1
|
Macdonald R, Mahoney BJ, Soule J, Goring AK, Ford J, Loo JA, Cascio D, Clubb RT. The Shr receptor from Streptococcus pyogenes uses a cap and release mechanism to acquire heme-iron from human hemoglobin. Proc Natl Acad Sci U S A 2023; 120:e2211939120. [PMID: 36693107 PMCID: PMC9945957 DOI: 10.1073/pnas.2211939120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus) is a clinically important microbial pathogen that requires iron in order to proliferate. During infections, S. pyogenes uses the surface displayed Shr receptor to capture human hemoglobin (Hb) and acquires its iron-laden heme molecules. Through a poorly understood mechanism, Shr engages Hb via two structurally unique N-terminal Hb-interacting domains (HID1 and HID2) which facilitate heme transfer to proximal NEAr Transporter (NEAT) domains. Based on the results of X-ray crystallography, small angle X-ray scattering, NMR spectroscopy, native mass spectrometry, and heme transfer experiments, we propose that Shr utilizes a "cap and release" mechanism to gather heme from Hb. In the mechanism, Shr uses the HID1 and HID2 modules to preferentially recognize only heme-loaded forms of Hb by contacting the edges of its protoporphyrin rings. Heme transfer is enabled by significant receptor dynamics within the Shr-Hb complex which function to transiently uncap HID1 from the heme bound to Hb's β subunit, enabling the gated release of its relatively weakly bound heme molecule and subsequent capture by Shr's NEAT domains. These dynamics may maximize the efficiency of heme scavenging by S. pyogenes, enabling it to preferentially recognize and remove heme from only heme-loaded forms of Hb that contain iron.
Collapse
Affiliation(s)
- Ramsay Macdonald
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Jess Soule
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jordan Ford
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
2
|
Chatterjee N, Huang YS, Lyles KV, Morgan JE, Kauvar LM, Greer SF, Eichenbaum Z. Native Human Antibody to Shr Promotes Mice Survival After Intraperitoneal Challenge With Invasive Group A Streptococcus. J Infect Dis 2021; 223:1367-1375. [PMID: 32845315 DOI: 10.1093/infdis/jiaa540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A vaccine against group A Streptococcus (GAS) has been actively pursued for decades. The surface receptor Shr is vital in GAS heme uptake and provides an effective target for active and passive immunization. Here, we isolated human monoclonal antibodies (mAbs) against Shr and evaluated their efficacy and mechanism. METHODS We used a single B-lymphocyte screen to discover the mAbs TRL186 and TRL96. Interactions of the mAbs with whole cells, proteins, and peptides were investigated. Growth assays and cultured phagocytes were used to study the mAbs' impact on heme uptake and bacterial killing. Efficacy was tested in prophylactic and therapeutic vaccination using intraperitoneal mAb administration and GAS challenge. RESULTS Both TRL186 and TRL96 interact with whole GAS cells, recognizing the NTR and NEAT1 domains of Shr, respectively. Both mAbs promoted killing by phagocytes in vitro, but prophylactic administration of only TRL186 increased mice survival. TRL186 improved survival also in a therapeutic mode. TRL186 but not TRL96 also impeded Shr binding to hemoglobin and GAS growth on hemoglobin iron. CONCLUSIONS Interference with iron acquisition is central for TRL186 efficacy against GAS. This study supports the concept of antibody-based immunotherapy targeting the heme uptake proteins to combat streptococcal infections.
