1
|
Nardini E, Keumatio Doungstop BC, Gerpe-Amor T, de Haas AM, de Kok M, Peterse E, Kalay H, Li RJE, Chiodo F, Silipo A, Voorberg J, van Kooyk Y. Rational design of FVIII sialylated peptides to target Siglec-3 and Siglec-9 and improve peptide formulations for reverse vaccines. Front Bioeng Biotechnol 2025; 13:1558627. [PMID: 40276034 PMCID: PMC12018916 DOI: 10.3389/fbioe.2025.1558627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Reverse vaccine formulations have shown their potential for the treatment of allergies and other autoimmune diseases by the design of antigens that modify dendritic cell function towards tolerogenic responses. We here demonstrate that modification of an immunodominant peptide from factor VIII (FVIII) with a tolerizing molecule, sialic acid, improves existing peptide formulations towards the induction of tolerogenic cytokine secretion by DCs. Sialic acids are the end-standing moiety of mammalian N- and O- glycans, which are naturally recognized as self-associated molecular pattern. In this paper we show that sialic acid modified FVIII peptides target Siglec-3 and -9 on DCs and increase IL-10 secretion. Our work proposes a method to select, synthetize and test sialylated immunodominant peptides with the aim of ameliorating the efficacy of peptide immunotherapy. Based on our results, we propose that the sialylated FVIII peptide designed in this study may be useful for re-establishing tolerance to FVIII in hemophilia A patients who developed neutralizing antibodies following treatment.
Collapse
Affiliation(s)
- Eleonora Nardini
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Amsterdam, Netherlands
- Amsterdam institute for Immunology and Infectious diseases, Immunology, Amsterdam, Netherlands
| | - Brigitte-Carole Keumatio Doungstop
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Amsterdam, Netherlands
- Amsterdam institute for Immunology and Infectious diseases, Immunology, Amsterdam, Netherlands
| | - Tania Gerpe-Amor
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Aram M. de Haas
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Amsterdam, Netherlands
- Amsterdam institute for Immunology and Infectious diseases, Immunology, Amsterdam, Netherlands
| | - Mike de Kok
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Amsterdam, Netherlands
| | - Evert Peterse
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Amsterdam, Netherlands
- DC4U Technologies, Abcoude, Netherlands
| | - Hakan Kalay
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Amsterdam, Netherlands
| | | | - Fabrizio Chiodo
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Amsterdam, Netherlands
- Amsterdam institute for Immunology and Infectious diseases, Immunology, Amsterdam, Netherlands
- Institute of Biomolecular Chemistry, National Research Council (CNR), Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences and Task Force for Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Amsterdam, Netherlands
- Amsterdam institute for Immunology and Infectious diseases, Immunology, Amsterdam, Netherlands
- DC4U Technologies, Abcoude, Netherlands
| |
Collapse
|
2
|
Mantuano NR, Läubli H. Sialic acid and Siglec receptors in tumor immunity and immunotherapy. Semin Immunol 2024; 74-75:101893. [PMID: 39427573 DOI: 10.1016/j.smim.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Immunotherapy, including immune checkpoint inhibition, has transformed cancer therapy in recent years, providing new and potentially curative options for patients with even advanced disease. However, only a minority of patients achieve long-lasting remissions, and resistance to immune checkpoint inhibition is common. Recently, the sialic acid-Siglec axis has been proposed as a new immune checkpoint that could overcome resistance to current immunotherapy options. In this review, we summarize the current preclinical knowledge about the role of the sialic acid-Siglec interaction in immune suppression in cancer and discuss potential approaches to block this inhibitory pathway to enhance anti-cancer immunity.
Collapse
Affiliation(s)
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Switzerland; Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
3
|
Jame-Chenarboo Z, Gray TE, Macauley MS. Advances in understanding and exploiting Siglec-glycan interactions. Curr Opin Chem Biol 2024; 80:102454. [PMID: 38631213 DOI: 10.1016/j.cbpa.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Sialic-acid-binding immunoglobulin-type lectins (Siglecs) are a family of cell-surface immunomodulatory receptors that recognize sialic-acid-containing glycans. The majority of Siglecs have an inhibitory motif in their intercellular domain and can regulate the cellular activation of immune cells. Importantly, the immunomodulatory role of Siglecs is regulated by engagement with distinct sialoglycan ligands. However, there are still many unanswered questions about the precise ligand(s) recognized by individual Siglec family members. New tools and approaches to study Siglec-ligand interactions are rapidly filling this knowledge gap. This review provides an overview of recent advances in discovering Siglec ligands as well as the development of approaches to modulate the function of Siglecs. In both aspects, chemical biology approaches are emphasized with a discussion on how these are complementing biochemical and genetic strategies.
