1
|
Dowd A. Elucidating Cellular Metabolism and Protein Difference Data from DIGE Proteomics Experiments Using Enzyme Assays. Methods Mol Biol 2023; 2596:399-419. [PMID: 36378453 DOI: 10.1007/978-1-0716-2831-7_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Assays for measuring enzyme activity can be useful tools for proteomics applications. Enzyme testing can be performed to validate an experimental system prior to a difference gel electrophoresis (DIGE) proteomic experiment and can also be utilized as an integral part of multifaceted experiment in conjunction with DIGE. Data from enzyme tests can be used to corroborate results of DIGE proteomic experiments where an enzyme or enzymes are demonstrated by DIGE to be differentially expressed. Enzyme testing can also be utilized to support data from DIGE experiments that demonstrate metabolic changes in a biological system. The different types of enzyme assays that can be performed in conjunction with DIGE experiments are reviewed alongside a discussion of experimental approaches for designing enzyme assays.
Collapse
Affiliation(s)
- Andrew Dowd
- Croda Europe Limited, Daresbury, Cheshire, UK.
| |
Collapse
|
2
|
Crossen AJ, Ward RA, Reedy JL, Surve MV, Klein BS, Rajagopal J, Vyas JM. Human Airway Epithelium Responses to Invasive Fungal Infections: A Critical Partner in Innate Immunity. J Fungi (Basel) 2022; 9:40. [PMID: 36675861 PMCID: PMC9862202 DOI: 10.3390/jof9010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The lung epithelial lining serves as the primary barrier to inhaled environmental toxins, allergens, and invading pathogens. Pulmonary fungal infections are devastating and carry high mortality rates, particularly in those with compromised immune systems. While opportunistic fungi infect primarily immunocompromised individuals, endemic fungi cause disease in immune competent and compromised individuals. Unfortunately, in the case of inhaled fungal pathogens, the airway epithelial host response is vastly understudied. Furthering our lack of understanding, very few studies utilize primary human models displaying pseudostratified layers of various epithelial cell types at air-liquid interface. In this review, we focus on the diversity of the human airway epithelium and discuss the advantages and disadvantages of oncological cell lines, immortalized epithelial cells, and primary epithelial cell models. Additionally, the responses by human respiratory epithelial cells to invading fungal pathogens will be explored. Future investigations leveraging current human in vitro model systems will enable identification of the critical pathways that will inform the development of novel vaccines and therapeutics for pulmonary fungal infections.
Collapse
Affiliation(s)
- Arianne J. Crossen
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Manalee V. Surve
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bruce S. Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Machata S, Müller MM, Lehmann R, Sieber P, Panagiotou G, Carvalho A, Cunha C, Lagrou K, Maertens J, Slevogt H, Jacobsen ID. Proteome analysis of bronchoalveolar lavage fluids reveals host and fungal proteins highly expressed during invasive pulmonary aspergillosis in mice and humans. Virulence 2021; 11:1337-1351. [PMID: 33043780 PMCID: PMC7549978 DOI: 10.1080/21505594.2020.1824960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a severe infection that is difficult to diagnose due to the ubiquitous presence of fungal spores, the underlying diseases of risk patients, and limitations of currently available markers. In this study, we performed a comprehensive liquid chromatography tandem mass spectrometry (LC-MS/MS)-based identification of host and fungal proteins expressed during IPA in mice and humans. The proteomic analysis of bronchoalveolar lavage samples of individual IPA and control cases allowed the description of common host factors that had significantly increased abundance in both infected animals and IPA patients compared to their controls. Although increased levels of these individual host proteins might not be sufficient to distinguish bacterial from fungal infection, a combination of these markers might be beneficial to improve diagnosis. We also identified 16 fungal proteins that were specifically detected during infection and may be valuable candidates for biomarker evaluation.
