1
|
Balam S, Miura K, Ayadi I, Konaté D, Incandela NC, Agnolon V, Guindo MA, Diakité SA, Olugbile S, Nebie I, Herrera SM, Long C, Kajava AV, Diakité M, Corradin G, Herrera S, Herrera MA. Cross-reactivity of r Pvs48/45, a recombinant Plasmodium vivax protein, with sera from Plasmodium falciparum endemic areas of Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588966. [PMID: 38659832 PMCID: PMC11042229 DOI: 10.1101/2024.04.10.588966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Ps48/45, a Plasmodium gametocyte surface protein, is a promising candidate for malaria transmission-blocking (TB) vaccine. Due to its relevance for a multispecies vaccine, we explored the cross-reactivity and TB activity of a recombinant P. vivax Ps48/45 protein (rPvs48/45) with sera from P. falciparum-exposed African donors. Methods rPvs48/45 was produced in Chinese hamster ovary cell lines and tested by ELISA for its cross-reactivity with sera from Burkina Faso, Tanzania, Mali, and Nigeria - In addition, BALB/c mice were immunized with the rPvs48/45 protein formulated in Montanide ISA-51 and inoculated with a crude extract of P. falciparum NF-54 gametocytes to evaluate the parasite-boosting effect on rPvs48/45 antibody titers. Specific anti-rPvs48/45 IgG purified from African sera was used to evaluate the ex vivo TB activity on P. falciparum, using standard mosquito membrane feeding assays (SMFA). Results rPvs48/45 protein showed cross-reactivity with sera of individuals from all four African countries, in proportions ranging from 94% (Tanzania) to 40% (Nigeria). Also, the level of cross-reactive antibodies varied significantly between countries (p<0.0001), with a higher antibody level in Mali and the lowest in Nigeria. In addition, antibody levels were higher in adults (≥ 17 years) than young children (≤ 5 years) in both Mali and Tanzania, with a higher proportion of responders in adults (90%) than in children (61%) (p<0.0001) in Mali, where male (75%) and female (80%) displayed similar antibody responses. Furthermore, immunization of mice with P. falciparum gametocytes boosted anti-Pvs48/45 antibody responses, recognizing P. falciparum gametocytes in indirect immunofluorescence antibody test. Notably, rPvs48/45 affinity-purified African IgG exhibited a TB activity of 61% against P. falciparum in SMFA. Conclusion African sera (exposed only to P. falciparum) cross-recognized the rPvs48/45 protein. This, together with the functional activity of IgG, warrants further studies for the potential development of a P. vivax and P. falciparum cross-protective TB vaccine.
Collapse
Affiliation(s)
- Saidou Balam
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Imen Ayadi
- Immunobiology Department, University of Lausanne, Lausanne, Switzerland
| | - Drissa Konaté
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland aaaa
| | - Merepen A Guindo
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Seidina A.S. Diakité
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sope Olugbile
- Immunobiology Department, University of Lausanne, Lausanne, Switzerland
| | - Issa Nebie
- Groupe de Recherche Action Santé (GRAS), Burkina Faso, West Africa
| | | | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Andrey V. Kajava
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, France
| | - Mahamadou Diakité
- International Center for Excellence in Research (ICER-Mali), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Socrates Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Malaria Vaccine and Drug Development Center, Cali, Colombia
| | | |
Collapse
|
2
|