Collapse
Affiliation(s)
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Canada.
| |
Collapse
|
4
|
Keisham S, Saito S, Kowashi S, Tateno H. Droplet-Based Glycan and RNA Sequencing for Profiling the Distinct Cellular Glyco-States in Single Cells. SMALL METHODS 2024; 8:e2301338. [PMID: 38164999 DOI: 10.1002/smtd.202301338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Plate-based single-cell glycan and RNA sequencing (scGR-seq) is previously developed to realize the integrated analysis of glycome and transcriptome in single cells. However, the sample size is limited to only a few hundred cells. Here, a droplet-based scGR-seq is developed to address this issue by adopting a 10x Chromium platform to simultaneously profile ten thousand cells' glycome and transcriptome in single cells. To establish droplet-based scGR-seq, a comparative analysis of two distinct cell lines is performed: pancreatic ductal adenocarcinoma cells and normal pancreatic duct cells. Droplet-based scGR-seq revealed distinct glycan profiles between the two cell lines that showed a strong correlation with the results obtained by flow cytometry. Next, droplet-based scGR-seq is applied to a more complex sample: peripheral blood mononuclear cells (PBMC) containing various immune cells. The method can systematically map the glycan signature for each immune cell in PBMC as well as glycan alterations by cell lineage. Prediction of the association between the glycan expression and the gene expression using regression analysis ultimately leads to the identification of a glycan epitope that impacts cellular functions. In conclusion, the droplet-based scGR-seq realizes the high-throughput profiling of the distinct cellular glyco-states in single cells.
Collapse
Affiliation(s)
- Sunanda Keisham
- Cellular and Molecular Biotechnology Research Institute, Multicellular System Regulation Research Group, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-8566, Japan
| | - Sayoko Saito
- Cellular and Molecular Biotechnology Research Institute, Multicellular System Regulation Research Group, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Satori Kowashi
- Cellular and Molecular Biotechnology Research Institute, Multicellular System Regulation Research Group, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, Multicellular System Regulation Research Group, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-8566, Japan
| |
Collapse
|
5
|
Keumatio Doungtsop BC, Nardini E, Kalay H, Versteeg SA, Lübbers J, van Barneveld G, Li ER, van Vliet SJ, van Ree R, de Jong EC, van Kooyk Y. Sialic acid-modified der p 2 allergen exerts immunomodulatory effects on human PBMCs. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100193. [PMID: 38187864 PMCID: PMC10770723 DOI: 10.1016/j.jacig.2023.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024]
Abstract
Background House dust mite extract-based allergen immunotherapy (AIT) to treat house dust mite allergy is substantially effective but still presents some safety and efficacy concerns that warrant improvement. Several major allergen-based approaches to increase safety and efficacy of AIT have been proposed. One of them is the use of the group 2 allergen, Der p 2. Objective We sought to investigate the immunomodulatory effects of sialic acid-modified major allergen recombinant Der p 2 (sia-rDer p 2) on PBMCs from healthy volunteers. Methods We activated PBMCs with anti-CD3/CD28 antibodies and incubated them at 37°C for 6 days in the presence or absence of either native rDer p 2 or α2-3 sialic acid-modified rDer p 2 (sia-rDer p 2). We assessed the changes in CD4+ T-cell activation and proliferation by flow cytometry and changes in T-lymphocyte cytokine production in cell culture supernatant by ELISA. Results We observed that PBMCs treated with sia-rDer p 2 presented with a markedly decreased expression of CD69 and an increased abundance of LAG-3+ lymphocytes compared with cells treated with rDer p 2. Moreover, PBMCs treated with sia-rDer p 2 showed a reduced production of IL-4, IL-13, and IL-5 and displayed a higher IL-10/IL-5 ratio compared with rDer p 2-treated PBMCs. Conclusions We demonstrate that sia-rDer p 2 might be a safer option than native rDer p 2 for Der p 2-specific AIT. This is most relevant in the early phase of AIT that is often characterized by heightened TH2 responses, because sia-rDer p 2 does not enhance the production of TH2 cytokines.
