1
|
Kiboi D, Sá JM, Nayak A, Micchelli CE, Amin SN, Burbelo AG, Abielmona SA, Xi B, Mulei LA, Onchieku NM, Percopo CM, Mu J, Wellems TE. Isolation and characterization of Plasmodium falciparum blood-stage persisters by improved selection protocols using dihydroartemisinin alone. Antimicrob Agents Chemother 2025; 69:e0005324. [PMID: 39927767 PMCID: PMC11881564 DOI: 10.1128/aac.00053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025] Open
Abstract
Artemisinin-based combination therapies (ACTs) are vital for malaria treatment, but these are threatened by blood-stage persisters-dormant forms of Plasmodium parasites that can survive drug exposure and cause recrudescent infections. Here, we present improved protocols for efficient preparation of pure Plasmodium falciparum persister populations without the need for magnetically activated columns, sorbitol exposure, or prolonged manipulations. Our protocols transformed actively replicating parasites into persister populations by exposing mixed blood-stage parasites to three or four consecutive daily 6 h pulses of 700 nM or 200 nM dihydroartemisinin (DHA). In micrographs of Giemsa-stained cells, we observed different persister morphologies: Type I persisters containing a rounded magenta-stained nucleus accompanied by a local region of blue-stained cytoplasm; and the more-prevalent Type II persisters characterized by a dark round or irregular-appearing nucleus and faded or no detectable cytoplasm. We also observed cells with disorganized nuclear and cytoplasmic structure, suggesting possible autophagic processes of destruction and remodeling. Recrudescence of actively replicating parasites to starting parasitemia or higher occurred around 17-22 days after initial DHA exposure. Differential expression patterns of the acetyl CoA carboxylase (acc) and skeleton binding protein 1 (sbp1) genes during DHA treatment, dormancy, and recrudescence highlighted the evolution of physiologic states and metabolic changes underlying persister formation and recovery. Our findings suggest hypotheses and questions for further research to understand the cellular pathways of dormancy and uncover strategies to thwart parasite survival after drug exposure.
Collapse
Affiliation(s)
- Daniel Kiboi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Akshaykumar Nayak
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Chiara E. Micchelli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Shuchi N. Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alexander G. Burbelo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Sasha A. Abielmona
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Brian Xi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Lucia A. Mulei
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Noah M. Onchieku
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Caroline M. Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Pley C, Gibbs H, Sudathip P, Rekol H, Nguyen TQ, Whittaker M, Ringwald P, Cox J, Tulloch J, Gaviria I, Lasry E, Dembech M, Dondorp AM, Phetsouvanh R. Impact of the Global Fund Regional Artemisinin-resistance Initiative on malaria control and elimination in the Greater Mekong subregion of southeast Asia. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(25)00013-1. [PMID: 40023184 DOI: 10.1016/s1473-3099(25)00013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/14/2024] [Accepted: 01/08/2025] [Indexed: 03/04/2025]
Abstract
Responding to the emergence of Plasmodium falciparum partial resistance to artemisinins and partner drugs of artemisinin-based combination therapies in the Greater Mekong subregion (GMS) of southeast Asia, the Regional Artemisinin-resistance Initiative (RAI) was established in 2014 and has made remarkable progress in eliminating falciparum malaria. In Cambodia, Laos, and Viet Nam, the number of malaria cases has declined from hundreds of thousands in 2010 to 2313 cases in 2023, with only 246 caused by falciparum malaria. The key components of this success have been an effective package of interventions curbing malaria transmission, with an emphasis on early diagnosis and treatment in hard-to-reach populations through an extended and well organised network of community and mobile malaria workers; improved surveillance systems; and evidence-driven implementation of intensified approaches such as active case detection, chemoprevention in specific risk groups, and targeted drug administration. The RAI is funded by the Global Fund to Fight AIDS, Tuberculosis and Malaria and governed by a closely collaborating Regional Steering Committee, including technical partners, key development partners, and stakeholders from ministries of health, national malaria control programmes, civil society organisations, the private sector, academia, and regional multilateral organisations. The RAI has brought the countries of the eastern GMS close to eliminating P falciparum, the deadliest malaria-causing Plasmodium species. Nonetheless, a worrying rise in malaria cases in Myanmar with cross-border spillover requires urgent action. Lessons learned from the RAI's approach to antimalarial drug resistance in the GMS can inform countries in sub-Saharan Africa, where artemisinin partial resistance has now also emerged.
