1
|
Lin X, Li H. Diverse processes in rotavirus vaccine development. Hum Vaccin Immunother 2025; 21:2475609. [PMID: 40126359 PMCID: PMC11934161 DOI: 10.1080/21645515.2025.2475609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Rotavirus is a major cause of severe diarrhea and mortality in children under five years of age, leading to approximately 128,500 deaths annually.1-3 Vaccination is the most effective strategy for preventing rotavirus infection. While two widely used vaccines, Rotarix and RotaTeq, have shown good efficacy in high-income countries, their effectiveness is lower in low- and middle-income countries due to factors such as malnutrition and poor sanitation.4-6 These challenges include complex vaccination schedules and high production costs. Researchers are working on novel vaccines, including inactivated virus and viral protein-based options, as well as virus-like particles and recombinant proteins.7-9 Improving vaccine stability and applicability is crucial for resource-limited settings, and global vaccination strategies are expected to significantly reduce infection burdens, improve child health, and contribute to the achievement of global health goals.10-14.
Collapse
Affiliation(s)
- Xiaochen Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Provincial Key Laboratory of Vaccine R&D for Major Infectious Diseases, Kunming, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Provincial Key Laboratory of Vaccine R&D for Major Infectious Diseases, Kunming, China
| |
Collapse
|
2
|
Kanai Y, Kotaki T, Sakai S, Ishisaka T, Matsuo K, Yoshida Y, Hirai K, Minami S, Kobayashi T. Rapid production of recombinant rotaviruses by overexpression of NSP2 and NSP5 genes with modified nucleotide sequences. J Virol 2024; 98:e0099624. [PMID: 39494903 PMCID: PMC11650980 DOI: 10.1128/jvi.00996-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Reverse genetics systems for rotaviruses (RV) facilitate the generation of genetically engineered RVs by transfection of 11 plasmids encoding 11 genomic viral RNA segments. In addition to viral genome expression, overexpression of NSP2 and NSP5 has been used to increase the rescue efficiency of recombinant RVs. Here, we showed that the overexpression of nucleotide sequence-modified NSP2 and NSP5 enabled the rapid and efficient production of recombinant RVs. Using improved reverse genetics, we established a reverse genetics system for human and bovine RV clinical isolates, as well as laboratory strains of bovine RV (NCDV and UK) and porcine RV (Gottfried). In addition, we rescued low-replicating recombinant RVs carrying a mutant NSP4 lacking the double-layered particle-binding domain, which was deficient in the efficient production of mature virions. These advancements in reverse genetics enabled the generation of molecular clones of RV clinical isolates and recombinant RVs harboring critical amino acid mutations, offering a versatile platform for investigating RV biology and pathogenesis.IMPORTANCERecombinant rotavirus (RV) synthesis via reverse genetics relies on both the viral propagation capacity and the efficiency of the experimental system. Since the establishment of our reverse genetics system, several enhancements have been implemented to augment the rescue efficiency. Nevertheless, challenges persist in generating RV clinical strains and recombinant viruses with low replication capacities. Notably, this improved reverse genetics system successfully facilitated the establishment of molecular clones of human and bovine RV clinical isolates. Fecal samples from patients with RV typically harbor quasi-species or, occasionally, multiple genotypes of RV. In the present study, we performed the genetic sequencing of clinical viral strains during the early propagation stages in cultured cells. Subsequently, infectious viruses were synthesized, allowing the characterization of circulating viruses in nature. This approach provides valuable insights into the genetic diversity and dynamics of RV populations and contributes to a more comprehensive understanding of viral pathogenesis and evolution.
Collapse
Affiliation(s)
- Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Satoko Sakai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshie Ishisaka
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kayoko Matsuo
- Kumamoto Prefectural Aso Livestock Hygiene Service Center, Aso, Japan
| | - Yukino Yoshida
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Katsuhisa Hirai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Kotaki T, Kanai Y, Onishi M, Minami S, Chen Z, Nouda R, Nurdin JA, Yamasaki M, Kobayashi T. Generation of single-round infectious rotavirus with a mutation in the intermediate capsid protein VP6. J Virol 2024; 98:e0076224. [PMID: 38837379 PMCID: PMC11265344 DOI: 10.1128/jvi.00762-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Rotavirus causes severe diarrhea in infants. Although live attenuated rotavirus vaccines are available, vaccine-derived infections have been reported, which warrants development of next-generation rotavirus vaccines. A single-round infectious virus is a promising vaccine platform; however, this platform has not been studied extensively in the context of rotavirus. Here, we aimed to develop a single-round infectious rotavirus by impairing the function of the viral intermediate capsid protein VP6. Recombinant rotaviruses harboring mutations in VP6 were rescued using a reverse genetics system. Mutations were targeted at VP6 residues involved in virion assembly. Although the VP6-mutated rotavirus expressed viral proteins, it did not produce progeny virions in wild-type cells; however, the virus did produce progeny virions in VP6-expressing cells. This indicates that the VP6-mutated rotavirus is a single-round infectious rotavirus. Insertion of a foreign gene, and replacement of the VP7 gene segment with that of human rotavirus clinical isolates, was successful. No infectious virions were detected in mice infected with the single-round infectious rotavirus. Immunizing mice with the single-round infectious rotavirus induced neutralizing antibody titers as high as those induced by wild-type rotavirus. Taken together, the data suggest that this single-round infectious rotavirus has potential as a safe and effective rotavirus vaccine. This system is also applicable for generation of safe and orally administrable viral vectors.IMPORTANCERotavirus, a leading cause of acute gastroenteritis in infants, causes an annual estimated 128,500 infant deaths worldwide. Although live attenuated rotavirus vaccines are available, they are replicable and may cause vaccine-derived infections. Thus, development of safe and effective rotavirus vaccine is important. In this study, we report the development of a single-round infectious rotavirus that can replicate only in cells expressing viral VP6 protein. We demonstrated that (1) the single-round infectious rotavirus did not replicate in wild-type cells or in mice; (2) insertion of foreign genes and replacement of the outer capsid gene were possible; and (3) it was as immunogenic as the wild-type virus. Thus, the mutated virus shows promise as a next-generation rotavirus vaccine. The system is also applicable to orally administrable viral vectors, facilitating development of vaccines against other enteric pathogens.
