1
|
Semancik CS, Whitworth HS, Price MA, Yun H, Postler TS, Zaric M, Kilianski A, Cooper CL, Kuteesa M, Talasila S, Malkevich N, Gupta SB, Francis SC. Seroprevalence of Antibodies to Filoviruses with Outbreak Potential in Sub-Saharan Africa: A Systematic Review to Inform Vaccine Development and Deployment. Vaccines (Basel) 2024; 12:1394. [PMID: 39772055 PMCID: PMC11726543 DOI: 10.3390/vaccines12121394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Orthoebolaviruses and orthomarburgviruses are filoviruses that can cause viral hemorrhagic fever and significant morbidity and mortality in humans. The evaluation and deployment of vaccines to prevent and control Ebola and Marburg outbreaks must be informed by an understanding of the transmission and natural history of the causative infections, but little is known about the burden of asymptomatic infection or undiagnosed disease. This systematic review of the published literature examined the seroprevalence of antibodies to orthoebolaviruses and orthomarburgviruses in sub-Saharan Africa. Methods: The review protocol was registered on PROSPERO (ID: CRD42023415358) and previously published. Eighty-seven articles describing 85 studies were included, of which seventy-six measured antibodies to orthoebolaviruses and forty-one measured antibodies to orthomarburgviruses. Results: The results highlight three central findings that may have implications for vaccine development and deployment. First, substantial antibody seropositivity to Ebola virus (EBOV) and Sudan virus (SUDV) was observed in populations from outbreak-affected areas (≤33% seroprevalence among general populations; ≤41% seroprevalence among healthcare workers and close contacts of disease cases). Second, antibody seropositivity to EBOV, SUDV, and Marburg virus (MARV) was observed among populations from areas without reported outbreaks, with seroprevalence ranging from <1 to 21%. Third, in Central and East Africa, MARV antibody seroprevalence was substantially lower than EBOV or SUDV antibody seroprevalence, even in outbreak-affected areas and in populations at a moderate or high risk of infection (with MARV seroprevalence mostly ranging from 0 to 3%). Conclusions: Whilst gaps remain in our understanding of the significance of antibody seropositivity in some settings and contexts, these findings may be important in considering target indications for novel filovirus vaccines, in defining study designs and strategies for demonstrating vaccine efficacy or effectiveness, and in planning and evaluating vaccine deployment strategies to prevent and control outbreaks.
Collapse
Affiliation(s)
- Christopher S. Semancik
- IAVI, 125 Broad St, New York, NY 10004, USA
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Matt A. Price
- IAVI, 125 Broad St, New York, NY 10004, USA
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Heejin Yun
- IAVI, 125 Broad St, New York, NY 10004, USA
| | - Thomas S. Postler
- Vaccine Design and Development Laboratory, IAVI, Brooklyn, NY 11220, USA
| | | | | | | | | | | | | | | | - Suzanna C. Francis
- IAVI, 125 Broad St, New York, NY 10004, USA
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
2
|
Nash RK, Bhatia S, Morgenstern C, Doohan P, Jorgensen D, McCain K, McCabe R, Nikitin D, Forna A, Cuomo-Dannenburg G, Hicks JT, Sheppard RJ, Naidoo T, van Elsland S, Geismar C, Rawson T, Leuba SI, Wardle J, Routledge I, Fraser K, Imai-Eaton N, Cori A, Unwin HJT. Ebola virus disease mathematical models and epidemiological parameters: a systematic review. THE LANCET. INFECTIOUS DISEASES 2024; 24:e762-e773. [PMID: 39127058 PMCID: PMC7616620 DOI: 10.1016/s1473-3099(24)00374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 08/12/2024]
Abstract
Ebola virus disease poses a recurring risk to human health. We conducted a systematic review (PROSPERO CRD42023393345) of Ebola virus disease transmission models and parameters published from database inception to July 7, 2023, from PubMed and Web of Science. Two people screened each abstract and full text. Papers were extracted with a bespoke Access database, 10% were double extracted. We extracted 1280 parameters and 295 models from 522 papers. Basic reproduction number estimates were highly variable, as were effective reproduction numbers, likely reflecting spatiotemporal variability in interventions. Random-effect estimates were 15·4 days (95% CI 13·2-17·5) for the serial interval, 8·5 days (7·7-9·2) for the incubation period, 9·3 days (8·5-10·1) for the symptom-onset-to-death delay, and 13·0 days (10·4-15·7) for symptom-onset-to-recovery. Common effect estimates were similar, albeit with narrower CIs. Case-fatality ratio estimates were generally high but highly variable, which could reflect heterogeneity in underlying risk factors. Although a substantial body of literature exists on Ebola virus disease models and epidemiological parameter estimates, many of these studies focus on the west African Ebola epidemic and are primarily associated with Zaire Ebola virus, which leaves a key gap in our knowledge regarding other Ebola virus species and outbreak contexts.
