1
|
Takahashi H, Hanaoka K, Wada H, Kojima D, Watanabe M. The Current Status of T Cell Receptor (TCR) Repertoire Analysis in Colorectal Cancer. Int J Mol Sci 2025; 26:2698. [PMID: 40141338 PMCID: PMC11943327 DOI: 10.3390/ijms26062698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The rapid increase in colorectal cancer (CRC) cases recently has highlighted the need to use predictive biomarkers to guide therapeutic approaches. Current studies have focused on the tumor-infiltrating lymphocytes present in the tumor microenvironment (TME), in which cytotoxic T cell activation and the amount are associated with CRC patient prognosis. The T cell receptor (TCR) is essential for antigen recognition and T cell identification, playing a central role in cancer immunotherapy. The T cell status reflects TCR diversity or clonality, known as the TCR repertoire. Accordingly, analyzing the TCR repertoire dynamics may help predict the immunological circumstances of the TME in a timely way. In this review, we summarize the TCR repertoire-related knowledge, including its potential use as predictive biomarkers in CRC. The intratumoral TCR repertoire is restricted in CRC patients compared with healthy individuals, as well as in peripheral blood. Patients with deficient mismatch repair display more restriction than those with proficient mismatch repair. Importantly, a higher TCR diversity before treatment and a decrease following treatment may indicate a good response and a better clinical outcome in CRC patients. The future use of TCR repertoire sequencing technology combined with artificial intelligence-based analysis is a potential strategy for CRC therapeutic decision making.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Surgery, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino 818-8502, Fukuoka, Japan; (K.H.); (H.W.); (D.K.); (M.W.)
| | | | | | | | | |
Collapse
|
2
|
Singhaviranon S, Dempsey JP, Hagymasi AT, Mandoiu II, Srivastava PK. Low-avidity T cells drive endogenous tumor immunity in mice and humans. Nat Immunol 2025; 26:240-251. [PMID: 39789375 PMCID: PMC11785530 DOI: 10.1038/s41590-024-02044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
T cells recognize neoepitope peptide-major histocompatibility complex class I on cancer cells. The strength (or avidity) of the T cell receptor-peptide-major histocompatibility complex class I interaction is a critical variable in immune control of cancers. Here, we analyze neoepitope-specific CD8 cells of distinct avidities and show that low-avidity T cells are the sole mediators of cancer control in mice and are solely responsive to checkpoint blockade in mice and humans. High-avidity T cells are ineffective and immune-suppressive. The mechanistic basis of these differences lies in the higher exhaustion status of high-avidity cells. High-avidity T cells have a distinct transcriptomic profile that is used here to calculate an 'avidity score', which we then use for in silico identification of low-avidity and high-avidity T cells in mice and humans. Surprisingly, CD8+ T cells with identical T cell receptors exhibit wide variation in avidities, suggesting an additional level of regulation of T cell activity. Aside from providing a better understanding of endogenous T cell responses to cancer, these findings might instruct future immunotherapy strategies.
Collapse
Affiliation(s)
- Summit Singhaviranon
- Department of Immunology and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Joseph P Dempsey
- Department of Immunology and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Adam T Hagymasi
- Department of Immunology and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ion I Mandoiu
- Department of Computer Science and Engineering, University of Connecticut Mansfield, CT, USA
| | - Pramod K Srivastava
- Department of Immunology and Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
3
|
Setsu G, Goto M, Ito K, Taira T, Miyamoto M, Watanabe T, Higuchi S. Pharmacological inhibition of HPK1 synergizes with PD-L1 blockade to provoke antitumor immunity against tumors with low antigenicity. Biochem Biophys Res Commun 2024; 715:149995. [PMID: 38685185 DOI: 10.1016/j.bbrc.2024.149995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Immune checkpoint inhibitors have significantly transformed the landscape of cancer therapy. Nevertheless, while these inhibitors are highly effective for certain patient groups, many do not benefit due to primary or acquired resistance. Specifically, these treatments often lack sufficient therapeutic efficacy against cancers with low antigenicity. Thus, the development of an effective strategy to overcome cancers with low antigenicity is imperative for advancing next-generation cancer immunotherapy. Here, we show that small molecule inhibitor of hematopoietic progenitor kinase 1 (HPK1) combined with programmed cell death ligand 1 (PD-L1) blockade can enhance T-cell response to tumor with low antigenicity. We found that treatment of OT-1 splenocytes with HPK1 inhibitor enhanced the activation of signaling molecules downstream of T-cell receptor provoked by low-affinity-antigen stimulation. Using an in vivo OT-1 T-cell transfer model, we demonstrated that combining the HPK1 inhibitor with the anti-PD-L1 antibody significantly suppressed the growth of tumors expressing low-affinity altered peptide ligand of chicken ovalbumin, while anti-PD-L1 antibody monotherapy was ineffective. Our findings offer crucial insights into the potential for overcoming tumors with low antigenicity by combining conventional immune checkpoint inhibitors with HPK1 inhibitor.
