1
|
Tharmaraj D, Mulley WR, Dendle C. Current and emerging tools for simultaneous assessment of infection and rejection risk in transplantation. Front Immunol 2024; 15:1490472. [PMID: 39660122 PMCID: PMC11628869 DOI: 10.3389/fimmu.2024.1490472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Infection and rejection are major complications that impact transplant longevity and recipient survival. Balancing their risks is a significant challenge for clinicians. Current strategies aimed at interrogating the degree of immune deficiency or activation and their attendant risks of infection and rejection are imprecise. These include immune (cell counts, function and subsets, immunoglobulin levels) and non-immune (drug levels, viral loads) markers. The shared risk factors between infection and rejection and the bidirectional and intricate relationship between both entities further complicate transplant recipient care and decision-making. Understanding the dynamic changes in the underlying net state of immunity and the overall risk of both complications in parallel is key to optimizing outcomes. The allograft biopsy is the current gold standard for the diagnosis of rejection but is associated with inherent risks that warrant careful consideration. Several biomarkers, in particular, donor derived cell-free-DNA and urinary chemokines (CXCL9 and CXCL10), show significant promise in improving subclinical and clinical rejection risk prediction, which may reduce the need for allograft biopsies in some situations. Integrating conventional and emerging risk assessment tools can help stratify the individual's short- and longer-term infection and rejection risks in parallel. Individuals identified as having a low risk of rejection may tolerate immunosuppression wean to reduce medication-related toxicity. Serial monitoring following immunosuppression reduction or escalation with minimally invasive tools can help mitigate infection and rejection risks and allow for timely diagnosis and treatment of these complications, ultimately improving allograft and patient outcomes.
Collapse
Affiliation(s)
- Dhakshayini Tharmaraj
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
| | - William R. Mulley
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
| | - Claire Dendle
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, VIC, Australia
- Monash Infectious Diseases, Monash Health, Clayton, VIC, Australia
| |
Collapse
|
2
|
Roberto P, Cinti L, Lucente D, Russo G, Lai Q, Micozzi A, Gentile G, Turriziani O, Pierangeli A, Antonelli G. TTV and CMV viral load dynamics: Which emerges first during immunosuppression? J Med Virol 2024; 96:e29814. [PMID: 39015038 DOI: 10.1002/jmv.29814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Novel biomarkers reflecting the degree of immunosuppression in transplant patients are required to ensure eventual personalized equilibrium between rejection and infection risks. With the above aim, Torque Teno Virus (TTV) viremia was precisely examined in a large cohort of transplanted immunocompromised patients (192 hematological and 60 solid organ transplant recipients) being monitored for Cytomegalovirus reactivation. TTV load was measured in 2612 plasma samples from 448 patients. The results revealed a significant increase in TTV viral load approximately 14 days following CMV reactivation/infection in solid organ transplant (SOT) patients. No recognizable difference in TTV load was noted among hematological patients during the entire timeframe analyzed. Furthermore, a temporal gap of approximately 30 days was noted between the viral load peaks reached by the two viruses, with Cytomegalovirus (CMV) preceding TTV. It was not possible to establish a correlation between CMV reactivation/infection and TTV viremia in hematological patients. On the other hand, the SOT patient cohort allowed us to analyze viral kinetics and draw intriguing conclusions. Taken together, the data suggest, to our knowledge for the first time, that CMV infection itself could potentially cause an increase in TTV load in the peripheral blood of patients undergoing immunosuppressive therapy.