Collapse
Affiliation(s)
- Rebecca K Nash
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Sangeeta Bhatia
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Health Protection Research Unit in Modelling and Health Economics, London, UK; Modelling and Economics Unit, UK Health Security Agency, London, UK
| | - Christian Morgenstern
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Patrick Doohan
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - David Jorgensen
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Kelly McCain
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Ruth McCabe
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Department of Statistics, University of Oxford, Oxford, UK; Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Dariya Nikitin
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Alpha Forna
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Gina Cuomo-Dannenburg
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Joseph T Hicks
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Richard J Sheppard
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Tristan Naidoo
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Sabine van Elsland
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Cyril Geismar
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Thomas Rawson
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Sequoia Iris Leuba
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Jack Wardle
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Isobel Routledge
- Institute of Global Health Sciences, University of California, San Francisco, CA, USA
| | - Keith Fraser
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Natsuko Imai-Eaton
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Anne Cori
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Health Protection Research Unit in Modelling and Health Economics, London, UK
| | - H Juliette T Unwin
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; School of Mathematics, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Kainulainen MH, Harmon JR, Karaaslan E, Kyondo J, Whitesell A, Twongyeirwe S, Malenfant JH, Baluku J, Kofman A, Bergeron É, Waltenburg MA, Nyakarahuka L, Balinandi S, Cossaboom CM, Choi MJ, Shoemaker TR, Montgomery JM, Spiropoulou CF. A public, cross-reactive glycoprotein epitope confounds Ebola virus serology. J Med Virol 2024; 96:e29946. [PMID: 39370872 PMCID: PMC11874798 DOI: 10.1002/jmv.29946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Ebola disease (EBOD) in humans is a severe disease caused by at least four related viruses in the genus Orthoebolavirus, most often by the eponymous Ebola virus. Due to human-to-human transmission and incomplete success in treating cases despite promising therapeutic development, EBOD is a high priority in public health research. Yet despite almost 50 years since EBOD was first described, the sources of these viruses remain undefined and much remains to be understood about the disease epidemiology and virus emergence and spread. One important approach to improve our understanding is detection of antibodies that can reveal past human infections. However, serosurveys routinely describe seroprevalences that imply infection rates much higher than those clinically observed. Proposed hypotheses to explain this difference include existence of common but less pathogenic strains or relatives of these viruses, misidentification of EBOD as something else, and a higher proportion of subclinical infections than currently appreciated. The work presented here maps B-cell epitopes in the spike protein of Ebola virus and describes a single epitope that is cross-reactive with an antigen seemingly unrelated to orthoebolaviruses. Antibodies against this epitope appear to explain most of the unexpected reactivity towards the spike, arguing against common but unidentified infections in the population. Importantly, antibodies of cross-reactive donors from within and outside the known EBOD geographic range bound the same epitope. In light of this finding, it is plausible that epitope mapping enables broadly applicable specificity improvements in the field of serology.
