHR-Lx.PD5PD-Zbtb16 strain, but the insulin sensitivity of adipose tissue was comparable between the two strains. CONCLUSION The metabolic disturbances including impaired glucose tolerance, dyslipidemia, and IR of skeletal muscle observed after DEX treatment in the congenic SHR-Lx.PD5PD-Zbtb16 reveal the Zbtb16 locus as a possible sensitizing factor for side effects of GC therapy.
Collapse
Affiliation(s)
- Michaela Krupková
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
| | - František Liška
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
| | - Ludmila Kazdová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Lucie Šedová
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
- Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vestec, Prague, Czechia
| | - Adéla Kábelová
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
| | - Drahomíra Křenová
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
| | - Vladimír Křen
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
| | - Ondřej Šeda
- The First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, The General Teaching Hospital, Prague, Czechia
- *Correspondence: Ondřej Šeda,
| |
Collapse
|
29
|
Zeiss CJ, Johnson LK. Bridging the Gap between Reproducibility and Translation: Data Resources and Approaches. ILAR J 2017; 58:1-3. [PMID: 28586416 DOI: 10.1093/ilar/ilx017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 12/21/2022] Open
Abstract
Animal research has constituted a fundamental means to achieve groundbreaking therapies for human disease. However, for complex diseases, promising preclinical results have failed to translate to the clinic. Reasons for this disparity are multifactorial. These include the challenges inherent in modeling complex disease in animals, as well issues of study design, reproducibility and operational norms within the biomedical research enterprise. In this issue, we explore the range of information resources available for the comparative study of disease, as well as challenges to the ultimate translation of preclinical findings. Genomics resources in support of translational research are described for zebrafish, mice, rats and non-human primates. The utility of transcriptomics to explore the temporal basis of lesion development in toxicologic pathology is reviewed. Integration of the ever-increasing volume of text-based and bioinformatics data is a significant challenge, and in this issue, informatics resources and general text mining methodologies to explore and aggregate text data are described. Finally, factors contributing to both reproducibility and translatability are examined. Guidelines designed to address reproducibility are essential to improving individual studies. To this end, a viewpoint from the National Institutes of Health on measures needed to enhance rigor and reproducibility is given, as well as an overview of the role of the Institutional Animal Care and Use Committee in this regard. The challenge of improving generalizability of animal experiments so that their findings can be more frequently extended to the intended human population remains. Reasons why models that replicate key aspects of human disease fail to be predictive in humans are explored in two fields in which translation has been a challenge: sepsis and neurodegeneration.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Yale University School of Medicine, New Haven, Connecticut. University of Colorado, Anschutz Medical Campus in Aurora, Colorado
| | - Linda K Johnson
- Yale University School of Medicine, New Haven, Connecticut. University of Colorado, Anschutz Medical Campus in Aurora, Colorado
| |
Collapse
|