1
|
Gopal V, Koh MCY, Ngiam JN, Hang-Cheng O, Somani J, Tambyah PA, Tey J. Does Prior Respiratory Viral Infection Provide Cross-Protection Against Subsequent Respiratory Viral Infections? A Systematic Review and Meta-Analysis. Viruses 2024; 16:982. [PMID: 38932273 PMCID: PMC11209343 DOI: 10.3390/v16060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The epidemiology of different respiratory viral infections is believed to be affected by prior viral infections in addition to seasonal effects. This PROSPERO-registered systematic review identified 7388 studies, of which six met our criteria to answer the question specifically. The purpose of this review was to compare the prevalence of sequential viral infections in those with previously documented positive versus negative swabs. The pooled prevalence of sequential viral infections over varying periods from 30-1000 days of follow-up was higher following a negative respiratory viral swab at 0.15 than following a positive swab at 0.08, indicating the potential protective effects of prior respiratory viral infections. However, significant heterogeneity and publication biases were noted. There is some evidence, albeit of low quality, of a possible protective effect of an initial viral infection against subsequent infections by a different virus, which is possibly due to broad, nonspecific innate immunity. Future prospective studies are needed to validate our findings.
Collapse
Affiliation(s)
- Vennila Gopal
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (P.A.T.)
- Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Matthew Chung Yi Koh
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore 119228, Singapore; (M.C.Y.K.); (J.N.N.)
| | - Jinghao Nicholas Ngiam
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore 119228, Singapore; (M.C.Y.K.); (J.N.N.)
| | - Ong Hang-Cheng
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Jyoti Somani
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (P.A.T.)
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore 119228, Singapore; (M.C.Y.K.); (J.N.N.)
| | - Paul Anatharajah Tambyah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (P.A.T.)
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore 119228, Singapore; (M.C.Y.K.); (J.N.N.)
| | - Jeremy Tey
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (P.A.T.)
- Department of Radiation Oncology, National University Cancer Institute, Singapore 119074, Singapore
| |
Collapse
|
2
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Cantoni D, Siracusano G, Mayora-Neto M, Pastori C, Fantoni T, Lytras S, Di Genova C, Hughes J, on behalf of the Ambulatorio Medico San Luca Villanuova Group, Lopalco L, Temperton N. Analysis of Antibody Neutralisation Activity against SARS-CoV-2 Variants and Seasonal Human Coronaviruses NL63, HKU1, and 229E Induced by Three Different COVID-19 Vaccine Platforms. Vaccines (Basel) 2022; 11:58. [PMID: 36679903 PMCID: PMC9864028 DOI: 10.3390/vaccines11010058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Coronaviruses infections, culminating in the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic beginning in 2019, have highlighted the importance of effective vaccines to induce an antibody response with cross-neutralizing activity. COVID-19 vaccines have been rapidly developed to reduce the burden of SARS-CoV-2 infections and disease severity. Cross-protection from seasonal human coronaviruses (hCoVs) infections has been hypothesized but is still controversial. Here, we investigated the neutralizing activity against ancestral SARS-CoV-2 and the variants of concern (VOCs) in individuals vaccinated with two doses of either BNT162b2, mRNA-1273, or AZD1222, with or without a history of SARS-CoV-2 infection. Antibody neutralizing activity to SARS-CoV-2 and the VOCs was higher in BNT162b2-vaccinated subjects who were previously infected with SARS-CoV-2 and conferred broad-spectrum protection. The Omicron BA.1 variant was the most resistant among the VOCs. COVID-19 vaccination did not confer protection against hCoV-HKU1. Conversely, antibodies induced by mRNA-1273 vaccination displayed a boosting in their neutralizing activity against hCoV-NL63, whereas AZD1222 vaccination increased antibody neutralization against hCoV-229E, suggesting potential differences in antigenicity and immunogenicity of the different spike constructs used between various vaccination platforms. These data would suggest that there may be shared epitopes between the HCoVs and SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4TB, UK
| | - Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Disease, Immunobiology of HIV Group, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4TB, UK
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Disease, Immunobiology of HIV Group, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tobia Fantoni
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Spyros Lytras