Collapse
Affiliation(s)
- Silke Machata
- Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute , Jena, Germany
| | - Mario M Müller
- Septomics Research Centre, Jena University Hospital , Jena, Germany
| | - Roland Lehmann
- Septomics Research Centre, Jena University Hospital , Jena, Germany
| | - Patricia Sieber
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute , Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute , Jena, Germany.,School of the Biological Sciences, Faculty of Sciences, The University of Hong Kong , Hong Kong, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong, China
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven , Leuven, Belgium.,Clinical Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven , Leuven, Belgium
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven , Leuven, Belgium.,Department of Hematology, University Hospitals Leuven , Leuven, Belgium
| | - Hortense Slevogt
- Septomics Research Centre, Jena University Hospital , Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute , Jena, Germany.,Institute for Microbiology, Friedrich-Schiller-University Jena , Jena, Germany
| |
Collapse
|
4
|
Human Corneal Epithelial Cells Internalize Aspergillus flavus Spores by Actin-Mediated Endocytosis. Infect Immun 2021; 89:IAI.00794-20. [PMID: 33753415 DOI: 10.1128/iai.00794-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Human corneal epithelial (HCE) cells play a significant role in the innate immune response by secreting cytokines and antimicrobial peptides when they encounter fungal pathogens. But the detailed mechanism of attachment and engulfment of the fungal conidia by HCE cells is not well understood. Here, we show the phagocytosis of Aspergillus flavus conidia by RCB2280 cells and primary HCE cultures using confocal microscopy and proteomic analysis of conidium-containing phagosomes. Phalloidin staining showed actin polymerization, leading to an actin ring around engulfed conidia. Cytochalasin D inhibited the actin-mediated endocytosis of the conidia. Immunolabeling of the early endosomal markers CD71 and early endosomal antigen (EEA1) and the late endosomal markers lysosome-associated membrane protein 1 (LAMP1), Rab7, and cathepsin G showed that endosomal proteins were recruited to the site of conidia and showed maturation of the conidium-containing phagosomes. Lysotracker red DND 99 labeling showed the acidification of the phagosomes containing conidia. Phagosome-specific proteome analysis confirmed the recruitment of various phagosomal and endosomal proteins to the conidium-containing phagosomes. These results show that the ocular surface epithelium contributes actively to antifungal defense by the phagocytosis of invading fungal conidia.
Collapse
|
5
|
Bigot J, Guillot L, Guitard J, Ruffin M, Corvol H, Balloy V, Hennequin C. Bronchial Epithelial Cells on the Front Line to Fight Lung Infection-Causing Aspergillus fumigatus. Front Immunol 2020; 11:1041. [PMID: 32528481 PMCID: PMC7257779 DOI: 10.3389/fimmu.2020.01041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that can be pathogenic for humans, wherein it is responsible for a large variety of clinical forms ranging from allergic diseases to life-threatening disseminated infections. The contamination occurs by inhalation of conidia present in the air, and the first encounter of this fungus in the human host is most likely with the bronchial epithelial cells. Although alveolar macrophages have been widely studied in the Aspergillus–lung interaction, increasing evidence suggests that bronchial epithelium plays a key role in responding to the fungus. This review focuses on the innate immune response of the bronchial epithelial cells against A. fumigatus, the predominant pathogenic species. We have also detailed the molecular interactants and the effects of the different modes of interaction between these cells and the fungus.
Collapse
Affiliation(s)
- Jeanne Bigot
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Parasitologie-Mycologie, Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Juliette Guitard
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Parasitologie-Mycologie, Paris, France
| | - Manon Ruffin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Trousseau, Service de Pneumologie Pédiatrique, Paris, France
| | - Viviane Balloy
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
| | - Christophe Hennequin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Parasitologie-Mycologie, Paris, France
| |
Collapse
|
6
|
Molloy K, Cagney G, Dillon ET, Wynne K, Greene CM, McElvaney NG. Impaired Airway Epithelial Barrier Integrity in Response to Stenotrophomonas maltophilia Proteases, Novel Insights Using Cystic Fibrosis Bronchial Epithelial Cell Secretomics. Front Immunol 2020; 11:198. [PMID: 32161586 PMCID: PMC7053507 DOI: 10.3389/fimmu.2020.00198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can chronically colonize the lungs of people with cystic fibrosis (CF) and is associated with lethal pulmonary hemorrhage in immunocompromised patients. Its secreted virulence factors include the extracellular serine proteases StmPR1, StmPR2, and StmPR3. To explore the impact of secreted virulence determinants on pulmonary mucosal defenses in CF, we examined the secretome of human CFBE41o- bronchial epithelial cells in response to treatment with S. maltophilia K279a cell culture supernatant (CS) using a liquid-chromatography-tandem mass spectrometry (LC-MS/MS) based label-free quantitative (LFQ) shotgun proteomics approach for global profiling of the cell secretome. Secretome analysis identified upregulated pathways mainly relating to biological adhesion and epithelial cell signaling in infection, whereas no specific pathways relating to the immune response were enriched. Further exploration of the potentially harmful effects of K279a CS on CF bronchial epithelial cells, demonstrated that K279a CS caused CFBE41o- cell condensation and detachment, reversible by the serine protease inhibitor PMSF. K279a CS also decreased trans-epithelial electrical resistance in CFBE41o- cell monolayers suggestive of disruption of tight junction complexes (TJC). This finding was corroborated by an observed increase in fluorescein isothiocyanate (FITC) dextran permeability and by demonstrating PMSF-sensitive degradation of the tight junction proteins ZO-1 and occludin, but not JAM-A or claudin-1. These observations demonstrating destruction of the CFBE41o- TJC provide a novel insight regarding the virulence of S. maltophilia and may explain the possible injurious effects of this bacterium on the CF bronchial epithelium and the pathogenic mechanism leading to lethal pulmonary hemorrhage.