Musundi SD, Gitaka J, Kanoi BN. Identification of conserved cross-species B-cell linear epitopes in human malaria: a subtractive proteomics and immuno-informatics approach targeting merozoite stage proteins. Front Immunol 2024; 15:1352618. [PMID: 38404581 PMCID: PMC10884153 DOI: 10.3389/fimmu.2024.1352618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Human malaria, caused by five Plasmodium species (P. falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi), remains a significant global health burden. While most interventions target P. falciparum, the species associated with high mortality rates and severe clinical symptoms, non-falciparum species exhibit different transmission dynamics, remain hugely neglected, and pose a significant challenge to malaria elimination efforts. Recent studies have reported the presence of antigens associated with cross-protective immunity, which can potentially disrupt the transmission of various Plasmodium species. With the sequencing of the Plasmodium genome and the development of immunoinformatic tools, in this study, we sought to exploit the evolutionary history of Plasmodium species to identify conserved cross-species B-cell linear epitopes in merozoite proteins. We retrieved Plasmodium proteomes associated with human malaria and applied a subtractive proteomics approach focusing on merozoite stage proteins. Bepipred 2.0 and Epidope were used to predict B-cell linear epitopes using P. falciparum as the reference species. The predictions were further compared against human and non-falciparum databases and their antigenicity, toxicity, and allergenicity assessed. Subsequently, epitope conservation was carried out using locally sequenced P. falciparum isolates from a malaria-endemic region in western Kenya (n=27) and Kenyan isolates from MalariaGEN version 6 (n=131). Finally, physiochemical characteristics and tertiary structure of the B-cell linear epitopes were determined. The analysis revealed eight epitopes that showed high similarity (70-100%) between falciparum and non-falciparum species. These epitopes were highly conserved when assessed across local isolates and those from the MalariaGEN database and showed desirable physiochemical properties. Our results show the presence of conserved cross-species B-cell linear epitopes that could aid in targeting multiple Plasmodium species. Nevertheless, validating their efficacy in-vitro and in-vivo experimentally is essential.
Collapse
Affiliation(s)
| | | | - Bernard N. Kanoi
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| |
Collapse
|
3
|
Iyamu U, Vinals DF, Tornyigah B, Arango E, Bhat R, Adra TR, Grewal S, Martin K, Maestre A, Overduin M, Hazes B, Yanow SK. A conserved epitope in VAR2CSA is targeted by a cross-reactive antibody originating from Plasmodium vivax Duffy binding protein. Front Cell Infect Microbiol 2023; 13:1202276. [PMID: 37396303 PMCID: PMC10312377 DOI: 10.3389/fcimb.2023.1202276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/11/2023] [Indexed: 07/04/2023] Open
Abstract
During Plasmodium falciparum infection in pregnancy, VAR2CSA is expressed on the surface of infected erythrocytes (IEs) and mediates their sequestration in the placenta. As a result, antibodies to VAR2CSA are largely restricted to women who were infected during pregnancy. However, we discovered that VAR2CSA antibodies can also be elicited by P. vivax Duffy binding protein (PvDBP). We proposed that infection with P. vivax in non-pregnant individuals can generate antibodies that cross-react with VAR2CSA. To better understand the specificity of these antibodies, we took advantage of a mouse monoclonal antibody (3D10) raised against PvDBP that cross-reacts with VAR2CSA and identified the epitopes targeted by this antibody. We screened two peptide arrays that span the ectodomain of VAR2CSA from the FCR3 and NF54 alleles. Based on the top epitope recognized by 3D10, we designed a 34-amino acid synthetic peptide, which we call CRP1, that maps to a highly conserved region in DBL3X. Specific lysine residues are critical for 3D10 recognition, and these same amino acids are within a previously defined chondroitin sulfate A (CSA) binding site in DBL3X. We showed by isothermal titration calorimetry that the CRP1 peptide can bind directly to CSA, and antibodies to CRP1 raised in rats significantly blocked the binding of IEs to CSA in vitro. In our Colombian cohorts of pregnant and non-pregnant individuals, at least 45% were seroreactive to CRP1. Antibody reactivities to CRP1 and the 3D10 natural epitope in PvDBP region II, subdomain 1 (SD1), were strongly correlated in both cohorts. These findings suggest that antibodies arising from PvDBP may cross-react with VAR2CSA through the epitope in CRP1 and that CRP1 could be a potential vaccine candidate to target a distinct CSA binding site in VAR2CSA.