Collapse
Affiliation(s)
| | - Ya-Shu Huang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Julie E Morgan
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Susanna F Greer
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Chatterjee N, Cook LCC, Lyles KV, Nguyen HAT, Devlin DJ, Thomas LS, Eichenbaum Z. A Novel Heme Transporter from the Energy Coupling Factor Family Is Vital for Group A Streptococcus Colonization and Infections. J Bacteriol 2020; 202:e00205-20. [PMID: 32393520 PMCID: PMC7317044 DOI: 10.1128/jb.00205-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Group A streptococcus (GAS) produces millions of infections worldwide, including mild mucosal infections, postinfection sequelae, and life-threatening invasive diseases. During infection, GAS readily acquires nutritional iron from host heme and hemoproteins. Here, we identified a new heme importer, named SiaFGH, and investigated its role in GAS pathophysiology. The SiaFGH proteins belong to a group of transporters with an unknown ligand from the recently described family of energy coupling factors (ECFs). A siaFGH deletion mutant exhibited high streptonigrin resistance compared to the parental strain, suggesting that iron ions or an iron complex is the likely ligand. Iron uptake and inductively coupled plasma mass spectrometry (ICP-MS) studies showed that the loss of siaFGH did not impact GAS import of ferric or ferrous iron, but the mutant was impaired in using hemoglobin iron for growth. Analysis of cells growing on hemoglobin iron revealed a substantial decrease in the cellular heme content in the mutant compared to the complemented strain. The induction of the siaFGH genes in trans resulted in the induction of heme uptake. The siaFGH mutant exhibited a significant impairment in murine models of mucosal colonization and systemic infection. Together, the data show that SiaFGH is a new type of heme importer that is key for GAS use of host hemoproteins and that this system is imperative for bacterial colonization and invasive infection.IMPORTANCE ECF systems are new transporters that take up various vitamins, cobalt, or nickel with a high affinity. Here, we establish the GAS SiaFGH proteins as a new ECF module that imports heme and demonstrate its importance in virulence. SiaFGH is the first heme ECF system described in bacteria. We identified homologous systems in the genomes of related pathogens from the Firmicutes phylum. Notably, GAS and other pathogens that use a SiaFGH-type importer rely on host hemoproteins for a source of iron during infection. Hence, recognizing the function of this noncanonical ABC transporter in heme acquisition and the critical role that it plays in disease has broad implications.
Collapse
Affiliation(s)
| | - Laura C C Cook
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, New York, USA
| | - Kristin V Lyles
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Hong Anh T Nguyen
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Darius J Devlin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Lamar S Thomas
- Binghamton Biofilm Research Center, Department of Biology, Binghamton University, Binghamton, New York, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Herrera AL, Van Hove C, Hanson M, Dale JB, Tweten RK, Huber VC, Diel D, Chaussee MS. Immunotherapy targeting the Streptococcus pyogenes M protein or streptolysin O to treat or prevent influenza A superinfection. PLoS One 2020; 15:e0235139. [PMID: 32574205 PMCID: PMC7310742 DOI: 10.1371/journal.pone.0235139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections complicated by a bacterial infection are typically referred to as coinfections or superinfections. Streptococcus pyogenes, the group A streptococcus (GAS), is not the most common bacteria associated with influenza A virus (IAV) superinfections but did cause significant mortality during the 2009 influenza pandemic even though all isolates are susceptible to penicillin. One approach to improve the outcome of these infections is to use passive immunization targeting GAS. To test this idea, we assessed the efficacy of passive immunotherapy using antisera against either the streptococcal M protein or streptolysin O (SLO) in a murine model of IAV-GAS superinfection. Prophylactic treatment of mice with antiserum to either SLO or the M protein decreased morbidity compared to mice treated with non-immune sera; however, neither significantly decreased mortality. Therapeutic use of antisera to SLO decreased morbidity compared to mice treated with non-immune sera but neither antisera significantly reduced mortality. Overall, the results suggest that further development of antibodies targeting the M protein or SLO may be a useful adjunct in the treatment of invasive GAS diseases, including IAV-GAS superinfections, which may be particularly important during influenza pandemics.