- MRC-Centre for Virus Research, University of Glasgow, Glasgow G12 BQQ, UK
| | - Cecilia Di Genova
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4TB, UK
| | - Joseph Hughes
- MRC-Centre for Virus Research, University of Glasgow, Glasgow G12 BQQ, UK
| | | | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Disease, Immunobiology of HIV Group, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME4 4TB, UK
| |
Collapse
|
4
|
Yaugel-Novoa M, Bourlet T, Paul S. Role of the humoral immune response during COVID-19: guilty or not guilty? Mucosal Immunol 2022; 15:1170-1180. [PMID: 36195658 PMCID: PMC9530436 DOI: 10.1038/s41385-022-00569-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/07/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
Systemic and mucosal humoral immune responses are crucial to fight respiratory viral infections in the current pandemic of COVID-19 caused by the SARS-CoV-2 virus. During SARS-CoV-2 infection, the dynamics of systemic and mucosal antibody infections are affected by patient characteristics, such as age, sex, disease severity, or prior immunity to other human coronaviruses. Patients suffering from severe disease develop higher levels of anti-SARS-CoV-2 antibodies in serum and mucosal tissues than those with mild disease, and these antibodies are detectable for up to a year after symptom onset. In hospitalized patients, the aberrant glycosylation of anti-SARS-CoV-2 antibodies enhances inflammation-associated antibody Fc-dependent effector functions, thereby contributing to COVID-19 pathophysiology. Current vaccines elicit robust humoral immune responses, principally in the blood. However, they are less effective against new viral variants, such as Delta and Omicron. This review provides an overview of current knowledge about the humoral immune response to SARS-CoV-2, with a particular focus on the protective and pathological role of humoral immunity in COVID-19 severity. We also discuss the humoral immune response elicited by COVID-19 vaccination and protection against emerging viral variants.
Collapse
Affiliation(s)
- Melyssa Yaugel-Novoa
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Bourlet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France,CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
5
|
Bertoletti A, Le Bert N, Tan AT. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 2022; 55:1764-1778. [PMID: 36049482 PMCID: PMC9385766 DOI: 10.1016/j.immuni.2022.08.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increasing ability to evade neutralizing antibodies have emerged. Thus, earlier interest in defining the correlates of protection from infection, mainly mediated by humoral immunity, has shifted to correlates of protection from disease, which require a more comprehensive analysis of both humoral and cellular immunity. In this review, we summarized the evidence that supports the role of SARS-CoV-2-specific T cells induced by infection, by vaccination or by their combination (defined as hybrid immunity) in disease protection. We then analyzed the different epidemiological and virological variables that can modify the magnitude, function, and anatomical localization of SARS-CoV-2-specific T cells and their influence in the possible ability of T cells to protect the host from severe COVID-19 development.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Immunology Network, A(∗)STAR, Singapore, Singapore.
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
6
|
Wells DA, Cantoni D, Mayora‐Neto M, Genova CD, Sampson A, Ferrari M, Carnell G, Nadesalingam A, Smith P, Chan A, Raddi G, Castillo‐Olivares J, Baxendale H, Temperton N, Heeney JL. Human seasonal coronavirus neutralization and COVID-19 severity. J Med Virol 2022; 94:4820-4829. [PMID: 35705514 PMCID: PMC9349487 DOI: 10.1002/jmv.27937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease-2019 (COVID-19) pandemic, spread rapidly around the world causing high morbidity and mortality. However, there are four known, endemic seasonal coronaviruses in humans (HCoVs), and whether antibodies for these HCoVs play a role in severity of COVID-19 disease has generated a lot of interest. Of these seasonal viruses NL63 is of particular interest as it uses the same cell entry receptor as SARS-CoV-2. We use functional, neutralizing assays to investigate cross-reactive antibodies and their relationship with COVID-19 severity. We analyzed the neutralization of SARS-CoV-2, NL63, HKU1, and 229E in 38 COVID-19 patients and 62 healthcare workers, and a further 182 samples to specifically study the relationship between SARS-CoV-2 and NL63. We found that although HCoV neutralization was very common there was little evidence that these antibodies neutralized SARS-CoV-2. Despite no evidence in cross-neutralization, levels of NL63 neutralizing antibodies become elevated after exposure to SARS-CoV-2 through infection or following vaccination.