Collapse
Affiliation(s)
- Caitlin Pley
- Regional Artemisinin-resistance Initiative Regional Steering Committee Secretariat, Phnom Penh, Cambodia; Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Harry Gibbs
- Regional Artemisinin-resistance Initiative Regional Steering Committee Secretariat, Phnom Penh, Cambodia
| | - Prayuth Sudathip
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Huy Rekol
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Thieu Quang Nguyen
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Viet Nam
| | | | - Pascal Ringwald
- Mekong Malaria Elimination Programme, WHO, Phnom Penh, Cambodia
| | - Jonathan Cox
- Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Jim Tulloch
- Independent Monitoring Panel, Regional Artemisinin-resistance Initiative, Phnom Penh, Cambodia
| | - Izaskun Gaviria
- The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland
| | - Estrella Lasry
- The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland
| | - Matteo Dembech
- The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | | |
Collapse
|
3
|
White NJ, Chotivanich K. Artemisinin-resistant malaria. Clin Microbiol Rev 2024; 37:e0010924. [PMID: 39404268 PMCID: PMC11629630 DOI: 10.1128/cmr.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
SUMMARYThe artemisinin antimalarials are the cornerstone of current malaria treatment. The development of artemisinin resistance in Plasmodium falciparum poses a major threat to malaria control and elimination. Recognized first in the Greater Mekong subregion of Southeast Asia nearly 20 years ago, artemisinin resistance has now been documented in Guyana, South America, in Papua New Guinea, and most recently, it has emerged de novo in East Africa (Rwanda, Uganda, South Sudan, Tanzania, Ethiopia, Eritrea, and eastern DRC) where it has now become firmly established. Artemisinin resistance is associated with mutations in the propeller region of the PfKelch gene, which play a causal role, although the parasites' genetic background also makes an important contribution to the phenotype. Clinically, artemisinin resistance manifests as reduced parasiticidal activity and slower parasite clearance and thus an increased risk of treatment failure following artemisinin-based combination therapy (ACT). This results from the loss of artemisinin activity against the younger circulating ring stage parasites. This loss of activity is likely to diminish the life-saving advantage of artesunate in the treatment of severe falciparum malaria. Gametocytocidal and thus transmission blocking activities are also reduced. At current levels of resistance, artemisinin-resistant parasites still remain susceptible at the trophozoite stage of asexual development, and so, artemisinin still contributes to the therapeutic response. As ACTs are the most widely used antimalarial drugs in the world, it is essential from a malaria control perspective that ACT cure rates remain high. Better methods of identifying uncomplicated hyperparasitemia, the main cause of ACT treatment failure, are required so that longer courses of treatment can be given to these high-risk patients. Reducing the use of artemisinin monotherapies will reduce the continued selection pressure which could lead potentially to higher levels of artemisinin resistance. Triple artemisinin combination therapies should be deployed as soon as possible to protect the ACT partner drugs and thereby delay the emergence of higher levels of resistance. As new affordable antimalarial drugs are still several years away, the control of artemisinin resistance must depend on the better use of available tools.
Collapse
Affiliation(s)
- N. J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - K. Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Ouji M, Reyser T, Yamaryo-Botté Y, Nguyen M, Rengel D, Dutreuil A, Marcellin M, Burlet-Schiltz O, Augereau JM, Riscoe MK, Paloque L, Botté C, Benoit-Vical F. In artemisinin-resistant falciparum malaria parasites, mitochondrial metabolic pathways are essential for survival but not those of apicoplast. Int J Parasitol Drugs Drug Resist 2024; 26:100565. [PMID: 39332236 PMCID: PMC11466614 DOI: 10.1016/j.ijpddr.2024.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Emergence and spread of parasite resistance to artemisinins, the first-line antimalarial therapy, threaten the malaria eradication policy. To identify therapeutic targets to eliminate artemisinin-resistant parasites, the functioning of the apicoplast and the mitochondrion was studied, focusing on the fatty acid synthesis type II (FASII) pathway in the apicoplast and the electron transfer chain in the mitochondrion. A significant enrichment of the FASII pathway among the up-regulated genes in artemisinin-resistant parasites under dihydroartemisinin treatment was found, in agreement with published transcriptomic data. However, using GC-MS analyzes of fatty acids, we demonstrated for the first time that the FASII pathway is non-functional, ruling out the use of FASII inhibitors to target artemisinin-resistant parasites. Conversely, by assessing the modulation of the oxygen consumption rate, we evidenced that mitochondrial respiration remains functional and flexible in artemisinin-resistant parasites and even at the quiescent stage. Two novel compounds targeting electron transport chain (ELQ300, ELQ400) efficiently killed quiescent artemisinin-resistant parasites. Therefore, mitochondrial respiration represents a key target for the elimination of artemisinin-resistant persistent Plasmodium falciparum parasites.
Collapse
Affiliation(s)
- Manel Ouji
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Michel Nguyen
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - David Rengel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Axelle Dutreuil
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Infrastructure nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Infrastructure nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Michael K Riscoe
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Cyrille Botté
- ApicoLipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Toulouse, France; MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
5
|
Sievert MA, Singh PP, Shoue DA, Checkley LA, Brenneman KM, Qahash T, Cassady Z, Kumar S, Li X, Nosten FH, Anderson TJ, Vaughan AM, Romero-Severson J, Ferdig MT. Measuring Growth, Resistance, and Recovery after Artemisinin Treatment of Plasmodium falciparum in a single semi-high-throughput Assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623064. [PMID: 39605531 PMCID: PMC11601240 DOI: 10.1101/2024.11.11.623064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Artemisinin partial resistance (ART-R) has spread throughout Southeast Asia and mutations in pfKelch13, the molecular marker of resistance, are widely reported in East Africa. Effective in vitro assays and robust phenotypes are crucial for monitoring populations for the emergence and spread of resistance. The recently developed extended Recovery Ring-stage Survival Assay used a qPCR-based readout to reduce the labor intensiveness for in vitro phenotyping of ART-R and improved correlation with the clinical phenotype of ART-R. Here, we extend and refine this assay to include measurements of parasite growth and recovery after drug exposure. Clinical isolates and progeny from two genetic crosses were used to optimize and validate the reliability of a straight-from-blood, SYBR Green-based qPCR protocol in a 96-well plate format to accurately measure phenotypes for Growth, Resistance, and Recovery. Results The assay determined growth between 6 h and 96 h, resistance at 120 h, and recovery from 120 h and 192 h. Growth can be accurately captured by qPCR and is shown by reproduction of previous growth phenotypes from HB3 × Dd2. Resistance measured at 120 h continually shows the most consistent phenotype for ring stage susceptibility. Recovery identifies an additional response to drug than parasites that are determined sensitive by Fold Change at 120 h. Comparison of progeny phenotypes for Growth vs Resistance showed a minor but significant correlation, whereas Growth vs Recovery and Resistance vs Recovery showed no significant correlation. Additionally, dried blood spot (DBS) samples matched Fold Change measured from liquid samples demonstrating Resistance can be easily quantified using either storage method. Conclusions The qPCR-based methodology provides the throughput needed to quickly measure large numbers of parasites for multiple relevant phenotypes. Growth can reveal fitness defects and illuminate relationships between proliferation rates and drug response. Recovery serves as a complementary phenotype to resistance that quantifies the ability of sensitive parasites to tolerate drug exposure. All three phenotypes offer a comprehensive assessment of parasite-drug interaction each with independent genetic determinants of main effect and overlapping secondary effects that should be further. By adapting our method to include DBS, readouts can be easily extended to ex vivo surveillance applications.