Collapse
Affiliation(s)
- Andrea L. Herrera
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Christopher Van Hove
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Mary Hanson
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - James B. Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| | - Diego Diel
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States of America
| | - Michael S. Chaussee
- Division of Basic Biomedical Sciences, The Sanford School of Medicine of the University of South Dakota, Vermillion, SD, United States of America
| |
Collapse
|
5
|
Arul Joseph Raj NB, Selvaraj S, Jebaseelan J, Motarwar AA, Rathinavel Andiappan GP, Selvam GS. Intramuscular Immunization of Streptococcus pyogenes SF370 protein extract and identification of multiple virulence factors through proteomic profiling in RHD induced Balb/c mice. Microb Pathog 2020; 140:103888. [DOI: 10.1016/j.micpath.2019.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/15/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022]
|
6
|
Active and passive immunizations with HtsA, a streptococcal heme transporter protein, protect mice from subcutaneous group A Streptococcus infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:87-93. [PMID: 29807723 DOI: 10.1016/j.jmii.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/26/2017] [Accepted: 03/15/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND/PURPOSE HtsA (Streptococcus heme transporter A) is the lipoprotein component of the streptococcal heme ABC transporter (HtsABC). The aim of this study is to investigate whether the HtsA protein has immunoprotective effect against group A Streptococcus (GAS) infection in mice. METHODS The HtsA protein was purified by sequential chromatography on Ni-sepharose, DEAE-sepharose and Phenyl-sepharose, CD-1 mice were actively immunized with ALUM (control) or HtsA/ALUM, and passively immunized with control or anti-HtsA serum. Mice were challenged with GAS after immunization, and the survival rate, skin lesion size and systemic GAS dissemination were determined. RESULTS The HtsA gene was cloned, and the recombinant protein HtsA was successfully purified. HtsA has a strong antigenicity, and active immunization with the HtsA protein significantly protected mice against lethal subcutaneous GAS infection, inhibited invasion of the skin by GAS, and reduced GAS systemic dissemination in blood and organs. In addition, passive immunization with anti-HtsA serum also significantly protected mice against subcutaneous GAS infection, and inhibited invasion of the skin by GAS. CONCLUSION The results showed that both active and passive immunization with the HtsA protein protected mice against subcutaneous GAS infection, suggesting that HtsA may be a candidate of GAS vaccine to protect against GAS infection.
Collapse
|
7
|
Gogos A, Federle MJ. Modeling Streptococcus pyogenes Pharyngeal Colonization in the Mouse. Front Cell Infect Microbiol 2019; 9:137. [PMID: 31119108 PMCID: PMC6507483 DOI: 10.3389/fcimb.2019.00137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a human-restricted pathogen most commonly found in the posterior oropharynx of the human host. The bacterium is responsible for 600 million annual cases of pharyngitis globally and has been found to asymptomatically colonize the pharynxes of 4-30% of the population. As such, many studies have utilized animals as models in order to decipher bacterial and host elements that contribute to the bacterial-pharyngeal interaction and determine differences between acute infection and asymptomatic colonization. The aim of this review is to first describe both bacterial and host factors that are important for the pharyngeal persistence of GAS in humans, then to detail the bacterial and host factors that are important for colonization in murine model, and finally to compare the two in order to evaluate the strength of murine pharyngeal colonization as a model for the human-GAS pharyngeal interaction.
Collapse
Affiliation(s)
- Artemis Gogos
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Raynes JM, Young PG, Proft T, Williamson DA, Baker EN, Moreland NJ. Protein adhesins as vaccine antigens for Group A Streptococcus. Pathog Dis 2018; 76:4919728. [DOI: 10.1093/femspd/fty016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- J M Raynes
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - P G Young
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 5 Symonds Street, Auckland 1010, New Zealand
| | - T Proft
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - D A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - E N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 5 Symonds Street, Auckland 1010, New Zealand
| | - N J Moreland
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
9
|
|
10
|
Gandhi GD, Krishnamoorthy N, Motal UMA, Yacoub M. Towards developing a vaccine for rheumatic heart disease. Glob Cardiol Sci Pract 2017; 2017:e201704. [PMID: 28971103 PMCID: PMC5621712 DOI: 10.21542/gcsp.2017.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rheumatic heart disease (RHD) is the most serious manifestations of rheumatic fever, which is caused by group A Streptococcus (GAS or Streptococcus pyogenes) infection. RHD is an auto immune sequelae of GAS pharyngitis, rather than the direct bacterial infection of the heart, which leads to chronic heart valve damage. Although antibiotics like penicillin are effective against GAS infection, improper medical care such as poor patient compliance, overcrowding, poverty, and repeated exposure to GAS, leads to acute rheumatic fever and RHD. Thus, efforts have been put forth towards developing a vaccine. However, a potential global vaccine is yet to be identified due to the widespread diversity of S. pyogenes strains and cross reactivity of streptococcal proteins with host tissues. In this review, we discuss the available vaccine targets of S. pyogenes and the significance of in silico approaches in designing a vaccine for RHD.