Collapse
Affiliation(s)
- Piergiorgio Roberto
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- PhD National Programme in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
| | - Lilia Cinti
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
- PhD National Programme in Innovazione nella diagnosi, prevenzione e terapia delle infezioni a rischio epidemico-pandemico, Dipartimento di Biotecnologie Mediche, University of Siena, Siena, Italy
| | - Dario Lucente
- Department of Mathematics & Physics, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gianluca Russo
- University Hospital "Policlinico Umberto I", Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Quirino Lai
- University Hospital "Policlinico Umberto I", Rome, Italy
- Department of Chirurgia Generale e Specialistica, Sapienza Università di Roma, Roma, Italy
| | - Alessandra Micozzi
- University Hospital "Policlinico Umberto I", Rome, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Gentile
- University Hospital "Policlinico Umberto I", Rome, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
| |
Collapse
|
3
|
Tian X, Duan W, Zhang X, Wu X, Zhang C, Wang Z, Cao G, Gu Y, Shao F, Yan T. Metagenomic Next-Generation Sequencing Reveals the Profile of Viral Infections in Kidney Transplant Recipients During the COVID-19 Pandemic. Front Public Health 2022; 10:888064. [PMID: 35899152 PMCID: PMC9309489 DOI: 10.3389/fpubh.2022.888064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/20/2022] [Indexed: 01/08/2023] Open
Abstract
Background To study the clinical application of metagenomic next-generation sequencing (mNGS) in the detection of viral infections in kidney transplant recipients (KTRs) during the COVID-19 pandemic. Methods Using mNGS technology, 50 human fluid samples of KTRs were detected, including 20 bronchoalveolar lavage fluid (BALF) samples, 21 urine samples and 9 blood samples. The detected nucleic acid sequences were compared and analyzed with the existing viral nucleic acid sequences in the database, and the virus infection spectrum of KTRs was drawn. Results The viral nucleic acids of 15 types of viruses were detected in 96.00% (48/50) of the samples, of which 11 types of viruses were in BALF (95.00%, 19/20), and the dominant viruses were torque teno virus (TTV) (65.00%; 13/20), cytomegalovirus (CMV) (45.00%; 9/20) and human alphaherpesvirus 1 (25.00%; 5/20). 12 viruses (95.24%, 20/21) were detected in the urine, and the dominant viruses were TTV (52.38%; 11/21), JC polyomavirus (52.38%; 11/21), BK polyomavirus (42.86%; 9/21), CMV (33.33%; 7/21) and human betaherpesvirus 6B (28.57%; 6/21). 7 viruses were detected in the blood (100.00%, 9/9), and the dominant virus was TTV (100.00%; 9/9). Four rare viruses were detected in BALF and urine, including WU polyomavirus, primate bocaparvovirus 1, simian virus 12, and volepox virus. Further analysis showed that TTV infection with high reads indicated a higher risk of acute rejection (P < 0.05). Conclusions mNGS detection reveals the rich virus spectrum of infected KTRs, and improves the detection rate of rare viruses. TTV may be a new biomarker for predicting rejection.
Collapse
Affiliation(s)
- Xiangyong Tian
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Wenjing Duan
- Department of the Clinical Research Center, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Xiulei Zhang
- Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Xiaoqiang Wu
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Chan Zhang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Yue Gu
- Department of Nephrology, Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial People's Hospital, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, China
- *Correspondence: Tianzhong Yan
| |
Collapse
|
4
|
Desingu PA, Nagarajan K, Dhama K. Can a Torque Teno Virus (TTV) Be a Naked DNA Particle Without a Virion Structure? FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.821298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Studenic P, Bond G, Kerschbaumer A, Bécède M, Pavelka K, Karateev D, Stieger J, Puchner R, Mueller RB, Puchhammer-Stöckl E, Durechova M, Loiskandl M, Perkmann T, Olejarova M, Luchikhina E, Steiner CW, Bonelli M, Smolen JS, Aletaha D. Torque Teno Virus Quantification for Monitoring of Immunomodulation with Biological Compounds in the Treatment of Rheumatoid Arthritis. Rheumatology (Oxford) 2021; 61:2815-2825. [PMID: 34792562 DOI: 10.1093/rheumatology/keab839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Rheumatoid arthritis (RA) patients who fail to respond to methotrexate (MTX) can receive biologic disease-modifying antirheumatic drugs (bDMARDs). The Torque Teno Virus (TTV) is a potential novel candidate for monitoring of immunosuppression. We explore TTV in these patients and association with clinical response to bDMARDs. METHODS The BioBio Study is a multicentre randomized open-label trial, including RA patients with insufficient response to MTX. Patients were randomized to either TNFi (infliximab, INF), anti-IL-6 (tocilizumab, TCZ), CTLA4-Ig (abatacept, ABA) or anti-CD20 (rituximab, RTX) in addition to MTX. PCR was used to quantify TTV in the peripheral blood. RESULTS TTV was measured in 95 patients (INF, n = 23; TCZ, n = 22; ABA, n = 27; RTX; n = 23). TTV increased by a median of 4.5*104 copies/ml (c/ml; inter quartile range [IQR] 0-7.5*105) after 3 months. TTV levels at month 3 were associated with SDAI (p= 0.03) and CDAI response (p= 0.026) at month 6. A TTV cut-off level of 1.2*106 c/ml at month 3 had a positive likelihood ratio of 2.7 for prediction of SDAI85% response at month 6. CONCLUSION Our data suggest that TTV levels increase upon TNF, CD20 and co-stimulation blockade and associate with clinical response to bDMARDs in RA patients. TRIAL REGISTRATION ClinicalTrials.gov; https://clinicaltrials.gov; NCT01638715.