Collapse
Affiliation(s)
- Mackenzie A.C. Sievert
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Puspendra P. Singh
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Douglas A. Shoue
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lisa A. Checkley
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn M. Brenneman
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Tarrick Qahash
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zione Cassady
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Xue Li
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - François H. Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | | | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jeanne Romero-Severson
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael T. Ferdig
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
6
|
Micchelli CE, Percopo C, Traver M, Brzostowski J, Amin SN, Prigge ST, Sá JM, Wellems TE. Progressive heterogeneity of enlarged and irregularly shaped apicoplasts in Plasmodium falciparum persister blood stages after drug treatment. PNAS NEXUS 2024; 3:pgae424. [PMID: 39381646 PMCID: PMC11460358 DOI: 10.1093/pnasnexus/pgae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024]
Abstract
Morphological modifications and shifts in organelle relationships are hallmarks of dormancy in eukaryotic cells. Communications between altered mitochondria and nuclei are associated with metabolic quiescence of cancer cells that can survive chemotherapy. In plants, changes in the pathways between nuclei, mitochondria, and chloroplasts are associated with cold stress and bud dormancy. Plasmodium falciparum parasites, the deadliest agent of malaria in humans, contain a chloroplast-like organelle (apicoplast) derived from an ancient photosynthetic symbiont. Antimalarial treatments can fail because a fraction of the blood-stage parasites enter dormancy and recrudesce after drug exposure. Altered mitochondrial-nuclear interactions in these persisters have been described for P. falciparum, but interactions of the apicoplast remained to be characterized. In the present study, we examined the apicoplasts of persisters obtained after exposure to dihydroartemisinin (a first-line antimalarial drug) followed by sorbitol treatment, or after exposure to sorbitol treatment alone. As previously observed, the mitochondrion of persisters was consistently enlarged and in close association with the nucleus. In contrast, the apicoplast varied from compact and oblate, like those of active ring-stage parasites, to enlarged and irregularly shaped. Enlarged apicoplasts became more prevalent later in dormancy, but regular size apicoplasts subsequently predominated in actively replicating recrudescent parasites. All three organelles, nucleus, mitochondrion, and apicoplast, became closer during dormancy. Understanding their relationships in erythrocytic-stage persisters may lead to new strategies to prevent recrudescences and protect the future of malaria chemotherapy.
Collapse
Affiliation(s)
- Chiara E Micchelli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Traver
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuchi N Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sean T Prigge
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Tripathi J, Stoklasa M, Nayak S, En Low K, Qian Hui Lee E, Duong Tien QH, Rénia L, Malleret B, Bozdech Z. The artemisinin-induced dormant stages of Plasmodium falciparum exhibit hallmarks of cellular quiescence/senescence and drug resilience. Nat Commun 2024; 15:7485. [PMID: 39209862 PMCID: PMC11362153 DOI: 10.1038/s41467-024-51846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Recrudescent infections with the human malaria parasite, Plasmodium falciparum, presented traditionally the major setback of artemisinin-based monotherapies. Although the introduction of artemisinin combination therapies (ACT) largely solved the problem, the ability of artemisinin to induce dormant parasites still poses an obstacle for current as well as future malaria chemotherapeutics. Here, we use a laboratory model for induction of dormant P. falciparum parasites and characterize their transcriptome, drug sensitivity profile, and cellular ultrastructure. We show that P. falciparum dormancy requires a ~ 5-day maturation process during which the genome-wide gene expression pattern gradually transitions from the ring-like state to a unique form. The transcriptome of the mature dormant stage carries hallmarks of both cellular quiescence and senescence, with downregulation of most cellular functions associated with growth and development and upregulation of selected metabolic functions and DNA repair. Moreover, the P. falciparum dormant stage is considerably more resistant to antimalaria drugs compared to the fast-growing asexual stages. Finally, the irregular cellular ultrastructure further suggests unique properties of this developmental stage of the P. falciparum life cycle that should be taken into consideration by malaria control strategies.
Collapse
Affiliation(s)
- Jaishree Tripathi
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
| | - Michal Stoklasa
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore
| | - Kay En Low
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Erica Qian Hui Lee
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Quang Huy Duong Tien
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore
| | - Laurent Rénia
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, 636921, Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Benoit Malleret
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore, 637551, Singapore.