Collapse
Affiliation(s)
- Geethanjali Devadoss Gandhi
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - Navaneethakrishnan Krishnamoorthy
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ussama M Abdel Motal
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar
| | - Magdi Yacoub
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Zhang X, Song Y, Li Y, Cai M, Meng Y, Zhu H. Immunization with Streptococcal Heme Binding Protein (Shp) Protects Mice Against Group A Streptococcus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 973:115-124. [PMID: 28190144 DOI: 10.1007/5584_2016_198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Streptococcal heme binding protein (Shp) is a surface protein of the heme acquisition system that is an essential iron nutrient in Group A Streptococcus (GAS). Here, we tested whether Shp immunization protects mice from subcutaneous infection. Mice were immunized subcutaneously with recombinant Shp and then challenged with GAS. The protective effects against GAS challenge were evaluated two weeks after the last immunization. Immunization with Shp elicited a robust IgG response, resulting in high anti-Shp IgG titers in the serum. Immunized mice had a higher survival rate and smaller skin lesions than adjuvant control mice. Furthermore, immunized mice had lower GAS numbers at the skin lesions and in the liver, spleen and lung. Histological analysis with Gram staining showed that GAS invaded the surrounding area of the inoculation sites in the skin in control mice, but not in immunized mice. Thus, Shp immunization enhances GAS clearance and reduces GAS skin invasion and systemic dissemination. These findings indicate that Shp is a protective antigen.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Yingli Song
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuanmeng Li
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Minghui Cai
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuan Meng
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
12
|
Srifuengfung S, Tribuddharat C, Sapcharoen S, Nitayanon P. Prevalence of the M Protein Gene in Group C and Group G Streptococci Isolated from Patients in Thailand. Jpn J Infect Dis 2016; 70:108-110. [PMID: 27169946 DOI: 10.7883/yoken.jjid.2015.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We surveyed group C and group G β-hemolytic streptococci for emm and emmL (emm -like) genes which encode the M protein, as well as determined their antimicrobial susceptibilities. A total of 97 isolates 79 GCS/GGS isolates and 18 isolates from other groups were tested for the M protein gene by PCR. Focusing on invasive infections with group A (GAS), group C (GCS), and group G (GGS) β-hemolytic streptococci isolated from blood, the M protein gene was found in 90.0%, 84.6%, and 78.3% of isolates, respectively. The hypervariable N terminal region of the emm was sequenced from 62 isolates, and 26 types of the emm gene were identified. Based on these results, type emm222.2 may be endemic to Thailand. The results of antimicrobial susceptibility testing of groups C, G, and non-groups A to G isolates indicated high susceptibility (range 82-100%) to penicillin, cefotaxime, chloramphenicol, clindamycin, erythromycin, linezolid, ofloxacin, and vancomycin, whereas the isolates showed low susceptibility (range 0-15.6%) to tetracycline.