Collapse
Affiliation(s)
- Kevin Molloy
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Eugene T Dillon
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Kieran Wynne
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Catherine M Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Noel G McElvaney
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Jude J, Botelho D, Karmacharya N, Cao GY, Jester W, Panettieri RA. Salicylic acid amplifies Carbachol-induced bronchoconstriction in human precision-cut lung slices. Respir Res 2019; 20:72. [PMID: 30971247 PMCID: PMC6458705 DOI: 10.1186/s12931-019-1034-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Asthma exacerbations evoke emergency room visits, progressive loss of lung function and increased mortality. Environmental and industrial toxicants exacerbate asthma, although the underlying mechanisms are unknown. We assessed whether 3 distinct toxicants, salicylic acid (SA), toluene diisocyanate (TDI), and 1-chloro-2,4-dinitrobenzene (DNCB) induced airway hyperresponsiveness (AHR) through modulating excitation-contraction coupling in human airway smooth muscle (HASM) cells. The toxicants include a non-sensitizing irritant (SA), respiratory sensitizer (TDI) and dermal sensitizer (DNCB), respectively. We hypothesized that these toxicants induce AHR by modulating excitation-contraction (EC) coupling in airway smooth muscle (ASM) cells. METHODS Carbachol-induced bronchoconstriction was measured in precision-cut human lung slices (hPCLS) following exposure to SA, TDI, DNCB or vehicle. Culture supernatants of hPCLS were screened for mediator release. In HASM cells treated with the toxicants, surrogate readouts of EC coupling were measured by phosphorylated myosin light chain (pMLC) and agonist-induced Ca2+ mobilization ([Ca2+]i). In addition, Nrf-2-dependent antioxidant response was determined by NAD(P) H quinone oxidoreductase 1 (NQO1) expression in HASM cells. RESULTS In hPCLS, SA, but not TDI or DNCB, potentiated carbachol-induced bronchoconstriction. The toxicants had little effect on release of inflammatory mediators, including IL-6, IL-8 and eotaxin from hPCLS. In HASM cells, TDI amplified carbachol-induced MLC phosphorylation. The toxicants also had little effect on agonist-induced [Ca2+]i. CONCLUSION: SA, a non-sensitizing irritant, amplifies agonist-induced bronchoconstriction in hPCLS via mechanisms independent of inflammation and Ca2+ homeostasis in HASM cells. The sensitizers TDI and DNCB, had little effect on bronchoconstriction or inflammatory mediator release in hPCLS. IMPLICATIONS Our findings suggest that non-sensitizing irritant salicylic acid may evoke AHR and exacerbate symptoms in susceptible individuals or in those with underlying lung disease.
Collapse
Affiliation(s)
- Joseph Jude
- Rutgers Institute for Translational Medicine and Science (RITMS), Rutgers, The State University of New Jersey, Rm# 4276, 89 French Street, New Brunswick, NJ08901, USA.
| | - Danielle Botelho
- Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, New Jersey, USA
| | - Nikhil Karmacharya
- Rutgers Institute for Translational Medicine and Science (RITMS), Rutgers, The State University of New Jersey, Rm# 4276, 89 French Street, New Brunswick, NJ08901, USA
| | - Gao Yuan Cao
- Rutgers Institute for Translational Medicine and Science (RITMS), Rutgers, The State University of New Jersey, Rm# 4276, 89 French Street, New Brunswick, NJ08901, USA
| | - William Jester
- Rutgers Institute for Translational Medicine and Science (RITMS), Rutgers, The State University of New Jersey, Rm# 4276, 89 French Street, New Brunswick, NJ08901, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science (RITMS), Rutgers, The State University of New Jersey, Rm# 4276, 89 French Street, New Brunswick, NJ08901, USA
| |
Collapse
|
8
|
Toor A, Culibrk L, Singhera GK, Moon KM, Prudova A, Foster LJ, Moore MM, Dorscheid DR, Tebbutt SJ. Transcriptomic and proteomic host response to Aspergillus fumigatus conidia in an air-liquid interface model of human bronchial epithelium. PLoS One 2018; 13:e0209652. [PMID: 30589860 PMCID: PMC6307744 DOI: 10.1371/journal.pone.0209652] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Aspergillus fumigatus (A. fumigatus) is a wide-spread fungus that is a potent allergen in hypersensitive individuals but also an opportunistic pathogen in immunocompromised patients. It reproduces asexually by releasing airborne conidiospores (conidia). Upon inhalation, fungal conidia are capable of reaching the airway epithelial cells (AECs) in bronchial and alveolar tissues. Previous studies have predominantly used submerged monolayer cultures for studying this host-pathogen interaction; however, these cultures do not recapitulate the mucocililary differentiation phenotype of the in vivo epithelium in the respiratory tract. Thus, the aim of this study was to use well-differentiated primary human bronchial epithelial cells (HBECs) grown at the air-liquid interface (ALI) to determine their transcriptomic and proteomic responses following interaction with A. fumigatus conidia. We visualized conidial interaction with HBECs using confocal laser scanning microscopy (CLSM), and applied NanoString nCounter and shotgun proteomics to assess gene expression changes in the human cells upon interaction with A. fumigatus conidia. Western blot analysis was used to assess the expression of top three differentially expressed proteins, CALR, SET and NUCB2. CLSM showed that, unlike submerged monolayer cultures, well-differentiated ALI cultures of primary HBECs were estimated to internalize less than 1% of bound conidia. Nevertheless, transcriptomic and proteomic analyses revealed numerous differentially expressed host genes; these were enriched for pathways including apoptosis/autophagy, translation, unfolded protein response and cell cycle (up-regulated); complement and coagulation pathways, iron homeostasis, nonsense mediated decay and rRNA binding (down-regulated). CALR and SET were confirmed to be up-regulated in ALI cultures of primary HBECs upon exposure to A. fumigatus via western blot analysis. Therefore, using transcriptomics and proteomics approaches, ALI models recapitulating the bronchial epithelial barrier in the conductive zone of the respiratory tract can provide novel insights to the molecular response of bronchial epithelial cells upon exposure to A. fumigatus conidia.