| |
Collapse
|
8
|
Micchelli CE, Percopo C, Traver M, Brzostowski J, Amin SN, Prigge ST, Sá JM, Wellems TE. Progressive heterogeneity of enlarged and irregularly shaped apicoplasts in P. falciparum persister blood stages after drug treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574077. [PMID: 38410435 PMCID: PMC10896342 DOI: 10.1101/2024.01.03.574077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Morphological modifications and shifts in organelle relationships are hallmarks of dormancy in eukaryotic cells. Communications between altered mitochondria and nuclei are associated with metabolic quiescence of cancer cells that can survive chemotherapy. In plants, changes in the pathways between nuclei, mitochondria, and chloroplasts are associated with cold stress and bud dormancy. Plasmodium falciparum parasites, the deadliest agent of malaria in humans, contain a chloroplast-like organelle (apicoplast) derived from an ancient photosynthetic symbiont. Antimalarial treatments can fail because a small fraction of the blood stage parasites enter dormancy and recrudesce after drug exposure. Altered mitochondrial-nuclear interactions in these persisters have been described for P. falciparum, but interactions of the apicoplast remained to be characterized. In the present study, we examined the apicoplasts of persisters obtained after exposure to dihydroartemisinin (a first-line antimalarial drug) followed by sorbitol treatment, or after exposure to sorbitol treatment alone. As previously observed, the mitochondrion of persisters was consistently enlarged and in close association with the nucleus. In contrast, the apicoplast varied from compact and oblate, like those of active ring stage parasites, to enlarged and irregularly shaped. Enlarged apicoplasts became more prevalent later in dormancy, but regular size apicoplasts subsequently predominated in actively replicating recrudescent parasites. All three organelles, nucleus, mitochondrion, and apicoplast, became closer during dormancy. Understanding their relationships in erythrocytic-stage persisters may lead to new strategies to prevent recrudescences and protect the future of malaria chemotherapy.
Collapse
Affiliation(s)
- Chiara E. Micchelli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Percopo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Traver
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shuchi N. Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sean T. Prigge
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore Maryland, USA
| | - Juliana M. Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas E. Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Goodwin J, Kajubi R, Wang K, Li F, Wade M, Orukan F, Huang L, Whalen M, Aweeka FT, Mwebaza N, Parikh S. Persistent and multiclonal malaria parasite dynamics despite extended artemether-lumefantrine treatment in children. Nat Commun 2024; 15:3817. [PMID: 38714692 PMCID: PMC11076639 DOI: 10.1038/s41467-024-48210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- University of California, San Francisco, San Francisco, CA, USA
| | - Meghan Whalen
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Manzoni G, Try R, Guintran JO, Christiansen-Jucht C, Jacoby E, Sovannaroth S, Zhang Z, Banouvong V, Shortus MS, Reyburn R, Chanthavisouk C, Linn NYY, Thapa B, Khine SK, Sudathip P, Gopinath D, Thieu NQ, Ngon MS, Cong DT, Hui L, Kelley J, Valecha NNK, Bustos MD, Rasmussen C, Tuseo L. Progress towards malaria elimination in the Greater Mekong Subregion: perspectives from the World Health Organization. Malar J 2024; 23:64. [PMID: 38429807 PMCID: PMC10908136 DOI: 10.1186/s12936-024-04851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024] Open
Abstract
Malaria remains a global health challenge, disproportionately affecting vulnerable communities. Despite substantial progress, the emergence of anti-malarial drug resistance poses a constant threat. The Greater Mekong Subregion (GMS), which includes Cambodia, China's Yunnan province, Lao People's Democratic Republic, Myanmar, Thailand, and Viet Nam has been the epicentre for the emergence of resistance to successive generations of anti-malarial therapies. From the perspective of the World Health Organization (WHO), this article considers the collaborative efforts in the GMS, to contain Plasmodium falciparum artemisinin partial resistance and multi-drug resistance and to advance malaria elimination. The emergence of artemisinin partial resistance in the GMS necessitated urgent action and regional collaboration resulting in the Strategy for Malaria Elimination in the Greater Mekong Subregion (2015-2030), advocating for accelerated malaria elimination interventions tailored to country needs, co-ordinated and supported by the WHO Mekong malaria elimination programme. The strategy has delivered substantial reductions in malaria across all GMS countries, with a 77% reduction in malaria cases and a 97% reduction in malaria deaths across the GMS between 2012 and 2022. Notably, China was certified malaria-free by WHO in 2021. Countries' ownership and accountability have been pivotal, with each GMS country outlining its priorities in strategic and annual work plans. The development of strong networks for anti-malarial drug resistance surveillance and epidemiological surveillance was essential. Harmonization of policies and guidelines enhanced collaboration, ensuring that activities were driven by evidence. Challenges persist, particularly in Myanmar, where security concerns have limited recent progress, though an intensification and acceleration plan aims to regain momentum. Barriers to implementation can slow progress and continuing innovation is needed. Accessing mobile and migrant populations is key to addressing remaining transmission foci, requiring effective cross-border collaboration. In conclusion, the GMS has made significant progress towards malaria elimination, particularly in the east where several countries are close to P. falciparum elimination. New and persisting challenges require sustained efforts and continued close collaboration. The GMS countries have repeatedly risen to every obstacle presented, and now is the time to re-double efforts and achieve the 2030 goal of malaria elimination for the region.
Collapse
Affiliation(s)
- Giulia Manzoni
- WHO Mekong Malaria Elimination Programme, Phnom Penh, Cambodia.