Collapse
Affiliation(s)
- Uwa Iyamu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | | | - Bernard Tornyigah
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Eliana Arango
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Grupo de Enfermedades Infecciosas y Crónicas (GEINCRO), Fundación Universitaria San Martín, Sabaneta, Colombia
| | - Rakesh Bhat
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Trixie Rae Adra
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Simranjit Grewal
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kimberly Martin
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Amanda Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Bart Hazes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Kassa MW, Hasang W, Barateiro A, Damelang T, Brewster J, Dombrowski JG, Longley RJ, Chung AW, Wunderlich G, Mueller I, Aitken EH, Marinho CRF, Rogerson SJ. Acquisition of antibodies to Plasmodium falciparum and Plasmodium vivax antigens in pregnant women living in a low malaria transmission area of Brazil. Malar J 2022; 21:360. [PMID: 36457056 PMCID: PMC9714246 DOI: 10.1186/s12936-022-04402-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Pregnant women have increased susceptibility to Plasmodium falciparum malaria and acquire protective antibodies over successive pregnancies. Most studies that investigated malaria antibody responses in pregnant women are from high transmission areas in sub-Saharan Africa, while reports from Latin America are scarce and inconsistent. The present study sought to explore the development of antibodies against P. falciparum and Plasmodium vivax antigens in pregnant women living in a low transmission area in the Brazilian Amazon. METHODS In a prospective cohort study, plasma samples from 408 pregnant women (of whom 111 were infected with P. falciparum, 96 had infections with P. falciparum and P. vivax, and 201 had no Plasmodium infection) were used to measure antibody levels. Levels of IgG and opsonizing antibody to pregnancy-specific variant surface antigens (VSAs) on infected erythrocytes (IEs), 10 recombinant VAR2CSA Duffy binding like (DBL domains), 10 non-pregnancy-specific P. falciparum merozoite antigens, and 10 P. vivax antigens were measured by flow cytometry, ELISA, and multiplex assays. Antibody levels and seropositivity among the groups were compared. RESULTS Antibodies to VSAs on P. falciparum IEs were generally low but were higher in currently infected women and women with multiple P. falciparum episodes over pregnancy. Many women (21%-69%) had antibodies against each individual VAR2CSA DBL domain, and antibodies to DBLs correlated with each other (r ≥ 0.55, p < 0.0001), but not with antibody to VSA or history of infection. Infection with either malaria species was associated with higher seropositivity rate for antibodies against P. vivax proteins, adjusted odds ratios (95% CI) ranged from 5.6 (3.2, 9.7), p < 0.0001 for PVDBPII-Sal1 to 15.7 (8.3, 29.7), p < 0.0001 for PvTRAg_2. CONCLUSIONS Pregnant Brazilian women had low levels of antibodies to pregnancy-specific VSAs that increased with exposure. They frequently recognized both VAR2CSA DBL domains and P. vivax antigens, but only the latter varied with infection. Apparent antibody prevalence is highly dependent on the assay platform used.
Collapse
Affiliation(s)
- Meseret W. Kassa
- grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Level 5, 792 Elizabeth St, University of Melbourne, Melbourne, VIC 3000 Australia
| | - Wina Hasang
- grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia
| | - André Barateiro
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Timon Damelang
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, University of Melbourne, Melbourne, VIC Australia
| | - Jessica Brewster
- grid.1042.70000 0004 0432 4889Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | - Jamille G. Dombrowski
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rhea J. Longley
- grid.1042.70000 0004 0432 4889Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Amy W. Chung
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, University of Melbourne, Melbourne, VIC Australia
| | - Gerhard Wunderlich
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ivo Mueller
- grid.1042.70000 0004 0432 4889Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elizabeth H. Aitken
- grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, University of Melbourne, Melbourne, VIC Australia
| | - Claudio R. F. Marinho
- grid.11899.380000 0004 1937 0722Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stephen J. Rogerson
- grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Level 5, 792 Elizabeth St, University of Melbourne, Melbourne, VIC 3000 Australia ,grid.1008.90000 0001 2179 088XDepartment of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC Australia