Collapse
Affiliation(s)
- Somporn Srifuengfung
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | | | | | | |
Collapse
|
13
|
Comparative epidemiology of Streptococcus pyogenes emm-types causing invasive and noninvasive infections in French children by use of high-resolution melting-polymerase chain reaction. Pediatr Infect Dis J 2015; 34:557-61. [PMID: 25973933 DOI: 10.1097/inf.0000000000000677] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study aims to analyze the epidemiology of Group A streptococci (GAS) emm-types causing invasive and noninvasive infections in French children. METHODS From September 2009 to May 2011, we analyzed GAS isolates from 585 pharyngitis, 125 invasive infections and, for the first time in France, 32 healthy carriers. M protein gene (emm) typing of the isolates was carried out by a new rapid technique, combining 3 multiplex-polymerase chain reactions (PCRs) coupled to high-resolution melting (HRM) curves, able to detect 13 major emm-types (emm 1, 3, 4, 6, 11, 12, 22, 28, 75, 77, 87, 89 and 102). RESULTS GAS belonging to emm-type 1 were more frequently found among invasive infections than among pharyngitis (24.0% vs. 11.5%, P < 0.001); emm 4 and 89 were more common in pharyngitis than in invasive infections (emm-type 4, 17.4% vs. 6.4%, P = 0.002 and emm-type 89, 9.9% vs. 2.4%, P = 0.006, respectively) and emm 3 and 4 were more common in cases of pharyngitis associated with scarlet fever (21.6% vs. 6.0%, P < 0.001 and 29.3% vs. 14.5%, P < 0.001, respectively). CONCLUSION HRM method enables the rapid emm-typing of a large number of isolates in epidemiological studies. Comparison of GAS causing invasive and noninvasive infections in the same population of children displays an unbalanced repartition of emm-types.
Collapse
|
14
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
15
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
16
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 604] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
17
|
Eichenbaum Z. The streptococcal hemoprotein receptor: a moonlighting protein or a virulence factor? Virulence 2012; 3:553-5. [PMID: 23154285 DOI: 10.4161/viru.22440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The β-hemolytic group A streptococcus (GAS) is a major pathogen that readily uses hemoglobin to satisfy its requirements for iron. The streptococcal hemoprotein receptor in GAS plays a central role in heme utilization and binds fibronectin and laminin in vitro. Shr inactivation attenuates the virulent M1T1 GAS strain in two murine infection models and reduces bacterial growth in blood and binding to laminin. Shr impact on the globally disseminated M1T1 strain underscores the importance of heme uptake in GAS pathogenesis and raises the possibility of targeting heme-uptake proteins in the development of new methods to combat GAS infections.
Collapse
|
18
|
Dahesh S, Nizet V, Cole JN. Study of streptococcal hemoprotein receptor (Shr) in iron acquisition and virulence of M1T1 group A streptococcus. Virulence 2012; 3:566-75. [PMID: 23076332 DOI: 10.4161/viru.21933] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus, GAS) is a human bacterial pathogen of global significance, causing severe invasive diseases associated with serious morbidity and mortality. To survive within the host and establish an infection, GAS requires essential nutrients, including iron. The streptococcal hemoprotein receptor (Shr) is a surface-localized GAS protein that binds heme-containing proteins and extracellular matrix components. In this study, we employ targeted allelic exchange mutagenesis to investigate the role of Shr in the pathogenesis of the globally disseminated serotype M1T1 GAS. The shr mutant exhibited a growth defect in iron-restricted medium supplemented with ferric chloride, but no significant differences were observed in neutrophil survival, antimicrobial peptide resistance, cell surface charge, fibronectin-binding or adherence to human epithelial cells and keratinocytes, compared with wild-type. However, the shr mutant displayed a reduction in human blood proliferation, laminin-binding capacity and was attenuated for virulence in in vivo models of skin and systemic infection. We conclude that Shr augments GAS adherence to laminin, an important extracellular matrix attachment component. Furthermore, Shr-mediated iron uptake contributes to GAS growth in human blood, and is required for full virulence of serotype M1T1 GAS in mouse models of invasive disease.