- Independent Consultant, Antananarivo, Madagascar.
| | - Rady Try
- WHO Mekong Malaria Elimination Programme, Phnom Penh, Cambodia
| | - Jean Olivier Guintran
- World Health Organization Country Office, Phnom Penh, Cambodia
- Independent Consultant, Le Bar sur Loup, France
| | | | - Elodie Jacoby
- WHO Mekong Malaria Elimination Programme, Phnom Penh, Cambodia
- Independent Consultant, Ho Chi Minh, Viet Nam
| | - Siv Sovannaroth
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Zaixing Zhang
- World Health Organization Country Office, Phnom Penh, Cambodia
| | | | | | - Rita Reyburn
- World Health Organization Country Office, Vientiane, Lao PDR
| | | | - Nay Yi Yi Linn
- National Malaria Control Programme, Nay Pyi Taw, Myanmar
| | - Badri Thapa
- World Health Organization Country Office, Yangon, Myanmar
| | | | - Prayuth Sudathip
- Division of Vector Borne Diseases, Department of Disease Control, Bangkok, Thailand
| | - Deyer Gopinath
- World Health Organization Country Office, Bangkok, Thailand
| | - Nguyen Quang Thieu
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Viet Nam
| | | | | | - Liu Hui
- Yunnan Institute of Parasitic Diseases, Yunnan, China
| | - James Kelley
- World Health Organization, Regional Office for the Western Pacific, Manila, Philippines
| | | | - Maria Dorina Bustos
- World Health Organization, Regional Office for South-East Asia, New Delhi, India
| | | | - Luciano Tuseo
- WHO Mekong Malaria Elimination Programme, Phnom Penh, Cambodia
- World Health Organization, Regional Office for the Western Pacific, Manila, Philippines
| |
Collapse
|
11
|
Platon L, Ménard D. Plasmodium falciparum ring-stage plasticity and drug resistance. Trends Parasitol 2024; 40:118-130. [PMID: 38104024 DOI: 10.1016/j.pt.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Malaria is a life-threatening tropical disease caused by parasites of the genus Plasmodium, of which Plasmodium falciparum is the most lethal. Malaria parasites have a complex life cycle, with stages occurring in both the Anopheles mosquito vector and human host. Ring stages are the youngest form of the parasite in the intraerythrocytic developmental cycle and are associated with evasion of spleen clearance, temporary growth arrest (TGA), and drug resistance. This formidable ability to survive and develop into mature, sexual, or growth-arrested forms demonstrates the inherent population heterogeneity. Here we highlight the role of the ring stage as a crossroads in parasite development and as a reservoir of surviving cells in the human host via TGA survival mechanisms.
Collapse
Affiliation(s)
- Lucien Platon
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France; Sorbonne Université, Collège Doctoral ED 515 Complexité du Vivant, F-75015 Paris, France; Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France.
| | - Didier Ménard
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France; Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, F-75015 Paris, France; Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France; CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, F-67000 Strasbourg, France.
| |
Collapse
|
12
|
Pal C. Redox modulating small molecules having antimalarial efficacy. Biochem Pharmacol 2023; 218:115927. [PMID: 37992998 DOI: 10.1016/j.bcp.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The search for effective antimalarial agents remains a critical priority because malaria is widely spread and drug-resistant strains are becoming more prevalent. In this review, a variety of small molecules capable of modulating redox processes were showcased for their potential as antimalarial agents. The compounds were designed to target the redox balance of Plasmodium parasites, which has a pivotal function in their ability to survive and multiply within the host organism. A thorough screening method was utilized to assess the effectiveness of these compounds against both drug-sensitive and drug-resistant strains of Plasmodium falciparum, the malaria-causing parasite. The results revealed that several of the tested compounds exhibited significant effectiveness against malaria, displaying IC50 values at a low micromolar range. Furthermore, these compounds displayed promising selectivity for the parasite, as they exhibited low cytotoxicity towards mammalian cells. Thorough mechanistic studies were undertaken to clarify how the active compounds exert their mode of action. The findings revealed that these compounds disrupted the parasites' redox balance, causing oxidative stress and interfering with essential cellular functions. Additionally, the compounds showed synergistic effects when combined with existing antimalarial drugs, suggesting their potential for combination therapies to combat drug resistance. Overall, this study highlights the potential of redox-modulating small molecules as effective antimalarial agents. The identified compounds demonstrate promising antimalarial activity, and their mechanism of action offers insights into targeting the redox balance of Plasmodium parasites. Further optimization and preclinical studies are warranted to determine their efficacy, safety, and potential for clinical development as novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
13
|
Reyser T, Paloque L, Nguyen M, Augereau JM, Fuchter MJ, Lopez M, Arimondo PB, Hassell-Hart S, Spencer J, Di Stefano L, Benoit-Vical F. Epidrugs as Promising Tools to Eliminate Plasmodium falciparum Artemisinin-Resistant and Quiescent Parasites. Pharmaceutics 2023; 15:2440. [PMID: 37896200 PMCID: PMC10610379 DOI: 10.3390/pharmaceutics15102440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The use of artemisinin and its derivatives has helped reduce the burden of malaria caused by Plasmodium falciparum. However, artemisinin-resistant parasites are able, in the presence of artemisinins, to stop their cell cycles. This quiescent state can alter the activity of artemisinin partner drugs leading to a secondary drug resistance and thus threatens malaria eradication strategies. Drugs targeting epigenetic mechanisms (namely epidrugs) are emerging as potential antimalarial drugs. Here, we set out to evaluate a selection of various epidrugs for their activity against quiescent parasites, to explore the possibility of using these compounds to counter artemisinin resistance. The 32 chosen epidrugs were first screened for their antiplasmodial activity and selectivity. We then demonstrated, thanks to the specific Quiescent-stage Survival Assay, that four epidrugs targeting both histone methylation or deacetylation as well as DNA methylation decrease the ability of artemisinin-resistant parasites to recover after artemisinin exposure. In the quest for novel antiplasmodial drugs with new modes of action, these results reinforce the therapeutic potential of epidrugs as antiplasmodial drugs especially in the context of artemisinin resistance.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, 31077 Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, 31077 Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Michel Nguyen