Collapse
Affiliation(s)
- Markus H. Kainulainen
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R. Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elif Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jackson Kyondo
- VHF Diagnostics Laboratory, Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Amy Whitesell
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sam Twongyeirwe
- VHF Diagnostics Laboratory, Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jason H. Malenfant
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jimmy Baluku
- VHF Diagnostics Laboratory, Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Aaron Kofman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michelle A. Waltenburg
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Luke Nyakarahuka
- VHF Diagnostics Laboratory, Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Biosecurity, Ecosystems, and Veterinary Public Health, College of Veterinary Medicine, Animal Resources, and Biosecurity, Makerere University, Kampala, Uganda
| | - Stephen Balinandi
- VHF Diagnostics Laboratory, Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Caitlin M. Cossaboom
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mary J. Choi
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Trevor R. Shoemaker
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Moso MA, Lim CK, Williams E, Marshall C, McCarthy J, Williamson DA. Prevention and post-exposure management of occupational exposure to Ebola virus. THE LANCET. INFECTIOUS DISEASES 2024; 24:e93-e105. [PMID: 37722397 DOI: 10.1016/s1473-3099(23)00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 09/20/2023]
Abstract
There have been significant advances in the prevention and management of Ebola virus disease (EVD) caused by Zaire Ebola virus (ZEBOV), including the development of two effective vaccines, rVSV-ZEBOV and Ad26.ZEBOV/MVA-BN-Filo. In addition, ZEBOV monoclonal antibodies have become first-line therapy for EVD. However, the 2022-23 outbreak of Sudan Ebola virus (SUDV) in Uganda has highlighted the gap in current therapies and vaccines, whose efficacy is uncertain against non-ZEBOV species. Health-care and laboratory staff working in EVD treatment centres or Ebola virus diagnostic and research laboratories face unique risks relating to potential occupational exposure to Ebola viruses. Given the substantial morbidity and mortality associated with EVD, facilities should have strategies in place to manage occupational exposures, including consideration of post-exposure therapies. In this Review, we discuss currently available evidence for prevention and post-exposure prophylaxis of EVD, including therapies currently under evaluation for SUDV.
Collapse
Affiliation(s)
- Michael A Moso
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Chuan K Lim
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eloise Williams
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Caroline Marshall
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McCarthy
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Deborah A Williamson
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Kinganda-Lusamaki E, Whitmer S, Lokilo-Lofiko E, Amuri-Aziza A, Muyembe-Mawete F, Makangara-Cigolo JC, Makaya G, Mbuyi F, Whitesell A, Kallay R, Choi M, Pratt C, Mukadi-Bamuleka D, Kavunga-Membo H, Matondo-Kuamfumu M, Mambu-Mbika F, Ekila-Ifinji R, Shoemaker T, Stewart M, Eng J, Rajan A, Soke GN, Fonjungo PN, Otshudiema JO, Folefack GLT, Pukuta-Simbu E, Talundzic E, Shedroff E, Bokete JL, Legand A, Formenty P, Mores CN, Porzucek AJ, Tritsch SR, Kombe J, Tshapenda G, Mulangu F, Ayouba A, Delaporte E, Peeters M, Wiley MR, Montgomery JM, Klena JD, Muyembe-Tamfum JJ, Ahuka-Mundeke S, Mbala-Kingebeni P. 2020 Ebola virus disease outbreak in Équateur Province, Democratic Republic of the Congo: a retrospective genomic characterisation. THE LANCET. MICROBE 2024; 5:e109-e118. [PMID: 38278165 PMCID: PMC10849974 DOI: 10.1016/s2666-5247(23)00259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND The Democratic Republic of the Congo has had 15 Ebola virus disease (EVD) outbreaks, from 1976 to 2023. On June 1, 2020, the Democratic Republic of the Congo declared an outbreak of EVD in the western Équateur Province (11th outbreak), proximal to the 2018 Tumba and Bikoro outbreak and concurrent with an outbreak in the eastern Nord Kivu Province. In this Article, we assessed whether the 11th outbreak was genetically related to previous or concurrent EVD outbreaks and connected available epidemiological and genetic data to identify sources of possible zoonotic spillover, uncover additional unreported cases of nosocomial transmission, and provide a deeper investigation into the 11th outbreak. METHODS We analysed epidemiological factors from the 11th EVD outbreak to identify patient characteristics, epidemiological links, and transmission modes to explore virus spread through space, time, and age groups in the Équateur Province, Democratic Republic of the Congo. Trained field investigators and health professionals recorded data on suspected, probable, and confirmed cases, including demographic characteristics, possible exposures, symptom onset and signs and symptoms, and