1
|
Schrader M. Origins, Technological Advancement, and Applications of Peptidomics. Methods Mol Biol 2024; 2758:3-47. [PMID: 38549006 DOI: 10.1007/978-1-0716-3646-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in proteomics were specifically adjusted for peptidomics. Although it is thus closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. Fundamental technological advancements of peptidomics since have occurred in mass spectrometry and data processing, including quantification, and more slightly in separation technology. Different strategies and diverse sources of peptidomes are mentioned by numerous applications, such as discovery of neuropeptides and other bioactive peptides, including the use of biochemical assays. Furthermore, food and plant peptidomics are introduced similarly. Additionally, applications with a clinical focus are included, comprising biomarker discovery as well as immunopeptidomics. This overview extensively reviews recent methods, strategies, and applications including links to all other chapters of this book.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| |
Collapse
|
2
|
Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry. Mol Cell Proteomics 2016; 14:3105-17. [PMID: 26628741 DOI: 10.1074/mcp.o115.052431] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field.
Collapse
Affiliation(s)
- Etienne Caron
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland;
| | - Daniel J Kowalewski
- §Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ching Chiek Koh
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Theo Sturm
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Heiko Schuster
- §Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; ¶Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Schellens IMM, Hoof I, Meiring HD, Spijkers SNM, Poelen MCM, van Gaans-van den Brink JAM, van der Poel K, Costa AI, van Els CACM, van Baarle D, Kesmir C. Comprehensive Analysis of the Naturally Processed Peptide Repertoire: Differences between HLA-A and B in the Immunopeptidome. PLoS One 2015; 10:e0136417. [PMID: 26375851 PMCID: PMC4574158 DOI: 10.1371/journal.pone.0136417] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/04/2015] [Indexed: 01/23/2023] Open
Abstract
The cytotoxic T cell (CTL) response is determined by the peptide repertoire presented by the HLA class I molecules of an individual. We performed an in-depth analysis of the peptide repertoire presented by a broad panel of common HLA class I molecules on four B lymphoblastoid cell-lines (BLCL). Peptide elution and mass spectrometry analysis were utilised to investigate the number and abundance of self-peptides. Altogether, 7897 unique self-peptides, derived of 4344 proteins, were eluted. After viral infection, the number of unique self-peptides eluted significantly decreased compared to uninfected cells, paralleled by a decrease in the number of source proteins. In the overall dataset, the total number of unique self-peptides eluted from HLA-B molecules was larger than from HLA-A molecules, and they were derived from a larger number of source proteins. These results in B cells suggest that HLA-B molecules possibly present a more diverse repertoire compared to their HLA-A counterparts, which may contribute to their immunodominance. This study provides a unique data set giving new insights into the complex system of antigen presentation for a broad panel of HLA molecules, many of which were never studied this extensively before.
Collapse
Affiliation(s)
- Ingrid M. M. Schellens
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Ilka Hoof
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Hugo D. Meiring
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Sanne N. M. Spijkers
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Martien C. M. Poelen
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Kees van der Poel
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ana I. Costa
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cecile A. C. M. van Els
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debbie van Baarle
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- * E-mail:
| | - Can Kesmir
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Antón LC, Yewdell JW. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J Leukoc Biol 2014; 95:551-62. [PMID: 24532645 PMCID: PMC3958739 DOI: 10.1189/jlb.1113599] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/24/2022] Open
Abstract
MHC class I molecules display oligopeptides on the cell surface to enable T cell immunosurveillance of intracellular pathogens and tumors. Speed is of the essence in detecting viruses, which can complete a full replication cycle in just hours, whereas tumor detection is typically a finding-the-needle-in-the-haystack exercise. We review current evidence supporting a nonrandom, compartmentalized selection of peptidogenic substrates that focuses on rapidly degraded translation products as a main source of peptide precursors to optimize immunosurveillance of pathogens and tumors.