Collapse
Affiliation(s)
- Amreen Toor
- Experimental Medicine, University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
| | - Luka Culibrk
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
| | - Gurpreet K. Singhera
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Anna Prudova
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Margo M. Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Delbert R. Dorscheid
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada
| | - Scott J. Tebbutt
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul’s Hospital, Vancouver, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, Canada
| |
Collapse
|
9
|
Richard N, Marti L, Varrot A, Guillot L, Guitard J, Hennequin C, Imberty A, Corvol H, Chignard M, Balloy V. Human Bronchial Epithelial Cells Inhibit Aspergillus fumigatus Germination of Extracellular Conidia via FleA Recognition. Sci Rep 2018; 8:15699. [PMID: 30356167 PMCID: PMC6200801 DOI: 10.1038/s41598-018-33902-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/06/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that may act as an opportunistic pathogen causing a variety of diseases, including asthma or allergic bronchopulmonary aspergillosis, and infection, ranging from asymptomatic colonization to invasive pulmonary form, especially in immunocompromised patients. This fungus is characterized by different morphotypes including conidia which are the infective propagules able to germinate into hyphae. Due to their small size (2–3 µm), conidia released in the air can reach the lower respiratory tract. The objective of this study was to characterize the interactions between conidia and bronchial epithelial cells. To this end, we studied the role of bronchial epithelial cells, i.e., the BEAS-2B cell line and human primary cells, in conidial germination of a laboratory strain and three clinical strains of A. fumigatus. Microscopic observations and galactomannan measurements demonstrated that contact between epithelial cells and conidia leads to the inhibition of conidia germination. We demonstrated that this fungistatic process is not associated with the release of any soluble components nor internalization by the epithelial cells. We highlight that this antifungal process involves the phosphoinositide 3-kinase pathway on the host cellular side and the lectin FleA on the fungal side. Collectively, our results show that bronchial epithelial cells attenuate fungal virulence by inhibiting germination of extracellular conidia, thus preventing the morphological change from conidia to filaments, which is responsible for tissue invasion.
Collapse
Affiliation(s)
- Nicolas Richard
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France
| | - Léa Marti
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France
| | - Annabelle Varrot
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Loïc Guillot
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France
| | - Juliette Guitard
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France.,Service de Parasitologie-Mycologie, Hôpital St Antoine, AP-HP, Paris, France
| | - Christophe Hennequin
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France.,Service de Parasitologie-Mycologie, Hôpital St Antoine, AP-HP, Paris, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Harriet Corvol
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France.,Pneumologie Pédiatrique, AP-HP, Hôpital Trousseau, Paris, France
| | - Michel Chignard
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France
| | - Viviane Balloy
- Sorbonne Université, UPMC Univ. Paris 06, Inserm, Centre de Recherche Saint-Antoine Paris, Paris, France.
| |
Collapse
|
10
|
de Oliveira AR, Oliveira LN, Chaves EGA, Weber SS, Bailão AM, Parente-Rocha JA, Baeza LC, de Almeida Soares CM, Borges CL. Characterization of extracellular proteins in members of the Paracoccidioides complex. Fungal Biol 2018; 122:738-751. [PMID: 30007425 DOI: 10.1016/j.funbio.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/11/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
Paracoccidioides is a thermodimorphic fungus that causes Paracoccidioidomycosis (PCM) - an endemic systemic mycosis in Latin America. The genus comprises several phylogenetic species which present some genetic and serological differences. The diversity presented among isolates of the same genus has been explored in several microorganisms. There have also been attempts to clarify differences that might be related to virulence existing in isolates that cause the same disease. In this work, we analyzed the secretome of two isolates in the Paracoccidioides genus, isolates Pb01 and PbEpm83, and performed infection assays in macrophages to evaluate the influence of the secretomes of those isolates upon an in vitro model of infection. The use of a label-free proteomics approach (LC-MSE) allowed us to identify 92 proteins that are secreted by those strains. Of those proteins, 35 were differentially secreted in Pb01, and 36 in PbEpm83. According to the functional annotation, most of the identified proteins are related to adhesion and virulence processes. These results provide evidence that different members of the Paracoccidioides complex can quantitatively secrete different proteins, which may influence the characteristics of virulence, as well as host-related processes.