Collapse
Affiliation(s)
- Brigitte-Carole Keumatio Doungtsop
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Inflammatory Diseases Research Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Eleonora Nardini
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Inflammatory Diseases Research Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Inflammatory Diseases Research Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Serge A. Versteeg
- Inflammatory Diseases Research Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Joyce Lübbers
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gaby van Barneveld
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eveline R.J. Li
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Inflammatory Diseases Research Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- DC4U Technologies, Abcoude, The Netherlands
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Inflammatory Diseases Research Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Ronald van Ree
- Inflammatory Diseases Research Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC location Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Esther C. de Jong
- Inflammatory Diseases Research Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC location Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Inflammatory Diseases Research Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- DC4U Technologies, Abcoude, The Netherlands
| |
Collapse
|
6
|
Egan H, Treacy O, Lynch K, Leonard NA, O'Malley G, Reidy E, O'Neill A, Corry SM, De Veirman K, Vanderkerken K, Egan LJ, Ritter T, Hogan AM, Redmond K, Peng L, Che J, Gatlin W, Jayaraman P, Sheehan M, Canney A, Hynes SO, Kerr EM, Dunne PD, O'Dwyer ME, Ryan AE. Targeting stromal cell sialylation reverses T cell-mediated immunosuppression in the tumor microenvironment. Cell Rep 2023; 42:112475. [PMID: 37167967 DOI: 10.1016/j.celrep.2023.112475] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Immunosuppressive tumor microenvironments (TMEs) reduce the effectiveness of immune responses in cancer. Mesenchymal stromal cells (MSCs), precursors to cancer-associated fibroblasts (CAFs), promote tumor progression by enhancing immune cell suppression in colorectal cancer (CRC). Hyper-sialylation of glycans promotes immune evasion in cancer through binding of sialic acids to their receptors, Siglecs, expressed on immune cells, which results in inhibition of effector functions. The role of sialylation in shaping MSC/CAF immunosuppression in the TME is not well characterized. In this study, we show that tumor-conditioned stromal cells have increased sialyltransferase expression, α2,3/6-linked sialic acid, and Siglec ligands. Tumor-conditioned stromal cells and CAFs induce exhausted immunomodulatory CD8+ PD1+ and CD8+ Siglec-7+/Siglec-9+ T cell phenotypes. In vivo, targeting stromal cell sialylation reverses stromal cell-mediated immunosuppression, as shown by infiltration of CD25 and granzyme B-expressing CD8+ T cells in the tumor and draining lymph node. Targeting stromal cell sialylation may overcome immunosuppression in the CRC TME.
Collapse
Affiliation(s)
- Hannah Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Niamh A Leonard
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aoise O'Neill
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Shania M Corry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Kim De Veirman
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence J Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aisling M Hogan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Department of Colorectal Surgery, Galway University Hospital, Galway, Ireland
| | - Keara Redmond
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Li Peng
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | - Jenny Che
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | | | | | - Margaret Sheehan
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aoife Canney
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Sean O Hynes
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland; Discipline of Pathology, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - Michael E O'Dwyer
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Blood Cancer Network of Ireland (BCNI), Galway, Ireland; Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
7
|
Ventre KS, Roehle K, Bello E, Bhuiyan AM, Biary T, Crowley SJ, Bruck PT, Heckler M, Lenehan PJ, Ali LR, Stump CT, Lippert V, Clancy-Thompson E, Conce Alberto WD, Hoffman MT, Qiang L, Pelletier M, Akin JJ, Dougan M, Dougan SK. cIAP1/2 Antagonism Induces Antigen-Specific T Cell-Dependent Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:991-1003. [PMID: 36881882 PMCID: PMC10036868 DOI: 10.4049/jimmunol.2200646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/24/2023] [Indexed: 03/09/2023]
Abstract
Checkpoint blockade immunotherapy has failed in pancreatic cancer and other poorly responsive tumor types in part due to inadequate T cell priming. Naive T cells can receive costimulation not only via CD28 but also through TNF superfamily receptors that signal via NF-κB. Antagonists of the ubiquitin ligases cellular inhibitor of apoptosis protein (cIAP)1/2, also called second mitochondria-derived activator of caspases (SMAC) mimetics, induce degradation of cIAP1/2 proteins, allowing for the accumulation of NIK and constitutive, ligand-independent activation of alternate NF-κB signaling that mimics costimulation in T cells. In tumor cells, cIAP1/2 antagonists can increase TNF production and TNF-mediated apoptosis; however, pancreatic cancer cells are resistant to cytokine-mediated apoptosis, even in the presence of cIAP1/2 antagonism. Dendritic cell activation is enhanced by cIAP1/2 antagonism in vitro, and intratumoral dendritic cells show higher expression of MHC class II in tumors from cIAP1/2 antagonism-treated mice. In this study, we use in vivo mouse models of syngeneic pancreatic cancer that generate endogenous T cell responses ranging from moderate to poor. Across multiple models, cIAP1/2 antagonism has pleiotropic beneficial effects on antitumor immunity, including direct effects on tumor-specific T cells leading to overall increased activation, increased control of tumor growth in vivo, synergy with multiple immunotherapy modalities, and immunologic memory. In contrast to checkpoint blockade, cIAP1/2 antagonism does not increase intratumoral T cell frequencies. Furthermore, we confirm our previous findings that even poorly immunogenic tumors with a paucity of T cells can experience T cell-dependent antitumor immunity, and we provide transcriptional clues into how these rare T cells coordinate downstream immune responses.