Collapse
Affiliation(s)
- Luis C Antón
- 1.NIAID, NIH, Bldg. 33, Bethesda, MD 20892, USA.
| | | |
Collapse
|
5
|
Scull KE, Dudek NL, Corbett AJ, Ramarathinam SH, Gorasia DG, Williamson NA, Purcell AW. Secreted HLA recapitulates the immunopeptidome and allows in-depth coverage of HLA A*02:01 ligands. Mol Immunol 2012; 51:136-42. [PMID: 22424782 DOI: 10.1016/j.molimm.2012.02.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 02/15/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
HLA molecules are cell-surface glycoproteins that present peptides, derived from intracellular protein antigens, for surveillance by T lymphocytes. Secreted HLA (sHLA) technology is a powerful approach for studying these peptides, since it facilitates large-scale production of HLA-bound peptides. We compared secreted and membrane-bound forms of HLA A2 in terms of intracellular trafficking and their bound peptide repertoire (termed the immunopeptidome). We demonstrate that sHLA and membrane bound HLA (mHLA) negotiate intracellular compartments with similar maturation kinetics. Moreover, mass spectrometry revealed a substantial overlap in the immunopeptidome was observed when HLA A2-bound peptides were purified from various sources of sHLA and mHLA. By combining machine based algorithms with manual validation, we identified 1266 non-redundant peptides. Analysis of these peptides revealed a number bearing post-translational modifications, although some of these may arise spontaneously others represent modifications performed within the cell that survive antigen processing. Peptides bearing some of these modifications have not previously been described for HLA ligands, therefore, this compendium of 1266 non-redundant peptide sequences adds greatly to the existing database of HLA A2 ligands. Peptides from all sources displayed comparable HLA A2 consensus binding motifs, peptide lengths, predicted HLA A2 binding affinities and putative source antigens. We conclude that sHLA is a valid and useful technique for studying the immunopeptidome.
Collapse
Affiliation(s)
- Katherine E Scull
- Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Origin and plasticity of MHC I-associated self peptides. Autoimmun Rev 2011; 11:627-35. [PMID: 22100331 DOI: 10.1016/j.autrev.2011.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
Abstract
Endogenous peptides presented by MHC I molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) regulate all key events that occur during the lifetime of CD8 T cells. CD8 T cells are selected on self-MIPs, sustained by self-MIPs, and activated in the presence of self-MIPs. Recently, large-scale mass spectrometry studies have revealed that the self-MIP repertoire is more complex and plastic than previously anticipated. The composition of the self-MIP repertoire varies from one cell type to another and can be perturbed by cell-intrinsic and -extrinsic factors including dysregulation of cellular metabolism and infection. The complexity and plasticity of the self-MIP repertoire represent a major challenge for the maintenance of self tolerance and can have pervasive effects on the global functioning of the immune system.
Collapse
|
7
|
Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 2011; 32:548-58. [PMID: 21962745 DOI: 10.1016/j.it.2011.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
Defective ribosomal products (DRiPs) are a subset of rapidly degraded polypeptides that provide peptide ligands for major histocompatibility complex (MHC) class I molecules. Here, recent progress in understanding DRiP biogenesis is reviewed. These findings place DRiPs at the center of the MHC class I antigen processing pathway, linking immunosurveillance of viruses and tumors to mechanisms of specialized translation and cellular compartmentalization. DRiPs enable the immune system to rapidly detect alterations in cellular gene expression with great sensitivity.