Collapse
Affiliation(s)
- David A. Wells
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
- DIOSynVaxUniversity of CambridgeCambridgeUK
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of PharmacyUniversity of KentMedwayUK
| | - Martin Mayora‐Neto
- Viral Pseudotype Unit, Medway School of PharmacyUniversity of KentMedwayUK
| | - Cecilia Di Genova
- Viral Pseudotype Unit, Medway School of PharmacyUniversity of KentMedwayUK
| | - Alexander Sampson
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
| | - Matteo Ferrari
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
- DIOSynVaxUniversity of CambridgeCambridgeUK
| | - George Carnell
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
| | - Angalee Nadesalingam
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
| | - Peter Smith
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
| | - Andrew Chan
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
| | | | | | | | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of PharmacyUniversity of KentMedwayUK
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, Lab of Viral ZoonoticsUniversity of CambridgeCambridgeUK
- DIOSynVaxUniversity of CambridgeCambridgeUK
| |
Collapse
|
7
|
Bertoletti A, Le Bert N, Tan AT. Act Early and at the Right Location: SARS-CoV-2 T Cell Kinetics and Tissue Localization. Int J Mol Sci 2022; 23:10679. [PMID: 36142588 PMCID: PMC9505719 DOI: 10.3390/ijms231810679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of new SARS-CoV-2 lineages able to escape antibodies elicited by infection or vaccination based on the Spike protein of the Wuhan isolates has reduced the ability of Spike-specific antibodies to protect previously infected or vaccinated individuals from infection. Therefore, the role played by T cells in the containment of viral replication and spread after infection has taken a more central stage. In this brief review, we will discuss the role played by T cells in the protection from COVID-19, with a particular emphasis on the kinetics of the T cell response and its localization at the site of primary infection.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | | |
Collapse
|
8
|
Balloux F, Tan C, Swadling L, Richard D, Jenner C, Maini M, van Dorp L. The past, current and future epidemiological dynamic of SARS-CoV-2. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac003. [PMID: 35872966 PMCID: PMC9278178 DOI: 10.1093/oxfimm/iqac003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, the agent of the COVID-19 pandemic, emerged in late 2019 in China, and rapidly spread throughout the world to reach all continents. As the virus expanded in its novel human host, viral lineages diversified through the accumulation of around two mutations a month on average. Different viral lineages have replaced each other since the start of the pandemic, with the most successful Alpha, Delta and Omicron variants of concern (VoCs) sequentially sweeping through the world to reach high global prevalence. Neither Alpha nor Delta was characterized by strong immune escape, with their success coming mainly from their higher transmissibility. Omicron is far more prone to immune evasion and spread primarily due to its increased ability to (re-)infect hosts with prior immunity. As host immunity reaches high levels globally through vaccination and prior infection, the epidemic is expected to transition from a pandemic regime to an endemic one where seasonality and waning host immunization are anticipated to become the primary forces shaping future SARS-CoV-2 lineage dynamics. In this review, we consider a body of evidence on the origins, host tropism, epidemiology, genomic and immunogenetic evolution of SARS-CoV-2 including an assessment of other coronaviruses infecting humans. Considering what is known so far, we conclude by delineating scenarios for the future dynamic of SARS-CoV-2, ranging from the good-circulation of a fifth endemic 'common cold' coronavirus of potentially low virulence, the bad-a situation roughly comparable with seasonal flu, and the ugly-extensive diversification into serotypes with long-term high-level endemicity.
Collapse
Affiliation(s)
- François Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Cedric Tan
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 138672 Singapore, Singapore
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Charlotte Jenner
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Mala Maini
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| |
Collapse
|
9
|
Imai K, Matsuoka M, Tabata S, Kitagawa Y, Nagura-Ikeda M, Kubota K, Fukada A, Takada T, Sato M, Noguchi S, Takeuchi S, Arakawa N, Miyoshi K, Saito Y, Maeda T. Cross-reactive humoral immune responses against seasonal human coronaviruses in COVID-19 patients with different disease severities. Int J Infect Dis 2021; 111:68-75. [PMID: 34407480 PMCID: PMC8364517 DOI: 10.1016/j.ijid.2021.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The cross-reactive antibody response against seasonal human coronaviruses (HCoVs) was evaluated according to disease severity in patients with COVID-19 in Japan. Methods: In total, 194 paired serum samples collected from 97 patients with COVID-19 (mild, 35; severe, 62) were analyzed on admission and during convalescence. IgG antibodies against the nucleocapsid (N) and spike (S) proteins of SARS-CoV-2 and four seasonal HCoVs (HCoV-NL63, -229E, -OC43, and -HKU1) were detected by enzyme-linked immunosorbent assays. Results: There was no difference in optical density (OD) values for seasonal HCoVs on admission between the severe and mild cases. In addition, a specific pattern of disease severity-associated OD values for HCoVs was not identified. Significant increases in OD values from admission to convalescence for HCoV-HKU1and -OC43 IgG-S, and for HCoV-NL63 and -229E IgG-N were observed in the severe cases. Significant differences were observed between the mild and severe cases for HCoV-HKU1 and -OC43 IgG-S OD values during convalescence. Correlations were found between the fold changes for HCoV-OC43 IgG-S OD values, and for SARS-CoV-2 IgG-S OD values, and C-reactive protein, lactate dehydrogenase, and lymphocyte levels. Conclusion: There was no association between the antibody titer for seasonal HCoVs in the early phase of COVID-19 and disease severity.