| |
Collapse
|
5
|
Ahmed MA, Deshmukh GY, Zaidi RH, Saif A, Alshahrani MA, Wazid SW, Patgiri SJ, Quan FS. Identification, Mapping, and Genetic Diversity of Novel Conserved Cross-Species Epitopes of RhopH2 in Plasmodium knowlesi With Plasmodium vivax. Front Cell Infect Microbiol 2022; 11:810398. [PMID: 35096656 PMCID: PMC8793677 DOI: 10.3389/fcimb.2021.810398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a major public health concern, and any tangible intervention during the pre-elimination phase can result in a significant reduction in infection rates. Recent studies have reported that antigens producing cross-protective immunity can play an important role as vaccines and halt malaria transmission in different endemic regions. In this study, we studied the genetic diversity, natural selection, and discovered novel conserved epitopes of a high molecular weight rhoptry protein 2 (RhopH2) in clinical samples of Plasmodium knowlesi and Plasmodium vivax cross-protective domains, which has been proven to produce cross-protective immunity in both species. We found low levels of nucleotide diversity (P. knowlesi; π ~ 0.0093, SNPs = 49 and P. vivax π ~ 0.0014, SNPs = 23) in P. knowlesi (n = 40) and P. vivax (n = 65) samples in the PkRhopH2 cross-protective domain. Strong purifying selection was observed for both species (P. knowlesi; dS - dN = 2.41, p < 0.009, P. vivax; dS - dN = 1.58, p < 0.050). In silico epitope prediction in P. knowlesi identified 10 potential epitopes, of which 7 epitopes were 100% conserved within clinical samples. Of these epitopes, an epitope with 10 amino acids (QNSKHFKKEK) was found to be fully conserved within all P. knowlesi and P. vivax clinical samples and 80%–90% conservation within simian malaria ortholog species, i.e., P. coatneyi and P. cynomolgi. Phylogenetic analysis of the PkRhopH2 cross-protective domain showed geographical clustering, and three subpopulations of P. knowlesi were identified of which two subpopulations originated from Sarawak, Malaysian Borneo, and one comprised only the laboratory lines from Peninsular Malaysia. This study suggests that RhopH2 could be an excellent target for cross-protective vaccine development with potential for outwitting strain as well as species-specific immunity. However, more detailed studies on genetic diversity using more clinical samples from both species as well as the functional role of antibodies specific to the novel conserved epitope identified in this study can be explored for protection against infection.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, North East Region (NER), Dibrugarh, India
- *Correspondence: Md Atique Ahmed, ; Fu-Shi Quan,
| | | | - Rehan Haider Zaidi
- Department of Biotechnology and Microbiology, National College, Tiruchirapalli, India
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Narjan, Saudi Arabia
| | | | | | - Saurav Jyoti Patgiri
- Indian Council of Medical Research (ICMR)-Regional Medical Research Centre, North East Region (NER), Dibrugarh, India
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, South Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md Atique Ahmed, ; Fu-Shi Quan,
| |
Collapse
|
6
|
Generation of a Peptide Vaccine Candidate against Falciparum Placental Malaria Based on a Discontinuous Epitope. Vaccines (Basel) 2020; 8:vaccines8030392. [PMID: 32708370 PMCID: PMC7564767 DOI: 10.3390/vaccines8030392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
In pregnant women, Plasmodium falciparum-infected red blood cells adhere to the placenta via the parasite protein VAR2CSA. Two vaccine candidates based on VAR2CSA are currently in clinical trials; however, these candidates failed to elicit strain-transcending antibody responses. We previously showed that a cross-reactive monoclonal antibody (3D10) raised against the P. vivax antigen PvDBP targets epitopes in VAR2CSA. We now aim to design a peptide vaccine against VAR2CSA based on the epitope that generated 3D10. We mapped the epitope to subdomain 1 (SD1) of PvDBP and identified a peptide that contained the minimal sequence. However, this peptide did not elicit cross-reactive VAR2CSA antibodies in mice. When tested against a broader, overlapping peptide array spanning SD1, 3D10 in fact recognized a discontinuous epitope consisting of three segments of SD1. These findings presented the challenge to generate this larger structural epitope as a synthetic peptide since it is stabilized by two pairs of disulfide bonds. We overcame this using a synthetic scaffold to conformationally constrain the SD1 peptide and coupled it to keyhole limpet hemocyanin (KLH). The SD1-KLH conjugate elicited antibodies in mice that cross-reacted with VAR2CSA. This strategy successfully recapitulated a discontinuous epitope with a synthetic peptide and represents the first heterologous vaccine candidate against VAR2CSA.