Collapse
|
8
|
Miyagawa F, Gutermuth J, Zhang H, Katz SI. The use of mouse models to better understand mechanisms of autoimmunity and tolerance. J Autoimmun 2010; 35:192-8. [PMID: 20655706 PMCID: PMC2956781 DOI: 10.1016/j.jaut.2010.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major emphasis of our studies has been on developing a better understanding of how and why the skin serves as a target for immune reactions as well as how the skin evades becoming a target for destruction. For these studies we developed transgenic mice that express a membrane-tethered form of a model self antigen, chicken ovalbumin (mOVA), under the control of a keratin 14 (K14) promoter. K14-mOVA transgenic mice that express OVA mRNA and protein in the epithelia have been assessed for their immune responsiveness to OVA and are being used as targets for T cells obtained from OT-1 transgenic mice whose CD8+ T cells carry a Vα2/Vβ5-transgenic T cell receptor with specificity for the OVA(257-264)-peptides (OVAp) in association with class I MHC antigens. Some of the K14-mOVA transgenic mice develop a graft-versus-host-like disease (GvHD) when the OT-1 cells are injected while others appear to be tolerant to the OT-1 cells. We found that γc cytokines, especially IL-15, determine whether autoimmunity or tolerance ensues in K14-mOVA Tg mice. We also developed transgenic mice that express soluble OVA under the control of a K14 promoter (K14-sOVA) that die within 5-8 days after adoptive transfer of OT-1 cells and identified these mice as a model for more acute GvHD-like reactions. Spontaneous autoimmunity occurs when these K14-sOVA mice are crossed with the OT-I mice. In contrast, we found that preventive or therapeutic OVAp injections induced a dose-dependent increase in survival. In this review the characterization of 5 strains of K14-OVATg mice and underlying mechanisms involved in autoimmune reactions in these Tg mice are discussed. We also describe a strategy to break tolerance and describe how the autoimmunity can be obviated using OVAp. Finally, a historical overview of using transgenic mice to assess the mechanisms of tolerance is also provided.
Collapse
Affiliation(s)
- Fumi Miyagawa
- Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
9
|
Giroux M, Delisle JS, O'Brien A, Hébert MJ, Perreault C. T cell activation leads to protein kinase C theta-dependent inhibition of TGF-beta signaling. THE JOURNAL OF IMMUNOLOGY 2010; 185:1568-76. [PMID: 20592275 DOI: 10.4049/jimmunol.1000137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TGF-beta is an ubiquitous cytokine that plays a pivotal role in the maintenance of self-tolerance and prevention of immunopathologies. Under steady-state conditions, TGF-beta keeps naive T cells in a resting state and inhibits Th1 and Th2 cell differentiation. Because rapid generation of Th1 and Th2 effector cells is needed in response to pathogen invasion, how do naive T cells escape from the quiescent state maintained by TGF-beta? We hypothesized that stimulation by strong TCR agonists might interfere with TGF-beta signaling. Using both primary mouse CD4(+) T cells and human Jurkat cells, we observed that strong TCR agonists swiftly suppress TGF-beta signaling. TCR engagement leads to a rapid increase in SMAD7 levels and decreased SMAD3 phosphorylation. We present evidence that TCR signaling hinders SMAD3 activation by inducing recruitment of TGF-betaRs in lipid rafts together with inhibitory SMAD7. This effect is dependent on protein kinase C, a downstream TCR signaling intermediary, as revealed by both pharmacological inhibition and expression of dominant-negative and constitutively active protein kinase C mutants. This work broadens our understanding of the cross-talk occurring between the TCR and TGF-beta signaling pathways and reveals that strong TCR agonists can release CD4 T cells from constitutive TGF-beta signaling. We propose that this process may be of vital importance upon confrontation with microbial pathogens.