potentially exposed contacts. We used blood samples from individuals who were live suspected cases and oral swabs from individuals who were deceased to diagnose EVD. We applied whole-genome sequencing of 87 available Ebola virus genomes (from 130 individuals with EVD between May 19 and Sept 16, 2020), phylogenetic divergence versus time, and Bayesian reconstruction of phylogenetic trees to calculate viral substitution rates and study viral evolution. We linked the available epidemiological and genetic datasets to conduct a genomic and epidemiological study of the 11th EVD outbreak. FINDINGS Between May 19 and Sept 16, 2020, 130 EVD (119 confirmed and 11 probable) cases were reported across 13 Équateur Province health zones. The individual identified as the index case reported frequent consumption of bat meat, suggesting the outbreak started due to zoonotic spillover. Sequencing revealed two circulating Ebola virus variants associated with this outbreak-a Mbandaka variant associated with the majority (97%) of cases and a Tumba-like variant with similarity to the ninth EVD outbreak in 2018. The Tumba-like variant exhibited a reduced substitution rate, suggesting transmission from a previous survivor of EVD. INTERPRETATION Integrating genetic and epidemiological data allowed for investigative fact-checking and verified patient-reported sources of possible zoonotic spillover. These results demonstrate that rapid genetic sequencing combined with epidemiological data can inform responders of the mechanisms of viral spread, uncover novel transmission modes, and provide a deeper understanding of the outbreak, which is ultimately needed for infection prevention and control during outbreaks. FUNDING WHO and US Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Eddy Kinganda-Lusamaki
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo; TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, Montpellier, France
| | - Shannon Whitmer
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emmanuel Lokilo-Lofiko
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Adrienne Amuri-Aziza
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Francisca Muyembe-Mawete
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jean Claude Makangara-Cigolo
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | | | - Amy Whitesell
- Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Ruth Kallay
- Emergency Response and Recovery Branch USA, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mary Choi
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Catherine Pratt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daniel Mukadi-Bamuleka
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Hugo Kavunga-Membo
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Meris Matondo-Kuamfumu
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Fabrice Mambu-Mbika
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Richard Ekila-Ifinji
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Trevor Shoemaker
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Miles Stewart
- Johns Hopkins University Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Julia Eng
- Johns Hopkins University Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Abraham Rajan
- Johns Hopkins University Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Gnakub N Soke
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Kinshasa, Democratic Republic of the Congo
| | - Peter N Fonjungo
- Division of Global HIV and Tuberculosis, US Centers for Disease Control and Prevention, Kinshasa, Democratic Republic of the Congo
| | | | | | - Elisabeth Pukuta-Simbu
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo
| | - Emir Talundzic
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elizabeth Shedroff
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Anaïs Legand
- Health Emergencies Programme, WHO, Geneva, Switzerland
| | | | - Christopher N Mores
- Global Health Department, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Abigail J Porzucek
- Global Health Department, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Sarah R Tritsch
- Global Health Department, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - John Kombe
- Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | | | - Felix Mulangu
- Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Ahidjo Ayouba
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, Montpellier, France
| | - Eric Delaporte
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, Montpellier, France
| | - Martine Peeters
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement, INSERM, Montpellier, France
| | - Michael R Wiley
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA; PraesensBio, Omaha, NE, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John D Klena
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jean-Jacques Muyembe-Tamfum
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Steve Ahuka-Mundeke
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Placide Mbala-Kingebeni
- Pathogen Genomics Laboratory, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Service de Microbiologie, Cliniques Universitaires, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo.