Collapse
Affiliation(s)
- Tomohiro Kotaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Megumi Onishi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Zelin Chen
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jeffery A. Nurdin
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Moeko Yamasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Plotkin SA, Offit P. Efficacy of Rotavirus Vaccines. Pediatr Infect Dis J 2024; 43:518-519. [PMID: 38506514 DOI: 10.1097/inf.0000000000004319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Affiliation(s)
| | - Paul Offit
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Carias C, Hartwig S, Kanibir N, Matthijnssens J, Tu Y. Letter to the Editor on Cross-Protection of RotaTeq. J Pediatr 2024; 268:113952. [PMID: 38336206 DOI: 10.1016/j.jpeds.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Affiliation(s)
| | | | - Nabi Kanibir
- Global Medical and Scientific Affairs, MSD International GmbH Luzern, Switzerland
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Research Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
6
|
Hamajima R, Lusiany T, Minami S, Nouda R, Nurdin JA, Yamasaki M, Kobayashi N, Kanai Y, Kobayashi T. A reverse genetics system for human rotavirus G2P[4]. J Gen Virol 2022; 103. [PMID: 36748482 DOI: 10.1099/jgv.0.001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rotaviruses (RVs) are an important cause of acute gastroenteritis in young children. Recently, versatile plasmid-based reverse genetics systems were developed for several human RV genotypes; however, these systems have not been developed for all commonly circulating human RV genotypes. In this study, we established a reverse genetics system for G2P[4] human RV strain HN126. Nucleotide sequence analysis, including that of the terminal ends of the viral double-stranded RNA genome, revealed that HN126 possessed a DS-1-like genotype constellation. Eleven plasmids, each encoding 11 gene segments of the RV genome, and expression plasmids encoding vaccinia virus RNA capping enzyme (D1R and D12L), Nelson Bay orthoreovirus FAST, and NSP2 and NSP5 of HN126, were transfected into BHK-T7 cells, and recombinant strain HN126 was generated. Using HN126 or simian RV strain SA11 as backbone viruses, reassortant RVs carrying the outer and intermediate capsid proteins (VP4, VP7 and VP6) of HN126 and/or SA11 (in various combinations) were generated. Viral replication analysis of the single, double and triple reassortant viruses suggested that homologous combination of the VP4 and VP7 proteins contributed to efficient virus infectivity and interaction between other viral or cellular proteins. Further studies of reassortant viruses between simian and other human RV strains will contribute to developing an appropriate model for human RV research, as well as suitable backbone viruses for generation of recombinant vaccine candidates.
Collapse
Affiliation(s)
- Rina Hamajima
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan.,Present address: Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Chikusa, Japan
| | - Tina Lusiany
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Shohei Minami
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Ryotaro Nouda
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Jeffery A Nurdin
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Moeko Yamasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuta Kanai
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Takeshi Kobayashi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Japan.,Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Antia A, Pinski AN, Ding S. Re-Examining Rotavirus Innate Immune Evasion: Potential Applications of the Reverse Genetics System. mBio 2022; 13:e0130822. [PMID: 35699371 PMCID: PMC9426431 DOI: 10.1128/mbio.01308-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rotaviruses represent one of the most successful pathogens in the world, with high infectivity and efficient transmission between the young of many animal species, including humans. To overcome host defenses, rotaviruses have evolved a plethora of strategies to effectively evade the innate immune response, establish initial infection in the small intestine, produce progeny, and shed into the environment. Previously, studying the roles and relative contributions of specific rotaviral factors in innate immune evasion had been challenging without a plasmid-only reverse genetics system. Although still in its infancy, current reverse genetics technology will help address important research questions regarding rotavirus innate immune evasion, host range restriction, and viral pathogenesis. In this review, we summarize the current knowledge about the antiviral host innate immune defense mechanisms, countermeasures of rotavirus-encoded factors, and strategies to better understand these interactions using the rotavirus reverse genetics system.
Collapse
Affiliation(s)
- Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amanda N. Pinski
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Kanai Y, Nouda R, Kobayashi T. [Reverse genetics systems for Reoviridae viruses]. Uirusu 2022; 72:55-62. [PMID: 37899230 DOI: 10.2222/jsv.72.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
|