Collapse
|
7
|
Doesn’t It All Come Down to Function? How To Correlate VAR2CSA Antibodies with Protection. mSphere 2020; 5:5/3/e00521-20. [PMID: 32581073 PMCID: PMC7316495 DOI: 10.1128/msphere.00521-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Muh F, Kim N, Nyunt MH, Firdaus ER, Han JH, Hoque MR, Lee SK, Park JH, Moon RW, Lau YL, Kaneko O, Han ET. Cross-species reactivity of antibodies against Plasmodium vivax blood-stage antigens to Plasmodium knowlesi. PLoS Negl Trop Dis 2020; 14:e0008323. [PMID: 32559186 PMCID: PMC7304578 DOI: 10.1371/journal.pntd.0008323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is caused by multiple different species of protozoan parasites, and interventions in the pre-elimination phase can lead to drastic changes in the proportion of each species causing malaria. In endemic areas, cross-reactivity may play an important role in the protection and blocking transmission. Thus, successful control of one species could lead to an increase in other parasite species. A few studies have reported cross-reactivity producing cross-immunity, but the extent of cross-reactive, particularly between closely related species, is poorly understood. P. vivax and P. knowlesi are particularly closely related species causing malaria infections in SE Asia, and whilst P. vivax cases are in decline, zoonotic P. knowlesi infections are rising in some areas. In this study, the cross-species reactivity and growth inhibition activity of P. vivax blood-stage antigen-specific antibodies against P. knowlesi parasites were investigated. Bioinformatics analysis, immunofluorescence assay, western blotting, protein microarray, and growth inhibition assay were performed to investigate the cross-reactivity. P. vivax blood-stage antigen-specific antibodies recognized the molecules located on the surface or released from apical organelles of P. knowlesi merozoites. Recombinant P. vivax and P. knowlesi proteins were also recognized by P. knowlesi- and P. vivax-infected patient antibodies, respectively. Immunoglobulin G against P. vivax antigens from both immune animals and human malaria patients inhibited the erythrocyte invasion by P. knowlesi. This study demonstrates that there is extensive cross-reactivity between antibodies against P. vivax to P. knowlesi in the blood stage, and these antibodies can potently inhibit in vitro invasion, highlighting the potential cross-protective immunity in endemic areas. In recent years, malaria initiatives have increasingly shifted focus from achieving malaria control to achieving malaria elimination. However, the interventions used are leading to drastic changes in the proportions of different Plasmodium species causing clinical infection, particularly within Southeast Asia. Little is known about how these different parasite species interact/compete in nature or whether exposure to one species could cause some level of protection against another. We examined cross-reactive antibody responses to key parasite proteins with roles in red blood cell invasion and identified novel cross-species reactivity among the closest of malaria affecting the human population (P. vivax and P. knowlesi). This comprehensive analysis provides evidence that cross-reactive immunity could play an important role in areas where species distributions are perturbed by malaria control measures, and future efforts to identify the specific cross-reactive epitopes involved would be invaluable both to our understanding of malaria immunity and vaccine development.
Collapse
Affiliation(s)
- Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Namhyeok Kim
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | | | - Egy Rahman Firdaus
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Mohammad Rafiul Hoque
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Robert W. Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
- * E-mail:
| |
Collapse
|
9
|
Abstract
Mary Lopez-Perez works on immunology and pathogenesis of malaria. In this mSphere of Influence article, she reflects on how the paper “Functional antibodies against VAR2CSA in nonpregnant populations from Colombia exposed to Plasmodium falciparum and Plasmodium vivax” by S. Gnidehou, J. Doritchamou, E. M. Arango, A. Cabrera, et al. (Infect Immun 82:2565−2573, 2014, https://doi.org/10.1128/IAI.01594-14) made her cautious of relying exclusively on recombinant proteins when evaluating antibody responses. Mary Lopez-Perez works on immunology and pathogenesis of malaria. In this mSphere of Influence article, she reflects on how the paper “Functional antibodies against VAR2CSA in nonpregnant populations from Colombia exposed to Plasmodium falciparum and Plasmodium vivax” by S. Gnidehou, J. Doritchamou, E. M. Arango, A. Cabrera, et al. (Infect Immun 82:2565−2573, 2014, https://doi.org/10.1128/IAI.01594-14) made her cautious of relying exclusively on recombinant proteins when evaluating antibody responses.
