1
|
Avril A, Guillier S, Rasetti-Escargueil C. Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies. Microorganisms 2024; 12:2622. [PMID: 39770824 PMCID: PMC11677989 DOI: 10.3390/microorganisms12122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions. The Centers for Disease Control and Prevention (CDC) classify biological agents into three categories (A or Tier 1, B and C) according to the risk they pose to the public and national security. Category A or Tier 1 consists of the six pathogens with the highest risk to the population (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox and viral hemorrhagic fevers). Several medical countermeasures, such as vaccines, antibodies and chemical drugs, have been developed to prevent or cure the diseases induced by these pathogens. This review presents an overview of the primary medical countermeasures, and in particular, of the antibodies available against the six pathogens on the CDC's Tier 1 agents list, as well as against ricin.
Collapse
Affiliation(s)
- Arnaud Avril
- Unité Interaction Hôte-Pathogène, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Sophie Guillier
- Unité Bactériologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- UMR_MD1, Inserm U1261, 91220 Brétigny sur Orge, France
| | | |
Collapse
|
2
|
Hendrix EK, Sha J, Kilgore PB, Neil BH, Verma AK, Chopra AK. The Protective Effect of IL-17A in Pneumonic Plague Can Be Compensated by Effective Vaccines and Immunization Strategies in Mice. Vaccines (Basel) 2024; 12:1361. [PMID: 39772023 PMCID: PMC11680114 DOI: 10.3390/vaccines12121361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Plague, caused by Yersinia pestis, poses a public health threat not only due to sporadic outbreaks across the globe but also due to its potential as a biothreat agent. Ironically, among the seven deadliest pandemics in global history, three were caused by Y. pestis. Pneumonic plague, the more contagious and severe form of the disease, is difficult to contain, requiring either prophylactic antibiotic treatment or vaccination. However, no vaccine (live attenuated or subunit) is currently approved by the Food and Drug Administration, requiring rigorous preclinical studies in different animal models, thus forming the basis of this study. Objectives: The aim of this study was to evaluate the efficacy and immune responses of two live attenuated vaccines (LAVs), LMA and LMP, either alone or in combination with a trivalent adenoviral vector-based vaccine (Ad5-YFV), in IL-17A-depleted and IgG control mice by using an anti-IL-17A monoclonal antibody (mAb) or its matched isotype IgG, respectively. Methods: IL-17A mAb or IgG isotype control was administered to mice twice per week to their respective groups during the course of immunization. Serum, spleens, and broncho-alveolar lavage fluid (BALF) were collected for assessing immunological responses, and another cohort of mice was intranasally challenged with a lethal dose of parental Y. pestis CO92. Results: Robust humoral and cellular immune responses followed by complete protection were observed in all vaccinated animals against highly lethal intranasal challenge doses of parental Y. pestis CO92. Serum IgG titers to YscF and overall mucosal IgA titers to all three antigens of the Ad5-YFV vaccine were significantly lower, with slightly reduced serum LcrV-neutralizing antibodies when IL-17A was depleted compared to IgG control animals during the course of immunization. A remarkable reduction in Th1 (IFNγ or IL-2) and Th17 cell populations was observed in IL-17A-depleted mice compared to IgG controls in response to vaccination. On the other hand, B cell activities in germinal centers, overall activated antigen-specific T cells, and memory B and T cells remained at comparable levels in both vaccinated IL-17A-depleted and IgG control mice. Conclusions: These data demonstrated the effectiveness of our vaccines even under the reduced levels of both Th1 and Th17 responses and thus should be suitable for those individuals associated with certain immune deficiencies.
Collapse
Affiliation(s)
- Emily K. Hendrix
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.K.H.)
| | - Jian Sha
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.K.H.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Paul B. Kilgore
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.K.H.)
| | - Blake H. Neil
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.K.H.)
| | - Atul K. Verma
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.K.H.)
| | - Ashok K. Chopra
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.K.H.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Williamson ED, Kilgore PB, Hendrix EK, Neil BH, Sha J, Chopra AK. Progress on the research and development of plague vaccines with a call to action. NPJ Vaccines 2024; 9:162. [PMID: 39242587 PMCID: PMC11379892 DOI: 10.1038/s41541-024-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
There is a compelling demand for approved plague vaccines due to the endemicity of Yersinia pestis and its potential for pandemic spread. Whilst substantial progress has been made, we recommend that the global funding and health security systems should work urgently to translate some of the efficacious vaccines reviewed herein to expedite clinical development and to prevent future disastrous plague outbreaks, particularly caused by antimicrobial resistant Y. pestis strains.Content includes material subject to Crown Copyright © 2024.This is an open access article under the Open Government License ( http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ ).
Collapse
Affiliation(s)
- E Diane Williamson
- Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| | - Paul B Kilgore
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Emily K Hendrix
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Blake H Neil
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Jian Sha
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, UTMB, Galveston, TX, 77555, USA.
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, 77555, USA.
- Institute for Human Infections and Immunity, UTMB, Galveston, TX, 77555, USA.
- Center for Biodefense and Emerging Infectious Diseases, UTMB, Galveston, TX, 77555, USA.
- Galveston National Laboratory, UTMB, Galveston, TX, 77555, USA.
| |
Collapse
|
4
|
Sah R, Reda A, Mehta R, Mohapatra RK, Dhama K. A situation analysis of the current plague outbreak in the Demographic Republic of Congo and counteracting strategies - Correspondence. Int J Surg 2022; 105:106885. [PMID: 36084808 DOI: 10.1016/j.ijsu.2022.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, 44600, Nepal; Harvard Medical School, Boston, MA, 02115, USA.
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo, 11651, Egypt
| | - Rachana Mehta
- National Public Health Laboratory, Kathmandu, 44600, Nepal
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, 758002, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, India
| |
Collapse
|