Collapse
Affiliation(s)
- Amanda Rodrigues de Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lucas Nojosa Oliveira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Programa de Pós-graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Edilânia Gomes Araújo Chaves
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Simone Schneider Weber
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas, Brazil; Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
11
|
Bertuzzi M, Hayes GE, Icheoku UJ, van Rhijn N, Denning DW, Osherov N, Bignell EM. Anti-Aspergillus Activities of the Respiratory Epithelium in Health and Disease. J Fungi (Basel) 2018; 4:E8. [PMID: 29371501 PMCID: PMC5872311 DOI: 10.3390/jof4010008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Respiratory epithelia fulfil multiple roles beyond that of gaseous exchange, also acting as primary custodians of lung sterility and inflammatory homeostasis. Inhaled fungal spores pose a continual antigenic, and potentially pathogenic, challenge to lung integrity against which the human respiratory mucosa has developed various tolerance and defence strategies. However, respiratory disease and immune dysfunction frequently render the human lung susceptible to fungal diseases, the most common of which are the aspergilloses, a group of syndromes caused by inhaled spores of Aspergillus fumigatus. Inhaled Aspergillus spores enter into a multiplicity of interactions with respiratory epithelia, the mechanistic bases of which are only just becoming recognized as important drivers of disease, as well as possible therapeutic targets. In this mini-review we examine current understanding of Aspergillus-epithelial interactions and, based upon the very latest developments in the field, we explore two apparently opposing schools of thought which view epithelial uptake of Aspergillus spores as either a curative or disease-exacerbating event.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| | - Gemma E Hayes
- Northern Devon Healthcare NHS Trust, North Devon District Hospital, Raleigh Park, Barnstaple EX31 4JB, UK.
| | - Uju J Icheoku
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| | - Norman van Rhijn
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| | - David W Denning
- The National Aspergillosis Centre, Education and Research Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK.
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
12
|
Dowd A. Elucidating Cellular Metabolism and Protein Difference Data from DIGE Proteomics Experiments Using Enzyme Assays. Methods Mol Biol 2018; 1664:261-278. [PMID: 29019139 DOI: 10.1007/978-1-4939-7268-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Assays for measuring enzyme activity can be useful tools for proteomics applications. Enzyme testing can be performed to validate an experimental system prior to a Difference Gel Electrophoresis (DIGE) proteomic experiment and can also be utilized as an integral part of multifaceted experiment in conjunction with DIGE. Data from enzyme tests can be used to corroborate results of DIGE proteomic experiments where an enzyme or enzymes are demonstrated by DIGE to be differentially expressed. Enzyme testing can also be utilized to support data from DIGE experiments that demonstrate metabolic changes in a biological system. The different types of enzyme assays that can be performed in conjunction with DIGE experiments are reviewed alongside a discussion of experimental approaches for designing enzyme assays.
Collapse
Affiliation(s)
- Andrew Dowd
- Monaghan Biosciences, Tyholland, Co. Monaghan, Ireland.
| |
Collapse
|
13
|
Neves GWP, Curty NDA, Kubitschek-Barreira PH, Fontaine T, Souza GHMF, Cunha ML, Goldman GH, Beauvais A, Latgé JP, Lopes-Bezerra LM. Modifications to the composition of the hyphal outer layer of Aspergillus fumigatus modulates HUVEC proteins related to inflammatory and stress responses. J Proteomics 2016; 151:83-96. [PMID: 27321585 DOI: 10.1016/j.jprot.2016.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/20/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022]
Abstract
Aspergillus fumigatus, the main etiologic agent causing invasive aspergillosis, can induce an inflammatory response and a prothrombotic phenotype upon contact with human umbilical vein endothelial cells (HUVECs). However, the fungal molecules involved in this endothelial response remain unknown. A. fumigatus hyphae produce an extracellular matrix composed of galactomannan, galactosaminogalactan and α-(1,3)-glucan. In this study, we investigated the consequences of UGM1 gene deletion in A. fumigatus, which produces a mutant with increased galactosaminogalactan production. The ∆ugm1 mutant exhibited an HUVEC-hyperadhesive phenotype and induced increased endothelial TNF-α secretion and tissue factor mRNA overexpression in this "semi-professional" immune host cell. Using a shotgun proteomics approach, we show that the A. fumigatus ∆ugm1 strain can modulate the levels of proteins in important endothelial pathways related to the inflammatory response mediated by TNF-α and to stress response pathways. Furthermore, a purified galactosaminogalactan fraction was also able to induce TNF-α secretion and the coincident HUVEC pathways regulated by the ∆ugm1 mutant, which overexpresses this component, as demonstrated by fluorescence microscopy. This work contributes new data regarding endothelial mechanisms in response to A. fumigatus infection. SIGNIFICANCE Invasive aspergillosis is the main opportunistic fungal infection described in neutropenic hematologic patients. One important clinical aspect of this invasive fungal infection is vascular thrombosis, which could be related, at least in part, to the activation of endothelial cells, as shown in previous reports from our group. It is known that direct contact between the A. fumigatus hyphal cell wall and the HUVEC cell surface is necessary to induce an endothelial prothrombotic phenotype and secretion of pro-inflammatory cytokines, though the cell surface components of this angioinvasive fungus that trigger this endothelial response are unknown. The present work employs a discovery-driven proteomics approach to reveal the role of one important cell wall polysaccharide of A. fumigatus, galactosaminogalactan, in the HUVEC interaction and the consequent mechanisms of endothelial activation. This is the first report of the overall panel of proteins related to the HUVEC response to a specific and purified cell wall component of the angioinvasive fungus A. fumigatus.