Collapse
|
4
|
Srivastava PK. Cancer neoepitopes viewed through negative selection and peripheral tolerance: a new path to cancer vaccines. J Clin Invest 2024; 134:e176740. [PMID: 38426497 PMCID: PMC10904052 DOI: 10.1172/jci176740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
A proportion of somatic mutations in tumors create neoepitopes that can prime T cell responses that target the MHC I-neoepitope complexes on tumor cells, mediating tumor control or rejection. Despite the compelling centrality of neoepitopes to cancer immunity, we know remarkably little about what constitutes a neoepitope that can mediate tumor control in vivo and what distinguishes such a neoepitope from the vast majority of similar candidate neoepitopes that are inefficacious in vivo. Studies in mice as well as clinical trials have begun to reveal the unexpected paradoxes in this area. Because cancer neoepitopes straddle that ambiguous ground between self and non-self, some rules that are fundamental to immunology of frankly non-self antigens, such as viral or model antigens, do not appear to apply to neoepitopes. Because neoepitopes are so similar to self-epitopes, with only small changes that render them non-self, immune response to them is regulated at least partially the way immune response to self is regulated. Therefore, neoepitopes are viewed and understood here through the clarifying lens of negative thymic selection. Here, the emergent questions in the biology and clinical applications of neoepitopes are discussed critically and a mechanistic and testable framework that explains the complexity and translational potential of these wonderful antigens is proposed.
Collapse
|
5
|
Kureshi R, Bello E, Kureshi CT, Walsh MJ, Lippert V, Hoffman MT, Dougan M, Longmire T, Wichroski M, Dougan SK. DGKα/ζ inhibition lowers the TCR affinity threshold and potentiates antitumor immunity. SCIENCE ADVANCES 2023; 9:eadk1853. [PMID: 38000024 PMCID: PMC10672170 DOI: 10.1126/sciadv.adk1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023]
Abstract
Diacylglycerol kinases (DGKs) attenuate diacylglycerol (DAG) signaling by converting DAG to phosphatidic acid, thereby suppressing pathways downstream of T cell receptor signaling. Using a dual DGKα/ζ inhibitor (DGKi), tumor-specific CD8 T cells with different affinities (TRP1high and TRP1low), and altered peptide ligands, we demonstrate that inhibition of DGKα/ζ can lower the signaling threshold for T cell priming. TRP1high and TRP1low CD8 T cells produced more effector cytokines in the presence of cognate antigen and DGKi. Effector TRP1high- and TRP1low-mediated cytolysis of tumor cells with low antigen load required antigen recognition, was mediated by interferon-γ, and augmented by DGKi. Adoptive T cell transfer into mice bearing pancreatic or melanoma tumors synergized with single-agent DGKi or DGKi and antiprogrammed cell death protein 1 (PD-1), with increased expansion of low-affinity T cells and increased cytokine production observed in tumors of treated mice. Collectively, our findings highlight DGKα/ζ as therapeutic targets for augmenting tumor-specific CD8 T cell function.
Collapse
Affiliation(s)
- Rakeeb Kureshi
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Courtney T.S. Kureshi
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael J. Walsh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Victoria Lippert
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Megan T. Hoffman
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Dougan
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Stephanie K. Dougan
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
6
|
Qiang L, Hoffman MT, Ali LR, Castillo JI, Kageler L, Temesgen A, Lenehan P, Wang SJ, Bello E, Cardot-Ruffino V, Uribe GA, Yang A, Dougan M, Aguirre AJ, Raghavan S, Pelletier M, Cremasco V, Dougan SK. Transforming Growth Factor-β Blockade in Pancreatic Cancer Enhances Sensitivity to Combination Chemotherapy. Gastroenterology 2023; 165:874-890.e10. [PMID: 37263309 PMCID: PMC10526623 DOI: 10.1053/j.gastro.2023.05.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/30/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS Transforming growth factor-b (TGFb) plays pleiotropic roles in pancreatic cancer, including promoting metastasis, attenuating CD8 T-cell activation, and enhancing myofibroblast differentiation and deposition of extracellular matrix. However, single-agent TGFb inhibition has shown limited efficacy against pancreatic cancer in mice or humans. METHODS We evaluated the TGFβ-blocking antibody NIS793 in combination with gemcitabine/nanoparticle (albumin-bound)-paclitaxel or FOLFIRINOX (folinic acid [FOL], 5-fluorouracil [F], irinotecan [IRI] and oxaliplatin [OX]) in orthotopic pancreatic cancer models. Single-cell RNA sequencing and immunofluorescence were used to evaluate changes in tumor cell state and the tumor microenvironment. RESULTS Blockade of TGFβ with chemotherapy reduced tumor burden in poorly immunogenic pancreatic cancer, without affecting the metastatic rate of cancer cells. Efficacy of combination therapy was not dependent on CD8 T cells, because response to TGFβ blockade was preserved in CD8-depleted or recombination activating gene 2 (RAG2-/-) mice. TGFβ blockade decreased