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, 31077 Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, 31077 Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| | - Matthew John Fuchter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM UMR 5247, 34293 Montpellier, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR 3523 CNRS, 75015 Paris, France
| | - Storm Hassell-Hart
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer BN1 9QJ, UK
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer BN1 9QJ, UK
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, 31077 Toulouse, France
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, Inserm ERL 1289, 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), 31077 Toulouse, France
| |
Collapse
|
14
|
Saralamba S, Simpson JA, Choosri N, White L, Pan-Ngum W, Dondorp AM, White NJ. An artesunate pharmacometric model to explain therapeutic responses in falciparum malaria. J Antimicrob Chemother 2023; 78:2192-2202. [PMID: 37473441 PMCID: PMC10477127 DOI: 10.1093/jac/dkad219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The artemisinins are potent and widely used antimalarial drugs that are eliminated rapidly. A simple concentration-effect pharmacometric model does not explain why dosing more frequently than once daily fails to augment parasite clearance and improve therapeutic responses in vivo. Artemisinins can induce a temporary non-replicative or 'dormant' drug refractory state in Plasmodium falciparum malaria parasites which may explain recrudescences observed in clinical trials despite full drug susceptibility, but whether it explains the dosing-response relationship is uncertain. OBJECTIVES To propose a revised model of antimalarial pharmacodynamics that incorporates reversible asexual parasite injury and temporary drug refractoriness in order to explain the failure of frequent dosing to augment therapeutic efficacy in falciparum malaria. METHODS The model was fitted using a Bayesian Markov Chain Monte Carlo approach with the parasite clearance data from 39 patients with uncomplicated falciparum malaria treated with artesunate from western Cambodia and 40 patients from northwestern Thailand reported previously. RESULTS The revised model captured the dynamics of parasite clearance data. Its predictions are consistent with observed therapeutic responses. CONCLUSIONS A within-host pharmacometric model is proposed in which it is hypothesized that some malaria parasites enter a temporary drug refractory state after exposure to artemisinin antimalarials, which is followed by delayed parasite death or reactivation. The model fitted the observed sequential parasite density data from patients with acute P. falciparum malaria, and it supported reduced ring stage activity in artemisinin-resistant infections.
Collapse
Affiliation(s)
- Sompob Saralamba
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Noppon Choosri
- Center of Data Analytics and Knowledge Synthesis for Healthcare, Chiang Mai University, Chiang Mai, Thailand
| | - Lisa White
- Department of Biology, University of Oxford, Oxford, UK
| | - Wirichada Pan-Ngum
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Gachie B, Thiong'o K, Muriithi B, Chepngetich J, Onchieku N, Gathirwa J, Mwitari P, Magoma G, Kiboi D, Kimani F. Prevalence of mutations in the cysteine desulfurase IscS (Pfnfs1) gene in recurrent Plasmodium falciparum infections following artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) treatment in Matayos, Western Kenya. Malar J 2023; 22:158. [PMID: 37202779 DOI: 10.1186/s12936-023-04587-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Malaria remains a public health concern globally. Resistance to anti-malarial drugs has consistently threatened the gains in controlling the malaria parasites. Currently, artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the treatment regimens against Plasmodium falciparum infections in many African countries, including Kenya. Recurrent infections have been reported in patients treated with AL or DP, suggesting the possibility of reinfection or parasite recrudescence associated with the development of resistance against the two therapies. The Plasmodium falciparum cysteine desulfurase IscS (Pfnfs1) K65 selection marker has previously been associated with decreased lumefantrine susceptibility. This study evaluated the frequency of the Pfnfs1 K65 resistance marker and associated K65Q resistant allele in recurrent infections collected from P. falciparum-infected individuals living in Matayos, Busia County, in western Kenya. METHODS Archived dried blood spots (DBS) of patients with recurrent malaria infection on clinical follow-up days after treatment with either AL or DP were used in the study. After extraction of genomic DNA, PCR amplification and sequencing analysis were employed to determine the frequencies of the Pfnfs1 K65 resistance marker and K65Q mutant allele in the recurrent infections. Plasmodium falciparum msp1 and P. falciparum msp2 genetic markers were used to distinguish recrudescent infections from new infections. RESULTS The K65 wild-type allele was detected at a frequency of 41% while the K65Q mutant allele was detected at a frequency of 22% in the recurrent samples. 58% of the samples containing the K65 wild-type allele were AL treated samples and while 42% were DP treated samples. 79% of the samples with the K65Q mutation were AL treated samples and 21% were DP treated samples. The K65 wild-type allele was detected in three recrudescent infections (100%) identified from the AL treated samples. The K65 wild-type allele was detected in two recrudescent DP treated samples (67%) while the K65Q mutant allele was identified in one DP treated (33%) recrudescent sample. CONCLUSIONS The data demonstrate a higher frequency of the K65 resistance marker in patients with recurrent infection during the study period. The study underscores the need for consistent monitoring of molecular markers of resistance in regions of high malaria transmission.
Collapse
Affiliation(s)
- Beatrice Gachie
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya.
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya.