| |
Collapse
|
6
|
Mukadi-Bamuleka D, Nkuba-Ndaye A, Mbala-Kingebeni P, Ahuka-Mundeke S, Muyembe-Tamfum JJ. Impact of Ebola epidemics on the daily operation of existing systems in Eastern Democratic Republic of the Congo: a brief review. J Med Econ 2024; 27:184-192. [PMID: 38240249 DOI: 10.1080/13696998.2024.2305009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
AIMS to provide insights into the recent Ebola virus disease (EVD) outbreaks on different aspects of daily life in the Democratic Republic of the Congo and propose possible solutions. METHODS We collected information regarding the effects of EVD outbreaks on existing systems in the eastern part of the Democratic Republic of the Congo (DRC). We searched the PubMed database using the terms "impact effect Ebola outbreak system", "Management Ebola Poor Resources Settings", "Health Economic Challenges Ebola" and "Economic impact Ebola systems." Only studies focusing on epidemiology, diagnostics, sequencing, vaccination, therapeutics, ecology, work force, governance, healthcare provision and health system, and social, political, and economic aspects were considered. The search included the electronic archives of EVD outbreak reports from government and partners. RESULTS EVD outbreaks negatively impacts the functions of countries. The disruption in activities is proportional to the magnitude of the epidemic and slows down the transport of goods, decreases the region's tourist appeal, and increases 'brain drain'. Most low- and medium-income countries, such as the DRC, do not have a long-term holistic emergency plan for unexpected situations or sufficient resources to adequately implement countermeasures against EVD outbreaks. Although the DRC has acquired sufficient expertise in diagnostics, genomic sequencing, administration of vaccines and therapeutics, clinical trials, and research activities, deployment, operation, and maintenance of these expertise and associated tools remains a concern. LIMITATIONS Despite the data search extension, additional reports addressing issues related to social aspects of EVD outbreaks in DRC were not retrieved. CONCLUSION National leadership has not yet taken the lead in strategic, operational, or financial aspects. Therefore, national leaders should double their efforts and awareness to encourage local fundraising, sufficient budget al.location, infrastructure construction, equipment provision, and staff training, to effectively support a holistic approach in response to outbreaks, providing effective results, and all types of research activities.
Collapse
Affiliation(s)
- Daniel Mukadi-Bamuleka
- Department of Virology, Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
- Rodolphe Mérieux INRB-Goma Laboratory, Institut National de Recherche Biomédicale (INRB), Goma, Democratic Republic of the Congo
- Service of Microbiology, Department of Medical Biology, Kinshasa Teaching School of Medicine, University of Kinshasa, Democratic Republic of the Congo
| | - Antoine Nkuba-Ndaye
- Department of Virology, Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
- Service of Microbiology, Department of Medical Biology, Kinshasa Teaching School of Medicine, University of Kinshasa, Democratic Republic of the Congo
| | - Placide Mbala-Kingebeni
- Department of Virology, Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
- Service of Microbiology, Department of Medical Biology, Kinshasa Teaching School of Medicine, University of Kinshasa, Democratic Republic of the Congo
| | - Steve Ahuka-Mundeke
- Department of Virology, Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
- Service of Microbiology, Department of Medical Biology, Kinshasa Teaching School of Medicine, University of Kinshasa, Democratic Republic of the Congo
| | - Jean-Jacques Muyembe-Tamfum
- Department of Virology, Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
- Service of Microbiology, Department of Medical Biology, Kinshasa Teaching School of Medicine, University of Kinshasa, Democratic Republic of the Congo
| |
Collapse
|