Collapse
Affiliation(s)
- Katherine S. Ventre
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Kevin Roehle
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
- Novartis Institute for Biomedical Research, Cambridge, MA
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Aladdin M. Bhuiyan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Tamara Biary
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Stephanie J. Crowley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Patrick T. Bruck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Max Heckler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Patrick J. Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Lestat R. Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Courtney T. Stump
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Victoria Lippert
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Eleanor Clancy-Thompson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Winiffer D. Conce Alberto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Megan T. Hoffman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Li Qiang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| | - Marc Pelletier
- Novartis Institute for Biomedical Research, Cambridge, MA
| | - James J. Akin
- Novartis Institute for Biomedical Research, Cambridge, MA
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Saini P, Adeniji OS, Abdel-Mohsen M. Inhibitory Siglec-sialic acid interactions in balancing immunological activation and tolerance during viral infections. EBioMedicine 2022; 86:104354. [PMID: 36371982 PMCID: PMC9663867 DOI: 10.1016/j.ebiom.2022.104354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
Abstract
Siglecs are a family of emerging glyco-immune checkpoints. Inhibiting them can enhance the functions of several types of immune cells, whereas engaging them can reduce hyper-inflammation and hyper-activation of immune functions. Siglec-sialoglycan interactions play an important role in modulating immunological functions during cancer, however, their roles in regulating immunological equilibrium during viral infections is less clear. In this review, we discuss the documented and potential roles of inhibitory Siglecs in balancing immune activation and tolerance during viral infections and consider how this balance could affect both the desired anti-viral immunological functions and the unwanted hyper- or chronic inflammation. Finally, we discuss the opportunities to target the Siglec immunological switches to reach an immunological balance during viral infections: inhibiting specific Siglec-sialoglycan interactions when maximum anti-viral immune responses are needed, or inducing other interactions when preventing excessive inflammation or reducing chronic immune activation are the goals.
Collapse
|
9
|
Radovani B, Gudelj I. N-Glycosylation and Inflammation; the Not-So-Sweet Relation. Front Immunol 2022; 13:893365. [PMID: 35833138 PMCID: PMC9272703 DOI: 10.3389/fimmu.2022.893365] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation is the main feature of many long-term inflammatory diseases such as autoimmune diseases, metabolic disorders, and cancer. There is a growing number of studies in which alterations of N-glycosylation have been observed in many pathophysiological conditions, yet studies of the underlying mechanisms that precede N-glycome changes are still sparse. Proinflammatory cytokines have been shown to alter the substrate synthesis pathways as well as the expression of glycosyltransferases required for the biosynthesis of N-glycans. The resulting N-glycosylation changes can further contribute to disease pathogenesis through modulation of various aspects of immune cell processes, including those relevant to pathogen recognition and fine-tuning the inflammatory response. This review summarizes our current knowledge of inflammation-induced N-glycosylation changes, with a particular focus on specific subsets of immune cells of innate and adaptive immunity and how these changes affect their effector functions, cell interactions, and signal transduction.
Collapse
Affiliation(s)
- Barbara Radovani
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
10
|
Markovska A, Schipper HS, Boes M. Harnessing immunometabolism for cardiovascular health and cancer therapy. IMMUNOTHERAPY ADVANCES 2021; 1:ltab021. [PMID: 35919737 PMCID: PMC9327100 DOI: 10.1093/immadv/ltab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Affiliation(s)
- Angela Markovska
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Henk S Schipper
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
- Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|