Collapse
Affiliation(s)
- Kazuo Imai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan; Self-Defense Forces Central Hospital, Tokyo, Japan.
| | - Masaru Matsuoka
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | | | - Yutaro Kitagawa
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | | | - Katsumi Kubota
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Ai Fukada
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Tomohito Takada
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Momoko Sato
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Sakiko Noguchi
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Shinichi Takeuchi
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Noriaki Arakawa
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | | | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan
| | - Takuya Maeda
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| |
Collapse
|
10
|
Prevalence of Neutralising Antibodies to HCoV-NL63 in Healthy Adults in Australia. Viruses 2021; 13:v13081618. [PMID: 34452482 PMCID: PMC8402802 DOI: 10.3390/v13081618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022] Open
Abstract
The COVID-19 pandemic has highlighted the importance of understanding the immune response to seasonal human coronavirus (HCoV) infections such as HCoV-NL63, how existing neutralising antibodies to HCoV may modulate responses to SARS-CoV-2 infection, and the utility of seasonal HCoV as human challenge models. Therefore, in this study we quantified HCoV-NL63 neutralising antibody titres in a healthy adult population using plasma from 100 blood donors in Australia. A microneutralisation assay was performed with plasma diluted from 1:10 to 1:160 and tested with the HCoV-NL63 Amsterdam-1 strain. Neutralising antibodies were detected in 71% of the plasma samples, with a median geometric mean titre of 14. This titre was similar to those reported in convalescent sera taken from individuals 3–7 months following asymptomatic SARS-CoV-2 infection, and 2–3 years post-infection from symptomatic SARS-CoV-1 patients. HCoV-NL63 neutralising antibody titres decreased with increasing age (R2 = 0.042, p = 0.038), but did not differ by sex. Overall, this study demonstrates that neutralising antibody to HCoV-NL63 is detectable in approximately 71% of the healthy adult population of Australia. Similar titres did not impede the use of another seasonal human coronavirus (HCoV-229E) in a human challenge model, thus, HCoV-NL63 may be useful as a human challenge model for more pathogenic coronaviruses.
Collapse
|
11
|
Schnierle BS. Reply to Ringlander et al. J Infect Dis 2021; 223:1833. [PMID: 33909039 DOI: 10.1093/infdis/jiab090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
|
12
|
Repeated Exposure to Subinfectious Doses of SARS-CoV-2 May Promote T Cell Immunity and Protection against Severe COVID-19. Viruses 2021; 13:v13060961. [PMID: 34067349 PMCID: PMC8224680 DOI: 10.3390/v13060961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Europe is experiencing a third wave of COVID-19 due to the spread of highly transmissible SARS-CoV-2 variants. A number of positive and negative factors constantly shape the rates of COVID-19 infections, hospitalization, and mortality. Among these factors, the rise in increasingly transmissible variants on one side and the effect of vaccinations on the other side create a picture deeply different from that of the first pandemic wave. Starting from the observation that in several European countries the number of COVID-19 infections in the second and third pandemic wave increased without a proportional rise in disease severity and mortality, we hypothesize the existence of an additional factor influencing SARS-CoV-2 dynamics. This factor consists of an immune defence against severe COVID-19, provided by SARS-CoV-2-specific T cells progressively developing upon natural exposure to low virus doses present in populated environments. As suggested by recent studies, low-dose viral particles entering the respiratory and intestinal tracts may be able to induce T cell memory in the absence of inflammation, potentially resulting in different degrees of immunization. In this scenario, non-pharmaceutical interventions would play a double role, one in the short term by reducing the detrimental spreading of SARS-CoV-2 particles, and one in the long term by allowing the development of a widespread (although heterogeneous and uncontrollable) form of immune protection.
Collapse
|