Collapse
Affiliation(s)
- Paul Studenic
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria.,Division of Rheumatology, Department of Medicine (Solna), Karolinska Institutet, Sweden
| | - Gregor Bond
- Division of Nephrology and Dialysis, Medical University of Vienna, Austria
| | - Andreas Kerschbaumer
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Manuel Bécède
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Karel Pavelka
- Institute of Rheumatology, Prague, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dmitry Karateev
- Department of Rheumatology, Moscow Regional Research and Clinical Institute (MONIKI), Russia
| | - Jutta Stieger
- 2nd Department of Medicine, Hietzing Hospital, Austria
| | | | - Ruediger B Mueller
- Cantonal Hospital Lucerne, Division of Rheumatology, Medical University Department, Rheumazentrum Ostschweiz St. Gallen, Switzerland
| | | | - Martina Durechova
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Michaela Loiskandl
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Martina Olejarova
- Institute of Rheumatology, Prague, Czech Republic.,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Elena Luchikhina
- Department of Rheumatology, Moscow Regional Research and Clinical Institute (MONIKI), Russia
| | - Carl-Walter Steiner
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Michael Bonelli
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Josef S Smolen
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| | - Daniel Aletaha
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Austria
| |
Collapse
|
6
|
Gardiner BJ, Lee SJ, Cristiano Y, Levvey BJ, Sullivan LC, Snell GI, Peleg AY, Westall GP. Evaluation of Quantiferon®-Monitor as a biomarker of immunosuppression and predictor of infection in lung transplant recipients. Transpl Infect Dis 2021; 23:e13550. [PMID: 33351991 DOI: 10.1111/tid.13550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Optimizing immunosuppression in lung transplant recipients (LTR) is crucially important in minimizing the risk of infection and rejection. Quantiferon®-Monitor (QFM) is a candidate immune function biomarker which has not yet been rigorously evaluated in the lung transplant setting. The aim of this prospective cohort study was to explore relationships between QFM results, immunosuppression, and infection/rejection in LTR. METHODS QFM, which measures interferon-γ after stimulation with innate and adaptive immune antigens, was tested before and at 2, 6, 12, 24 and 52 weeks post-transplant. Immunosuppression relationships were assessed with linear mixed effects models. Clinical outcomes were analyzed based on the preceding QFM result. RESULTS Eighty LTR were included. Median pre-transplant QFM levels were 171 IU/mL (IQR 45-461), decreasing to 3 IU/mL (IQR 1-8) at 2 weeks post-transplant then progressively recovering toward baseline with time from transplant. Prednisolone was strongly inversely associated with QFM level (0.1 mg/kg dose increase correlating with 88 IU/mL QFM decrease, 95% CI 61-114, P < .001). Patients with QFM values <10 and <60 IU/mL were more likely to develop a serious opportunistic infection between 3 and 6 months (HR 6.38, 95% CI 1.37-29.66, P = .02) and 6-12 months (HR 3.25, 95% CI 1.11-9.49, P = .03) post-transplant, respectively. CONCLUSIONS QFM values declined significantly post-transplant, with patients recovering at different rates. Prednisolone dose significantly impacted QFM results. Low levels were associated with infection beyond 3 months post-transplant, suggesting that QFM may be able to identify overly immunosuppressed patients who could be targeted for dose reduction. Larger prospective studies are needed to further evaluate this promising assay.