Collapse
Affiliation(s)
- Gabriela Westerlund Peixoto Neves
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Campus Maracanã, Pavilhão Haroldo Lisboa da Cunha sl 501D, CEP: 20550-013, Rio de Janeiro, RJ, Brazil
| | - Nathália de Andrade Curty
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Campus Maracanã, Pavilhão Haroldo Lisboa da Cunha sl 501D, CEP: 20550-013, Rio de Janeiro, RJ, Brazil
| | - Paula Helena Kubitschek-Barreira
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Campus Maracanã, Pavilhão Haroldo Lisboa da Cunha sl 501D, CEP: 20550-013, Rio de Janeiro, RJ, Brazil
| | - Thierry Fontaine
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | | | - Marcel Lyra Cunha
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Campus Maracanã, Pavilhão Haroldo Lisboa da Cunha sl 501D, CEP: 20550-013, Rio de Janeiro, RJ, Brazil
| | - Gustavo H Goldman
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Av. do Cafe S/N, Monte Alegre, CEP:14040-903, Ribeirao Preto, SP, Brazil
| | - Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jean-Paul Latgé
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Leila M Lopes-Bezerra
- Laboratory of Cellular Mycology and Proteomics, Universidade do Estado do Rio de Janeiro, Campus Maracanã, Pavilhão Haroldo Lisboa da Cunha sl 501D, CEP: 20550-013, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Croft CA, Culibrk L, Moore MM, Tebbutt SJ. Interactions of Aspergillus fumigatus Conidia with Airway Epithelial Cells: A Critical Review. Front Microbiol 2016; 7:472. [PMID: 27092126 PMCID: PMC4823921 DOI: 10.3389/fmicb.2016.00472] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/21/2016] [Indexed: 02/05/2023] Open
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that also acts as an opportunistic pathogen able to cause a variety of symptoms, from an allergic response to a life-threatening disseminated fungal infection. The infectious agents are inhaled conidia whose first point of contact is most likely to be an airway epithelial cell (AEC). The interaction between epithelial cells and conidia is multifaceted and complex, and has implications for later steps in pathogenesis. Increasing evidence has demonstrated a key role for the airway epithelium in the response to respiratory pathogens, particularly at early stages of infection; therefore, elucidating the early stages of interaction of conidia with AECs is essential to understand the establishment of infection in cohorts of at-risk patients. Here, we present a comprehensive review of the early interactions between A. fumigatus and AECs, including bronchial and alveolar epithelial cells. We describe mechanisms of adhesion, internalization of conidia by AECs, the immune response of AECs, as well as the role of fungal virulence factors, and patterns of fungal gene expression characteristic of early infection. A clear understanding of the mechanisms involved in the early establishment of infection by A. fumigatus could point to novel targets for therapy and prophylaxis.
