1
|
Hao Z, Xin Z, Chen Y, Shao Z, Lin W, Wu W, Lin M, Liu Q, Chen D, Wu D, Wu P. JAML promotes the antitumor role of tumor-resident CD8 + T cells by facilitating their innate-like function in human lung cancer. Cancer Lett 2024; 590:216839. [PMID: 38570084 DOI: 10.1016/j.canlet.2024.216839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Tissue-resident memory CD8+T cells (CD8+TRMs) are thought to play a crucial role in cancer immunosurveillance. However, the characteristics of CD8+TRMs in the tumor microenvironment (TME) of human non-small cell lung cancer (NSCLC) remain unclear. Here, we report that CD8+TRMs accumulate explicitly and exhibit a unique gene expression profile in the TME of NSCLC. Interestingly, these tumor-associated CD8+TRMs uniquely exhibit an innate-like phenotype. Importantly, we found that junction adhesion molecule-like (JAML) provides an alternative costimulatory signal to activate tumor-associated CD8+TRMs via combination with cancer cell-derived CXADR (CXADR Ig-like cell adhesion molecule). Furthermore, we demonstrated that activating JAML could promote the expression of TLR1/2 on CD8+TRMs, inhibit tumor progression and prolong the survival of tumor-bearing mice. Finally, we found that higher CD8+TRMs and JAML expression in the TME could predict favorable clinical outcomes in NSCLC patients. Our study reveals an intrinsic bias of CD8+TRMs for receiving the tumor-derived costimulatory signal in the TME, which sustains their innate-like function and antitumor role. These findings will shed more light on the biology of CD8+TRMs and aid in the development of potential targeted treatment strategies for NSCLC.
Collapse
Affiliation(s)
- Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wei Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wenxuan Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qinyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Liu G, Wang Z, Li S. Heterogeneity and plasticity of tissue-resident memory T cells in skin diseases and homeostasis: a review. Front Immunol 2024; 15:1378359. [PMID: 38779662 PMCID: PMC11109409 DOI: 10.3389/fimmu.2024.1378359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Skin tissue-resident memory T (Trm) cells are produced by antigenic stimulation and remain in the skin for a long time without entering the peripheral circulation. In the healthy state Trm cells can play a patrolling and surveillance role, but in the disease state Trm cells differentiate into various phenotypes associated with different diseases, exhibit different localizations, and consequently have local protective or pathogenic roles, such as disease recurrence in vitiligo and maintenance of immune homeostasis in melanoma. The most common surface marker of Trm cells is CD69/CD103. However, the plasticity of tissue-resident memory T cells after colonization remains somewhat uncertain. This ambiguity is largely due to the variation in the functionality and ultimate destination of Trm cells produced from memory cells differentiated from diverse precursors. Notably, the presence of Trm cells is not stationary across numerous non-lymphoid tissues, most notably in the skin. These cells may reenter the blood and distant tissue sites during the recall response, revealing the recycling and migration potential of the Trm cell progeny. This review focuses on the origin and function of skin Trm cells, and provides new insights into the role of skin Trm cells in the treatment of autoimmune skin diseases, infectious skin diseases, and tumors.
Collapse
Affiliation(s)
- Guomu Liu
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Ziyue Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Chopp LB, Zhu X, Gao Y, Nie J, Singh J, Kumar P, Young KZ, Patel S, Li C, Balmaceno-Criss M, Vacchio MS, Wang MM, Livak F, Merchant JL, Wang L, Kelly MC, Zhu J, Bosselut R. Zfp281 and Zfp148 control CD4 + T cell thymic development and T H2 functions. Sci Immunol 2023; 8:eadi9066. [PMID: 37948511 DOI: 10.1126/sciimmunol.adi9066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
How CD4+ lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (TH2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4+ T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4+ lineage-committing factor Thpok. In peripheral T cells, Zfp281 and Zfp148 promoted chromatin opening at and expression of TH2 cytokine genes but not of the TH2 lineage-determining transcription factor Gata3. We found that Zfp281 interacts with Gata3 and is recruited to Gata3 genomic binding sites at loci encoding Thpok and TH2 cytokines. Thus, Zfp148 and Zfp281 collaborate with Gata3 to promote CD4+ T cell development and TH2 cell responses.