Collapse
Affiliation(s)
- Bradley J Gardiner
- Department of Infectious Disease, Alfred Health and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Sue J Lee
- Department of Infectious Disease, Alfred Health and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Yvonne Cristiano
- Department of Respiratory Medicine & Lung Transplantation, Alfred Health and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Bronwyn J Levvey
- Department of Respiratory Medicine & Lung Transplantation, Alfred Health and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lucy C Sullivan
- Department of Respiratory Medicine & Lung Transplantation, Alfred Health and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology & Immunology, University of Melbourne and Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Gregory I Snell
- Department of Respiratory Medicine & Lung Transplantation, Alfred Health and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anton Y Peleg
- Department of Infectious Disease, Alfred Health and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Glen P Westall
- Department of Respiratory Medicine & Lung Transplantation, Alfred Health and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Assessment of prevalence and load of torquetenovirus viraemia in a large cohort of healthy blood donors. Clin Microbiol Infect 2020; 26:1406-1410. [PMID: 31972321 DOI: 10.1016/j.cmi.2020.01.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Torquetenovirus (TTV) is an emerging marker of functional immune competence with the potential to predict transplant-related adverse events. A large-scale epidemiological study was performed to understand how basal values vary in healthy individuals according to age and gender. METHODS We tested plasma from 1017 healthy blood donors aged 18-69 years. The presence and load of TTV were determined by a real-time PCR assay. A sub-cohort of 384 donors was tested for anti-cytomegalovirus IgG antibodies, and 100 participants were also tested for TTV viraemia on a paired whole blood sample. RESULTS The overall prevalence of TTV was 65% (657/1017) with a mean (±SD) growth of 5 ± 4% every 10 years of age increase, but stably higher in males (465/690, 67%) than in females (192/327, 59%). Mean (±SD) TTV load was 2.3 ± 0.7 Log copies/mL with no sex difference. TTV viraemia showed modest increases along 10-year age intervals (mean ± SD: 0.3 ± 0.1). TTV viraemia in donors sampled 2 years later remained stable (mean ± SD: 2.3 ± 0.8 versus 2.2 ± 0.7 Log copies between samples). Twenty-six per cent (9/34) of blood donors with TTV-negative plasma scored positive when whole blood was tested, and the donors with positive plasma showed a mean (±SD) 1.4 ± 0.5 Log increase in copy numbers when whole blood was tested. CONCLUSIONS This study establishes the mean value of TTV viraemia in plasma in healthy blood donors and suggests that ageing causes only minimal increases in TTV viraemia.
Collapse
|
8
|
Li G, Zhou Z, Yao L, Xu Y, Wang L, Fan X. Full annotation of serum virome in Chinese blood donors with elevated alanine aminotransferase levels. Transfusion 2019; 59:3177-3185. [PMID: 31393615 DOI: 10.1111/trf.15476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND A serum alanine aminotransferase (ALT) test is currently demanded for blood donation in China. One of the major reasons to include such a test is possible etiology of known or unknown hepatotropic viruses. However, this hypothesis has never been examined convincingly. STUDY DESIGN AND METHODS The study recruited 90 Chinese blood donors that were divided into three groups based on their ALT values. Serum virome from these donors was explored using a metagenomics approach with enhanced sensitivity resolved at single sequencing reads. RESULTS Anellovirus and pegivirus C (GBV-C) were detected among these donors. None of them were found solely in donors with abnormal liver enzyme. Anellovirus was highly prevalent (93.3%) and the co-infection with multiple genera (alpha, beta, and gammatorquevirus) were more common in the donors with normal ALT values in comparison to those with elevated ALT (single/double/triple Anellovirus genera, 1/3/24 vs. 7/7/14 or 6/7/13, p = 0.009). For unmapped reads that accounted for 15 ± 14.9% of the data, similarity-based (BLASTN, BLASTP, and HMMER3) and similarity-independent (k-mer frequency) analysis identified several circular rep encoding ssDNA (CRESS-DNA) genomes. Direct PCR testing indicated these genomes were likely reagent contaminants. CONCLUSION Viral etiology is not responsible for elevated ALT levels in Chinese blood donors. The ALT test, if not abandoned, should be adjusted for its cutoff in response to donor shortage in China.
Collapse
Affiliation(s)
- Gang Li
- Wuhan Blood Center, Wuhan, China
| | | | - Li Yao
- Wuhan Blood Center, Wuhan, China
| | - Yanjuan Xu
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lan Wang
- Wuhan Blood Center, Wuhan, China
| | - Xiaofeng Fan
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri.,Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Rezahosseini O, Drabe CH, Sørensen SS, Rasmussen A, Perch M, Ostrowski SR, Nielsen SD. Torque-Teno virus viral load as a potential endogenous marker of immune function in solid organ transplantation. Transplant Rev (Orlando) 2019; 33:137-144. [PMID: 30981537 DOI: 10.1016/j.trre.2019.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 12/27/2022]
Abstract
Solid organ transplantation (SOT) recipients receive immunosuppressive therapy to avoid rejection of the transplanted organ. Immunosuppressive therapy increases the risk of infections. However, no existing marker reliably reveals the status of the immune function in SOT recipients. Torque-Teno virus or Transfusion-transmitted virus (TTV) has gained attention as a possible endogenous marker of the immune function. TTV is a non-enveloped, circular single strand DNA virus, and it may be considered a part of the human virome. In a bidirectional relationship, the immune system detects TTV and TTV may also modulate the activity of immune system. These characteristics have made the virus a possible candidate indicator of immune function. In this systematic review, we describe the role and potential function of TTV viral load as an endogenous marker of the immune function and consequently the level of immune suppression in SOT recipients.
Collapse
Affiliation(s)
- Omid Rezahosseini
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Heldbjerg Drabe
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Allan Rasmussen
- Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases 8632, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|