Collapse
Affiliation(s)
- Carys A Croft
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver BC, Canada
| | - Luka Culibrk
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver BC, Canada
| | - Margo M Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby BC, Canada
| | - Scott J Tebbutt
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, VancouverBC, Canada; Prevention of Organ Failure Centre of Excellence, VancouverBC, Canada; Department of Medicine, Division of Respiratory Medicine, University of British Columbia, VancouverBC, Canada
| |
Collapse
|
15
|
Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells. Proteomes 2015; 3:467-495. [PMID: 28248281 PMCID: PMC5217390 DOI: 10.3390/proteomes3040467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Collapse
|
16
|
Rammaert B, Jouvion G, de Chaumont F, Garcia-Hermoso D, Szczepaniak C, Renaudat C, Olivo-Marin JC, Chrétien F, Dromer F, Bretagne S. Absence of Fungal Spore Internalization by Bronchial Epithelium in Mouse Models Evidenced by a New Bioimaging Approach and Transmission Electronic Microscopy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2421-30. [PMID: 26165863 DOI: 10.1016/j.ajpath.2015.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 11/28/2022]
Abstract
Clinical data and experimental studies suggest that bronchial epithelium could serve as a portal of entry for invasive fungal infections. We therefore analyzed the interactions between molds and the bronchial/bronchiolar epithelium at the early steps after inhalation. We developed invasive aspergillosis (Aspergillus fumigatus) and mucormycosis (Lichtheimia corymbifera) murine models that mimic the main clinical risk factors for these infections. Histopathology studies were completed with a specific computer-assisted morphometric method to quantify bronchial and alveolar spores and with transmission electron microscopy. Morphometric analysis revealed a higher number of bronchial/bronchiolar spores for A. fumigatus than L. corymbifera. The bronchial/bronchiolar spores decreased between 1 and 18 hours after inoculation for both fungi, except in corticosteroid-treated mice infected with A. fumigatus, suggesting an effect of cortisone on bronchial spore clearance. No increase in the number of spores of any species was observed over time at the basal pole of the epithelium, suggesting the lack of transepithelial crossing. Transmission electron microscopy did not show spore internalization by bronchial epithelial cells. Instead, spores were phagocytized by mononuclear cells on the apical pole of epithelial cells. Early epithelial internalization of fungal spores in vivo cannot explain the bronchial/bronchiolar epithelium invasion observed in some invasive mold infections. The bioimaging approach provides a useful means to accurately enumerate and localize the fungal spores in the pulmonary tissues.
Collapse
Affiliation(s)
- Blandine Rammaert
- Unit of Molecular Mycology, Institut Pasteur, Paris, France; URA 3012, The French National Centre for Scientific Research (CNRS), Paris, France; Infectious and Tropical Diseases Service, Hôpital Necker-Enfants Malades, APHP, Paris, France; Paris Diderot University, Bio Sorbonne Paris Cité, Paris, France.
| | - Grégory Jouvion
- Unit of Human and Animal Model Histopathology, Institut Pasteur, Paris, France; Paris Descartes University, PRES Sorbonne-Paris-Cité, Paris, France
| | | | - Dea Garcia-Hermoso
- Unit of Molecular Mycology, Institut Pasteur, Paris, France; URA 3012, The French National Centre for Scientific Research (CNRS), Paris, France
| | - Claire Szczepaniak
- Cellular Health Imaging Center, Université d'Auvergne, Clermont Ferrand, France
| | - Charlotte Renaudat
- Unit of Molecular Mycology, Institut Pasteur, Paris, France; URA 3012, The French National Centre for Scientific Research (CNRS), Paris, France
| | | | - Fabrice Chrétien
- Unit of Human and Animal Model Histopathology, Institut Pasteur, Paris, France; Paris Descartes University, PRES Sorbonne-Paris-Cité, Paris, France; Neuropathology Service, Centre Hospitalier Sainte-Anne, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Françoise Dromer
- URA 3012, The French National Centre for Scientific Research (CNRS), Paris, France
| | - Stéphane Bretagne
- Unit of Molecular Mycology, Institut Pasteur, Paris, France; Paris Diderot University, Bio Sorbonne Paris Cité, Paris, France; Parasitology-Mycology Service, Hôpital St Louis, AP-HP, Paris, France
| |
Collapse
|
17
|
Heinekamp T, Schmidt H, Lapp K, Pähtz V, Shopova I, Köster-Eiserfunke N, Krüger T, Kniemeyer O, Brakhage AA. Interference of Aspergillus fumigatus with the immune response. Semin Immunopathol 2014; 37:141-52. [PMID: 25404120 PMCID: PMC4326658 DOI: 10.1007/s00281-014-0465-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
Abstract
Aspergillus fumigatus is a saprotrophic filamentous fungus and also the most prevalent airborne fungal pathogen of humans. Depending on the host’s immune status, the variety of diseases caused by A. fumigatus ranges from allergies in immunocompetent hosts to life-threatening invasive infections in patients with impaired immunity. In contrast to the majority of other Aspergillus species, which are in most cases nonpathogenic, A. fumigatus features an armory of virulence determinants to establish an infection. For example, A. fumigatus is able to evade the human complement system by binding or degrading complement regulators. Furthermore, the fungus interferes with lung epithelial cells, alveolar macrophages, and neutrophil granulocytes to prevent killing by these immune cells. This chapter summarizes the different strategies of A. fumigatus to manipulate the immune response. We also discuss the potential impact of recent advances in immunoproteomics to improve diagnosis and therapy of an A. fumigatus infection.