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya.
| | - Kelvin Thiong'o
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Brenda Muriithi
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Jean Chepngetich
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Noah Onchieku
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Jeremiah Gathirwa
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Peter Mwitari
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| | - Gabriel Magoma
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000 -00200, Nairobi, Kenya
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000 -00200, Nairobi, Kenya
| | - Francis Kimani
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, Off Raila Odinga Way, P.O. Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
16
|
Ring stage dormancy of Plasmodium falciparum tolerant to artemisinin and its analogues - A genetically regulated "Sleeping Beauty". Int J Parasitol Drugs Drug Resist 2023; 21:61-64. [PMID: 36708651 PMCID: PMC9883618 DOI: 10.1016/j.ijpddr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The appearance in 2008 in western Cambodia of Plasmodium falciparum tolerant to artemisinin, defined by longer parasite clearance time following drug administration and in vitro by a slightly higher survival rate of the ring stage after a 3-h treatment with 700 nM artemisinin (or analogues, collectively termed ART), has raised concerns of the possible loss of this frontline antimalarial [used in the form of an artemisinin combination therapy (ACT)], with its low IC50 value against the ring stage and pleiotropic pro-drug/poison property. The key genetic marker of ART tolerance phenotype is a number of non-synonymous mutations in Pfkelch13 propeller domain. This results in defective assembly at the ring stage of a cytostome structure located at cytoplasmic side of the parasite membrane required for invagination of a double-membrane endosome carrying host cytosol haemoglobin to the digestive vacuole. The consequential deprivation of amino acids initiates ring stage parasites bearing the causal mutations in PfK13 (or other key cytostome components) entry into a dormant state ("Sleeping Beauty"), which, after a duration longer than that the short-lived ART, "Sleeping Beauty" ring parasite resumes its normal, but accelerated, development to maintain the 48-h intra-erythrocytic life-cycle. We posit that when ART-tolerant P. falciparum has acquired under ART stress the causative PfK13 mutation (not obligatory if mutations occur in other critical cytostome components), together with other necessary mutations to adjust to the new normalcy and to provide survival competitiveness, ART-tolerant parasite has now evolved into a genetically programmed "Sleeping Beauty". The onus of preventing the spread of ART-tolerant P. falciparum lies with the efficacy of ACT partner drug, hence the recommendation of a triple ACT (TACT). Nevertheless, attention should also be focussed on understanding the mechanisms of dormancy, such as induction, maintenance and recovery, to enable discovery and development of novel antimalarials targeting this unique parasite stage.
Collapse
|
17
|
Hanboonkunupakarn B, Tarning J, Pukrittayakamee S, Chotivanich K. Artemisinin resistance and malaria elimination: Where are we now? Front Pharmacol 2022; 13:876282. [PMID: 36210819 PMCID: PMC9538393 DOI: 10.3389/fphar.2022.876282] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of artemisinin resistance is a major obstacle to the global malaria eradication/elimination programs. Artemisinin is a very fast-acting antimalarial drug and is the most important drug in the treatment of severe and uncomplicated malaria. For the treatment of acute uncomplicated falciparum malaria, artemisinin derivatives are combined with long half-life partner drugs and widely used as artemisinin-based combination therapies (ACTs). Some ACTs have shown decreased efficacy in the Southeast Asian region. Fortunately, artemisinin has an excellent safety profile and resistant infections can still be treated successfully by modifying the ACT. This review describes the pharmacological properties of ACTs, mechanisms of artemisinin resistance and the potential changes needed in the treatment regimens to overcome resistance. The suggested ACT modifications are extension of the duration of the ACT course, alternating use of different ACT regimens, and addition of another antimalarial drug to the standard ACTs (Triple-ACT). Furthermore, a malaria vaccine (e.g., RTS,S vaccine) could be added to mass drug administration (MDA) campaigns to enhance the treatment efficacy and to prevent further artemisinin resistance development. This review concludes that artemisinin remains the most important antimalarial drug, despite the development of drug-resistant falciparum malaria.
Collapse
Affiliation(s)
- Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Royal Society of Thailand, Bangkok, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Royal Society of Thailand, Bangkok, Thailand
- *Correspondence: Kesinee Chotivanich,
| |
Collapse
|
18
|
Reactive Oxygen Species as the Brainbox in Malaria Treatment. Antioxidants (Basel) 2021; 10:antiox10121872. [PMID: 34942976 PMCID: PMC8698694 DOI: 10.3390/antiox10121872] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Several measures are in place to combat the worldwide spread of malaria, especially in regions of high endemicity. In part, most common antimalarials, such as quinolines and artemisinin and its derivatives, deploy an ROS-mediated approach to kill malaria parasites. Although some antimalarials may share similar targets and mechanisms of action, varying levels of reactive oxygen species (ROS) generation may account for their varying pharmacological activities. Regardless of the numerous approaches employed currently and in development to treat malaria, concerningly, there has been increasing development of resistance by Plasmodium falciparum, which can be connected to the ability of the parasites to manage the oxidative stress from ROS produced under steady or treatment states. ROS generation has remained the mainstay in enforcing the antiparasitic activity of most conventional antimalarials. However, a combination of conventional drugs with ROS-generating ability and newer drugs that exploit vital metabolic pathways, such antioxidant machinery, could be the way forward in effective malaria control.