total α-smooth muscle actin-positive fibroblasts but had minimal effect on fibroblast heterogeneity. Bulk RNA sequencing on tumor cells sorted ex vivo revealed that tumor cells treated with TGFβ blockade adopted a classical lineage consistent with enhanced chemosensitivity, and immunofluorescence for cleaved caspase 3 confirmed that TGFβ blockade increased chemotherapy-induced cell death in vivo. CONCLUSIONS TGFβ regulates pancreatic cancer cell plasticity between classical and basal cell states. TGFβ blockade in orthotropic models of pancreatic cancer enhances sensitivity to chemotherapy by promoting a classical malignant cell state. This study provides scientific rationale for evaluation of NIS793 with FOLFIRINOX or gemcitabine/nanoparticle (albumin-bound) paclitaxel chemotherapy backbone in the clinical setting and supports the concept of manipulating cancer cell plasticity to increase the efficacy of combination therapy regimens.
Collapse
Affiliation(s)
- Li Qiang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Megan T Hoffman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Lestat R Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jaime I Castillo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lauren Kageler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Ayantu Temesgen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Patrick Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - S Jennifer Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Giselle A Uribe
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Annan Yang
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Andrew J Aguirre
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Srivatsan Raghavan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Marc Pelletier
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | - Viviana Cremasco
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
7
|
Sugiyarto G, Lau D, Hill SL, Arcia-Anaya D, Boulanger DSM, Parkes EE, James E, Elliott T. Reactivation of low avidity tumor-specific CD8 + T cells associates with immunotherapeutic efficacy of anti-PD-1. J Immunother Cancer 2023; 11:e007114. [PMID: 37586767 PMCID: PMC10432680 DOI: 10.1136/jitc-2023-007114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND CD8+ T cells are a highly diverse population of cells with distinct phenotypic functions that can influence immunotherapy outcomes. Further insights on the roles of CD8+ specificities and TCR avidity of naturally arising tumor-specific T cells, where both high and low avidity T cells recognizing the same peptide-major histocompatibility complex (pMHC) coexist in the same tumor, are crucial for understanding T cell exhaustion and resistance to PD-1 immunotherapy. METHODS CT26 models were treated with anti-PD-1 on days 3, 6 and 9 following subcutaneous tumor implantation generating variable responses during early tumor development. Tetramer staining was performed to determine the frequency and avidity of CD8+ T cells targeting the tumor-specific epitope GSW11 and confirmed with tetramer competition assays. Functional characterization of high and low avidity GSW11-specific CD8+ T cells was conducted using flow cytometry and bulk RNA-seq. In vitro cytotoxicity assays and in vivo adoptive transfer experiments were performed to determine the cytotoxicity of high and low avidity populations. RESULTS Treatment success with anti-PD-1 was associated with the preferential expansion of low avidity (Tetlo) GSW11-specific CD8+ T cells with Vβ TCR expressing clonotypes. High avidity T cells (Tethi), if present, were only found in progressing PD-1 refractory tumors. Tetlo demonstrated precursor exhausted or progenitor T cell phenotypes marked by higher expression of Tcf-1 and T-bet, and lower expression of the exhaustion markers CD39, PD-1 and Eomes compared with Tethi, whereas Tethi cells were terminally exhausted. Transcriptomics analyses showed pathways related to TCR signaling, cytotoxicity and oxidative phosphorylation were significantly enriched in Tetlo found in both regressing and progressing tumors compared with Tethi, whereas genes related to DNA damage, apoptosis and autophagy were downregulated. In vitro studies showed that Tetlo exhibits higher cytotoxicity than Tethi. Adoptive transfer of Tetlo showed more effective tumor control than Tethi, and curative responses were achieved when Tetlo was combined with two doses of anti-PD-1. CONCLUSIONS Targeting subdominant T cell responses with lower avidity against pMHC affinity neoepitopes showed potential for improving PD-1 immunotherapy. Future interventions may consider expanding low avidity populations via vaccination or adoptive transfer.
Collapse
Affiliation(s)
- Gessa Sugiyarto
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Doreen Lau
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Samuel Luke Hill
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David Arcia-Anaya
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Denise S M Boulanger
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Eileen E Parkes
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
| | - Edward James
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Tim Elliott
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|