Collapse
Affiliation(s)
- Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
19
|
Antigen targeting to major histocompatibility complex class II with streptococcal mitogenic exotoxin Z-2 M1, a superantigen-based vaccine carrier. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:574-86. [PMID: 22301693 DOI: 10.1128/cvi.05446-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcal mitogenic exotoxin Z-2 (SMEZ-2) is a streptococcal superantigen that primarily stimulates human T cells bearing Vβ8 and mouse T cells bearing Vβ11. Mutagenesis of T cell receptor (TCR)-binding residues (W75L, K182Q, D42C) produced a mutant called M1 that was >10(5)-fold less active toward human peripheral blood lymphocytes and splenocytes from transgenic mice that express human CD4 and either human HLA-DR3-DQ2 or HLA-DR4-DQ8. Similarly, cytokine production in response to M1 in lymphocyte culture was rendered undetectable, and no change in the frequency of Vβ11-bearing T cells in mice receiving M1 was observed. M1 toxoid was tested as a potential vaccine conjugate. Vaccination with 1 to 10 μg M1 conjugated to ovalbumin (M1-ovalbumin) resulted in more rapid and quantitatively higher levels of anti-ovalbumin IgG, with endpoint titers being 1,000- to 10,000-fold greater than those in animals immunized with unconjugated ovalbumin. Substantially higher levels of anti-ovalbumin IgG were observed in mice transgenic for human major histocompatibility complex (MHC) class II. Substitution of M1 with an MHC class II binding mutant (DM) eliminated enhanced immunity, suggesting that M1 enhanced the delivery of antigen via MHC class II-positive antigen-presenting cells that predominate within lymphoid tissue. Immunization of animals with a conjugate consisting of M1 and ovalbumin peptide from positions 323 to 339 generated levels of anti-peptide IgG 100-fold higher than those in animals immunized with peptide alone. Coupling of a TCR-defective superantigen toxoid presents a new strategy for conjugate vaccines with the additional benefit of targeted delivery to MHC class II-bearing cells.
Collapse
|
20
|
Henningham A, Gillen CM, Walker MJ. Group a streptococcal vaccine candidates: potential for the development of a human vaccine. Curr Top Microbiol Immunol 2012; 368:207-42. [PMID: 23250780 DOI: 10.1007/82_2012_284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently there is no commercial Group A Streptococcus (GAS; S. pyogenes) vaccine available. The development of safe GAS vaccines is challenging, researchers are confronted with obstacles such as the occurrence of many unique serotypes (there are greater than 150 M types), antigenic variation within the same serotype, large variations in the geographical distribution of serotypes, and the production of antibodies cross-reactive with human tissue which can lead to host auto-immune disease. Cell wall anchored, cell membrane associated, secreted and anchorless proteins have all been targeted as GAS vaccine candidates. As GAS is an exclusively human pathogen, the quest for an efficacious vaccine is further complicated by the lack of an animal model which mimics human disease and can be consistently and reproducibly colonized by multiple GAS strains.
Collapse
Affiliation(s)
- Anna Henningham
- School of Chemistry and Molecular Biosciences and Australian Infectious Disease Research Centre, University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
21
|
Pontes DS, de Azevedo MSP, Chatel JM, Langella P, Azevedo V, Miyoshi A. Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems. Protein Expr Purif 2011; 79:165-75. [PMID: 21704169 DOI: 10.1016/j.pep.2011.06.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 11/30/2022]
Abstract
Lactic acid bacteria (LAB), widely used in the food industry, are present in the intestine of most animals, including humans. The potential use of these bacteria as mucosal delivery vehicles for vaccinal, medical or technological use has been extensively investigated. Lactococcus lactis, a LAB species, is a potential candidate for the production of biologically useful proteins and for plasmid DNA delivery to eukaryotic cells. Several delivery systems have been developed to target heterologous proteins to a specific cell location (i.e., cytoplasm, cell wall or extracellular medium) and more recently to efficiently transfer DNA to eukaryotic cells. A promising application of L. lactis is its use for the development of live mucosal vaccines. Here, we have reviewed the expression of heterologous protein and the various delivery systems developed for L. lactis, as well as its use as an oral vaccine carrier.
Collapse
Affiliation(s)
- Daniela Santos Pontes
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brazil
| | | | | | | | | | | |
Collapse
|