Collapse
Affiliation(s)
- Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yayi Gao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jatinder Singh
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parimal Kumar
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly Z Young
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shil Patel
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- University of Maryland Medical School, Baltimore, MD 21201, USA
| | - Caiyi Li
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M Wang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Ferenc Livak
- Flow Cytometry Core, Laboratory of Genomic Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juanita L Merchant
- Department of Gastroenterology and Hepatology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Nguyen QP, Takehara KK, Deng TZ, O’Shea S, Heeg M, Omilusik KD, Milner JJ, Quon S, Pipkin ME, Choi J, Crotty S, Goldrath AW. Transcriptional programming of CD4 + T RM differentiation in viral infection balances effector- and memory-associated gene expression. Sci Immunol 2023; 8:eabq7486. [PMID: 37172104 PMCID: PMC10350289 DOI: 10.1126/sciimmunol.abq7486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/19/2023] [Indexed: 05/14/2023]
Abstract
After resolution of infection, T cells differentiate into long-lived memory cells that recirculate through secondary lymphoid organs or establish residence in tissues. In contrast to CD8+ tissue-resident memory T cells (TRM), the developmental origins and transcriptional regulation of CD4+ TRM remain largely undefined. Here, we investigated the phenotypic, functional, and transcriptional profiles of CD4+ TRM in the small intestine (SI) responding to acute viral infection, revealing a shared gene expression program and chromatin accessibility profile with circulating TH1 and the progressive acquisition of a mature TRM program. Single-cell RNA sequencing identified heterogeneity among established CD4+ TRM, which were predominantly located in the lamina propria, and revealed a population of cells that coexpressed both effector- and memory-associated genes, including the transcriptional regulators Blimp1, Id2, and Bcl6. TH1-associated Blimp1 and Id2 and TFH-associated Bcl6 were required for early TRM formation and development of a mature TRM population in the SI. These results demonstrate a developmental relationship between TH1 effector cells and the establishment of early TRM, as well as highlighted differences in CD4+ versus CD8+ TRM populations, providing insights into the mechanisms underlying the origins, differentiation, and persistence of CD4+ TRM in response to viral infection.
Collapse
Affiliation(s)
- Quynh P Nguyen
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kennidy K Takehara
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Tianda Z Deng
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Shannon O’Shea
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Kyla D Omilusik
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - J Justin Milner
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida
| | - Jinyong Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
5
|
Deng Y, Zhou M, Zhao X, Xue X, Liao L, Wang J, Li Y. Immune response studies based on P2X7 receptors: A Mini-Review. Curr Pharm Des 2022; 28:993-999. [PMID: 35100953 DOI: 10.2174/1381612828666220131091325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
Inflammation, as a complex immunopathological process, is the organism's natural defense response to the organism against harmful, foreign, and destructive immune or non-immune factors. It is the main pathological form of various diseases, such as tumors, neurodegenerative diseases, periodontitis, alcoholic steatohepatitis, asthma, and other diseases. The P2X7 receptor (P2X7R) is widely distributed in vivo and up--regulated in various inflammatory pathological states. Studies have shown that milder chronic inflammation is related to a deficiency or inhibition of P2X7R, which is an indispensable part of the pro-inflammatory mechanism in vivo. P2X7R, a unique subtype of seven purinergic P2X receptors, is an ATP-gated nonselective cationic channel. P2X7R will promote the influx of Ca2+ and the outflow of K+ after being stimulated. The influx of Ca2+ is essential for activating the body's innate immune response and inducing the production of inflammatory factors. This paper reviews the regulation of P2X7R on inflammation from the perspectives of innate immunity and adaptive immunity.