Collapse
|
10
|
Mitran CJ, Yanow SK. The Case for Exploiting Cross-Species Epitopes in Malaria Vaccine Design. Front Immunol 2020; 11:335. [PMID: 32174924 PMCID: PMC7056716 DOI: 10.3389/fimmu.2020.00335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
The infection dynamics between different species of Plasmodium that infect the same human host can both suppress and exacerbate disease. This could arise from inter-parasite interactions, such as competition, from immune regulation, or both. The occurrence of protective, cross-species (heterologous) immunity is an unlikely event, especially considering that strain-transcending immunity within a species is only partial despite lifelong exposure to that species. Here we review the literature in humans and animal models to identify the contexts where heterologous immunity can arise, and which antigens may be involved. From the perspective of vaccine design, understanding the mechanisms by which exposure to an antigen from one species can elicit a protective response to another species offers an alternative strategy to conventional approaches that focus on immunodominant antigens within a single species. The underlying hypothesis is that certain epitopes are conserved across evolution, in sequence or in structure, and shared in antigens from different species. Vaccines that focus on conserved epitopes may overcome the challenges posed by polymorphic immunodominant antigens; but to uncover these epitopes requires approaches that consider the evolutionary history of protein families across species. The key question for vaccinologists will be whether vaccines that express these epitopes can elicit immune responses that are functional and contribute to protection against Plasmodium parasites.
Collapse
Affiliation(s)
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Antibodies to Cryptic Epitopes in Distant Homologues Underpin a Mechanism of Heterologous Immunity between Plasmodium vivax PvDBP and Plasmodium falciparum VAR2CSA. mBio 2019; 10:mBio.02343-19. [PMID: 31594821 PMCID: PMC6786876 DOI: 10.1128/mbio.02343-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In this work, we describe a molecular mechanism of heterologous immunity between two distant species of Plasmodium. Our results suggest a mechanism that subverts the classic parasite strategy of presenting highly polymorphic epitopes in surface antigens to evade immunity to that parasite. This alternative immune pathway can be exploited to protect pregnant women from falciparum placental malaria by designing vaccines to cryptic epitopes that elicit broadly inhibitory antibodies against variant parasite strains. Many pathogens evolve extensive genetic variation in virulence proteins as a strategy to evade host immunity. This poses a significant challenge for the host to develop broadly neutralizing antibodies. In Plasmodium falciparum, we show that a mechanism to circumvent this challenge is to elicit antibodies to cryptic epitopes that are not under immune pressure. We previously discovered that antibodies to the Plasmodium vivax invasion protein, PvDBP, cross-react with P. falciparum VAR2CSA, a distantly related virulence factor that mediates placental malaria. Here, we describe the molecular mechanism underlying this cross-species immunity. We identified an epitope in subdomain 1 (SD1) within the Duffy binding-like (DBL) domain of PvDBP that gives rise to cross-reactive antibodies to VAR2CSA and show that human antibodies affinity purified against a synthetic SD1 peptide block parasite adhesion to chondroitin sulfate A (CSA) in vitro. The epitope in SD1 is subdominant and highly conserved in PvDBP, and in turn, SD1 antibodies target cryptic epitopes in P. falciparum VAR2CSA. The epitopes in VAR2CSA recognized by vivax-derived SD1 antibodies (of human and mouse origin) are distinct from those recognized by VAR2CSA immune serum. We mapped two peptides in the DBL5ε domain of VAR2CSA that are recognized by SD1 antibodies. Both peptides map to regions outside the immunodominant sites, and antibodies to these peptides are not elicited following immunization with VAR2CSA or natural infection with P. falciparum in pregnancy, consistent with the cryptic nature of these target epitopes.
Collapse
|