Collapse
|
19
|
Assefa DG, Yismaw G, Makonnen E. Efficacy of dihydroartemisinin-piperaquine versus artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria among children in Africa: a systematic review and meta-analysis of randomized control trials. Malar J 2021; 20:340. [PMID: 34384431 PMCID: PMC8359548 DOI: 10.1186/s12936-021-03873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emergence of Plasmodium falciparum resistance to artemisinin and its derivatives poses a threat to the global effort to control malaria. The emergence of anti-malarial resistance has become a great public health challenge and continues to be a leading threat to ongoing malaria control efforts. The aim of this review was to synthesize available evidence on the efficacy of dihydroartemisinin-piperaquine (DHA-PQ) compared to artemether-lumefantrine (AL) for the treatment of uncomplicated falciparum malaria among children in Africa. METHODS A systematic literature search was done to identify relevant articles from online databases PubMed/ MEDLINE, Embase, and Cochrane Central Register of Controlled Trials' database (CENTRAL) for retrieving randomized control trials comparing efficacy of DHA-PQ and AL for treatment of uncomplicated falciparum malaria in African children. The search was performed from August 2020 to April 2021. Using Rev-Man software (V5.4.1), R-studio and Comprehensive Meta-analysis software version 3, the extracted data from eligible studies were pooled as risk ratio (RR) with 95% confidence interval (CI). RESULTS In this review, 25 studies which involved a total of 13,198 participants were included. PCR-unadjusted treatment failure in children aged between 6 months and 15 years was significantly lower in the DHA-PQ treatment arm on day 28 than that of AL (RR 0.14, 95% CI 0.08-0.26; participants = 1302; studies = 4; I2 = 0%, high quality of evidence). Consistently, the PCR-adjusted treatment failure was significantly lower with DHA-PQ treatment group on day 28 (RR 0.45, 95% CI 0.29-0.68; participants = 8508; studies = 16; I2 = 51%, high quality of evidence) and on day 42 (RR 0.60, 95% CI 0.47-0.78; participants = 5959; studies = 17; I2 = 0%, high quality of evidence). However, the efficacy was ≥ 95% in both treatment groups on day 28. CONCLUSION From this review, it can be concluded that DHA-PQ reduces new infection and recrudescence on days 28 and 42 more than AL. This may trigger DHA-PQ to become a first-line treatment option.
Collapse
Affiliation(s)
- Dawit Getachew Assefa
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia. .,Department of Nursing, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia.
| | - Gizachew Yismaw
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
20
|
Restructured Mitochondrial-Nuclear Interaction in Plasmodium falciparum Dormancy and Persister Survival after Artemisinin Exposure. mBio 2021; 12:e0075321. [PMID: 34044591 PMCID: PMC8262848 DOI: 10.1128/mbio.00753-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Artemisinin and its semisynthetic derivatives (ART) are fast acting, potent antimalarials; however, their use in malaria treatment is frequently confounded by recrudescences from bloodstream Plasmodium parasites that enter into and later reactivate from a dormant persister state. Here, we provide evidence that the mitochondria of dihydroartemisinin (DHA)-exposed persisters are dramatically altered and enlarged relative to the mitochondria of young, actively replicating ring forms. Restructured mitochondrial-nuclear associations and an altered metabolic state are consistent with stress from reactive oxygen species. New contacts between the mitochondria and nuclei may support communication pathways of mitochondrial retrograde signaling, resulting in transcriptional changes in the nucleus as a survival response. Further characterization of the organelle communication and metabolic dependencies of persisters may suggest strategies to combat recrudescences of malaria after treatment.
Collapse
|
21
|
Mahamar A, Lanke K, Graumans W, Diawara H, Sanogo K, Diarra K, Niambele SM, Gosling R, Drakeley C, Chen I, Dicko A, Bousema T, Roh ME. Persistence of mRNA indicative of Plasmodium falciparum ring-stage parasites 42 days after artemisinin and non-artemisinin combination therapy in naturally infected Malians. Malar J 2021; 20:34. [PMID: 33422068 PMCID: PMC7797096 DOI: 10.1186/s12936-020-03576-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/31/2020] [Indexed: 11/10/2022] Open
Abstract
Background Malaria control in sub-Saharan Africa relies upon prompt case management with artemisinin-based combination therapy (ACT). Ring-stage parasite mRNA, measured by sbp1 quantitative reverse-transcriptase PCR (qRT-PCR), was previously reported to persist after ACT treatment and hypothesized to reflect temporary arrest of the growth of ring-stage parasites (dormancy) following exposure to artemisinins. Here, the persistence of ring-stage parasitaemia following ACT and non-ACT treatment was examined. Methods Samples were used from naturally infected Malian gametocyte carriers who received dihydroartemisinin–piperaquine (DP) or sulfadoxine–pyrimethamine (SP–AQ) with or without gametocytocidal drugs. Gametocytes and ring-stage parasites were quantified by qRT-PCR during 42 days of follow-up. Results At baseline, 89% (64/73) of participants had measurable ring-stage parasite mRNA. Following treatment, the proportion of ring-stage parasite-positive individuals and estimated densities declined for all four treatment groups. Ring-stage parasite prevalence and density was generally lower in arms that received DP compared to SP–AQ. This finding was most apparent days 1, 2, and 42 of follow-up (p < 0.01). Gametocytocidal drugs did not influence ring-stage parasite persistence. Ring-stage parasite density estimates on days 14 and 28 after initiation of treatment were higher among individuals who subsequently experienced recurrent parasitaemia compared to those who remained free of parasites until day 42 after initiation of treatment (pday 14 = 0.011 and pday 28 = 0.068). No association of ring-stage persistence with gametocyte carriage was observed. Conclusions The current findings of lower ring-stage persistence after ACT without an effect of gametocytocidal partner drugs affirms the use of sbp1 as ring-stage marker. Lower persistence of ring-stage mRNA after ACT treatment suggests the marker may not reflect dormant parasites whilst it was predictive of re-appearance of parasitaemia.
Collapse
Affiliation(s)
- Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, PO Box 9101, 6525GA, Nijmegen, The Netherlands
| | - Wouter Graumans
- Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, PO Box 9101, 6525GA, Nijmegen, The Netherlands
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kalifa Diarra
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sidi Mohamed Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Roly Gosling
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Chris Drakeley
- Department of Infection & Immunity, London School of Hygiene & Tropical Medicine, London, UK
| | - Ingrid Chen
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, PO Box 9101, 6525GA, Nijmegen, The Netherlands. .,Department of Infection & Immunity, London School of Hygiene & Tropical Medicine, London, UK.
| | - Michelle E Roh
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| |
Collapse
|