Collapse
Affiliation(s)
- Ying Deng
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Mengting Zhou
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xingtao Zhao
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xinyan Xue
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Li Liao
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137,
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Jing Wang
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yunxia Li
- State Key laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
- School of pharmacy, Chengdu university of Traditional Chinese Medicine, Chengdu 611137, China
- Key laboratory of standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| |
Collapse
|
6
|
Peng C, Huggins MA, Wanhainen KM, Knutson TP, Lu H, Georgiev H, Mittelsteadt KL, Jarjour NN, Wang H, Hogquist KA, Campbell DJ, Borges da Silva H, Jameson SC. Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8 + tissue-resident memory T cells. Immunity 2022; 55:98-114.e5. [PMID: 34932944 PMCID: PMC8755622 DOI: 10.1016/j.immuni.2021.11.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 01/13/2023]
Abstract
Elevated gene expression of the costimulatory receptor Icos is a hallmark of CD8+ tissue-resident memory (Trm) T cells. Here, we examined the contribution of ICOS in Trm cell differentiation. Upon transfer into WT mice, Icos-/- CD8+ T cells exhibited defective Trm generation but produced recirculating memory populations normally. ICOS deficiency or ICOS-L blockade compromised establishment of CD8+ Trm cells but not their maintenance. ICOS ligation during CD8+ T cell priming did not determine Trm induction; rather, effector CD8+ T cells showed reduced Trm differentiation after seeding into Icosl-/- mice. IcosYF/YF CD8+ T cells were compromised in Trm generation, indicating a critical role for PI3K signaling. Modest transcriptional changes in the few Icos-/- Trm cells suggest that ICOS-PI3K signaling primarily enhances the efficiency of CD8+ T cell tissue residency. Thus, local ICOS signaling promotes production of Trm cells, providing insight into the contribution of costimulatory signals in the generation of tissue-resident populations.
Collapse
Affiliation(s)
- Changwei Peng
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew A. Huggins
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey M. Wanhainen
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Todd P. Knutson
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Hanbin Lu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hristo Georgiev
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA,Current address: Institute of immunology, Hannover Medical School, Hannover D-30625, Germany
| | - Kristen L. Mittelsteadt
- Benaroya Research Institute and Department of Immunology University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Nicholas N. Jarjour
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haiguang Wang
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin A. Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J. Campbell
- Benaroya Research Institute and Department of Immunology University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Henrique Borges da Silva
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA,Current address: Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Stephen C. Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA,Corresponding author and lead contact:
| |
Collapse
|
7
|
Georgiev H, Papadogianni G, Bernhardt G. Identification of Follicular T Cells in the Gut. Methods Mol Biol 2022; 2380:85-95. [PMID: 34802124 DOI: 10.1007/978-1-0716-1736-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Humoral adaptive immune responses trigger the establishment of plasma B cells secreting antibodies of various isotypes that bind antigen specifically and with high affinity. Moreover, memory B cells will be generated. To accomplish this, B cells need assistance from a special subset of CD4 T cells, the so called follicular T cells that differentiate from naïve T cells in the course of the immune response. Therefore, the study of follicular T cells is of primordial interest when investigating the molecular and cellular determinants of adaptive immune responses. This is done by direct analysis of the cells isolated from mice following an immunological challenge but in many instances such analyses must involve follow-up studies in cell culture requiring living cells. Especially, in vitro experimentation necessitates isolation and sorting of follicular T cells. However, follicular T cells are generally difficult to handle because they are prone to apoptosis and cell death. This is particularly evident when dealing with follicular T cells residing in the gut since we observed that isolation and processing from murine gut notoriously results in very high loss rates when compared for example to cells obtained from immunized peripheral lymph nodes. To bypass these limitations, we developed a protocol that allows for efficient isolation of intact follicular T cells. The protocol introduced here illustrates isolation and handling of follicular T cells using murine Peyer's Patches as an example because they constantly harbor significant amounts of these cells.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of immunology, Hannover Medical School, Hannover, Germany.
| | | | - Günter Bernhardt
- Institute of immunology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Ishii KJ, Kurosaki T. Introduction: Memory and Vaccination Special Issue. Int Immunol 2020. [DOI: 10.1093/intimm/dxaa056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Kurosaki
- Laboratory of Mockup Vaccine Project, National Institute of Bioinnovation, Health and Nutrition, Osaka, Japan
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| |
Collapse
|