Collapse
Affiliation(s)
- Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Leino MS, Loxham M, Blume C, Swindle EJ, Jayasekera NP, Dennison PW, Shamji BWH, Edwards MJ, Holgate ST, Howarth PH, Davies DE. Barrier disrupting effects of alternaria alternata extract on bronchial epithelium from asthmatic donors. PLoS One 2013; 8:e71278. [PMID: 24009658 PMCID: PMC3751915 DOI: 10.1371/journal.pone.0071278] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022] Open
Abstract
Sensitization and exposure to the allergenic fungus Alternaria alternata has been associated with increased risk of asthma and asthma exacerbations. The first cells to encounter inhaled allergens are epithelial cells at the airway mucosal surface. Epithelial barrier function has previously been reported to be defective in asthma. This study investigated the contribution of proteases from Alternaria alternata on epithelial barrier function and inflammatory responses and compared responses of in vitro cultures of differentiated bronchial epithelial cells derived from severely asthmatic donors with those from non-asthmatic controls. Polarised 16HBE cells or air-liquid interface (ALI) bronchial epithelial cultures from non-asthmatic or severe asthmatic donors were challenged apically with extracts of Alternaria and changes in inflammatory cytokine release and transepithelial electrical resistance (TER) were measured. Protease activity in Alternaria extracts was characterised and the effect of selectively inhibiting protease activity on epithelial responses was examined using protease inhibitors and heat-treatment. In 16HBE cells, Alternaria extracts stimulated release of IL-8 and TNFα, with concomitant reduction in TER; these effects were prevented by heat-treatment of the extracts. Examination of the effects of protease inhibitors suggested that serine proteases were the predominant class of proteases mediating these effects. ALI cultures from asthmatic donors exhibited a reduced IL-8 response to Alternaria relative to those from healthy controls, while neither responded with increased thymic stromal lymphopoietin (TSLP) release. Only cultures from asthmatic donors were susceptible to the barrier-weakening effects of Alternaria. Therefore, the bronchial epithelium of severely asthmatic individuals may be more susceptible to the deleterious effects of Alternaria.
Collapse
Affiliation(s)
- Marina S. Leino
- Academic Unit of Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton, Southampton, United Kingdom
| | - Matthew Loxham
- Academic Unit of Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton, Southampton, United Kingdom
- * E-mail:
| | - Cornelia Blume
- Academic Unit of Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton, Southampton, United Kingdom
| | - Emily J. Swindle
- Academic Unit of Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton, Southampton, United Kingdom
| | - Nivenka P. Jayasekera
- Academic Unit of Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton, Southampton, United Kingdom
| | - Patrick W. Dennison
- Academic Unit of Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton, Southampton, United Kingdom
| | - Betty W. H. Shamji
- Novartis Institutes for Biomedical Research, Novartis Horsham Research Centre, Horsham, United Kingdom
| | - Matthew J. Edwards
- Novartis Institutes for Biomedical Research, Novartis Horsham Research Centre, Horsham, United Kingdom
| | - Stephen T. Holgate
- Academic Unit of Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton, Southampton, United Kingdom
| | - Peter H. Howarth
- Academic Unit of Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton, Southampton, United Kingdom
| | - Donna E. Davies
- Academic Unit of Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, South Block, University Hospital Southampton, Southampton, United Kingdom
| |
Collapse
|
19
|
Chiu KH, Chang YH, Liao PC. Secretome analysis using a hollow fiber culture system for cancer biomarker discovery. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2285-92. [PMID: 23376430 DOI: 10.1016/j.bbapap.2013.01.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/30/2012] [Accepted: 01/24/2013] [Indexed: 12/22/2022]
Abstract
Secreted proteins, collectively referred to as the secretome, were suggested as valuable biomarkers in disease diagnosis and prognosis. However, some secreted proteins from cell cultures are difficult to detect because of their intrinsically low abundance; they are frequently masked by the released proteins from lysed cells and the substantial amounts of serum proteins used in culture medium. The hollow fiber culture (HFC) system is a commercially available system composed of small fibers sealed in a cartridge shell; cells grow on the outside of the fiber. Recently, because this system can help cells grow at a high density, it has been developed and applied in a novel analytical platform for cell secretome collection in cancer biomarker discovery. This article focuses on the advantages of the HFC system, including the effectiveness of the system for collection of secretomes, and reviews the process of cell secretome collection by the HFC system and proteomic approaches to discover cancer biomarkers. The HFC system not only provides a high-density three-dimensional (3D) cell culture system to mimic tumor growth conditions in vivo but can also accommodate numerous cells in a small volume, allowing secreted proteins to be accumulated and concentrated. In addition, cell lysis rates can be greatly reduced, decreasing the amount of contamination by abundant cytosolic proteins from lysed cells. Therefore, the HFC system is useful for preparing a wide range of proteins from cell secretomes and provides an effective method for collecting higher amounts of secreted proteins from cancer cells. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Kuo-Hsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
20
|
Osherov N. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells. Front Microbiol 2012; 3:346. [PMID: 23055997 PMCID: PMC3458433 DOI: 10.3389/fmicb.2012.00346] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 09/08/2012] [Indexed: 02/02/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia) into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides, and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome.
Collapse
Affiliation(s)
- Nir Osherov
- Department of Clinical Microbiology and Immunology, Aspergillus and Antifungal Research Laboratory, Sackler School of Medicine, Tel-Aviv University Ramat-Aviv, Tel-Aviv, Israel
| |
Collapse
|