Collapse
Affiliation(s)
- Martin Giroux
- Institute for Research in Immunology and Cancer, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
10
|
de Verteuil D, Muratore-Schroeder TL, Granados DP, Fortier MH, Hardy MP, Bramoullé A, Caron E, Vincent K, Mader S, Lemieux S, Thibault P, Perreault C. Deletion of immunoproteasome subunits imprints on the transcriptome and has a broad impact on peptides presented by major histocompatibility complex I molecules. Mol Cell Proteomics 2010; 9:2034-47. [PMID: 20484733 DOI: 10.1074/mcp.m900566-mcp200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasome-mediated proteolysis plays a crucial role in many basic cellular processes. In addition to constitutive proteasomes (CPs), which are found in all eukaryotes, jawed vertebrates also express immunoproteasomes (IPs). Evidence suggests that the key role of IPs may hinge on their impact on the repertoire of peptides associated to major histocompatibility complex (MHC) I molecules. Using a label-free quantitative proteomics approach, we identified 417 peptides presented by MHC I molecules on primary mouse dendritic cells (DCs). By comparing MHC I-associated peptides (MIPs) eluted from primary DCs and thymocytes, we found that the MIP repertoire concealed a cell type-specific signature correlating with cell function. Notably, mass spectrometry analyses of DCs expressing or not IP subunits MECL1 and LMP7 showed that IPs substantially increase the abundance and diversity of MIPs. Bioinformatic analyses provided evidence that proteasomes harboring LMP7 and MECL1 have specific cleavage preferences and recognize unstructured protein regions. Moreover, while differences in MIP repertoire cannot be attributed to potential effects of IPs on gene transcription, IP subunits deficiency altered mRNA levels of a set of genes controlling DC function. Regulated genes segregated in clusters that were enriched in chromosomes 4 and 8. Our peptidomic studies performed on untransfected primary cells provide a detailed account of the MHC I-associated immune self. This work uncovers the dramatic impact of IP subunits MECL1 and LMP7 on the MIP repertoire and their non-redundant influence on expression of immune-related genes.
Collapse
Affiliation(s)
- Danielle de Verteuil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Perreault C. The Origin and Role of MHC Class I-Associated Self-Peptides. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:41-60. [DOI: 10.1016/s1877-1173(10)92003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Granados DP, Tanguay PL, Hardy MP, Caron E, de Verteuil D, Meloche S, Perreault C. ER stress affects processing of MHC class I-associated peptides. BMC Immunol 2009; 10:10. [PMID: 19220912 PMCID: PMC2657905 DOI: 10.1186/1471-2172-10-10] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 02/16/2009] [Indexed: 12/19/2022] Open
Abstract
Background Viral infection and neoplastic transformation trigger endoplasmic reticulum (ER) stress. Thus, a large proportion of the cells that must be recognized by the immune system are stressed cells. Cells respond to ER stress by launching the unfolded protein response (UPR). The UPR regulates the two key processes that control major histocompatibility complex class I (MHC I)-peptide presentation: protein synthesis and degradation. We therefore asked whether and how the UPR impinges on MHC I-peptide presentation. Results We evaluated the impact of the UPR on global MHC I expression and on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably transfected with vectors coding hen egg lysozyme (HEL)-SIINFEKL protein variants were stressed with palmitate or exposed to glucose deprivation. UPR decreased surface expression of MHC I but did not affect MHC I mRNA level nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide presentation was due mainly to reduced supply of peptides owing to an inhibition of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL complexes was curtailed during ER stress, illustrating how generation of MHC I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the UPR-induced decline of MHC I-peptide presentation was more severe when the protein source of peptides was localized in the cytosol than in the ER. This difference was not due to changes in the translation rates of the precursor proteins but to increased stability of the cytosolic protein during ER stress. Conclusion Our results demonstrate that ER stress impairs MHC I-peptide presentation, and that it differentially regulates expression of ER- vs. cytosol-derived peptides. Furthermore, this work illustrates how ER stress, a typical feature of infected and malignant cells, can impinge on cues for adaptive immune recognition.
Collapse
Affiliation(s)
- Diana P Granados
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.
| | | | | | | | | | | | | |
Collapse
|
13
|
Fortier MH, Caron E, Hardy MP, Voisin G, Lemieux S, Perreault C, Thibault P. The MHC class I peptide repertoire is molded by the transcriptome. ACTA ACUST UNITED AC 2008; 205:595-610. [PMID: 18299400 PMCID: PMC2275383 DOI: 10.1084/jem.20071985] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Under steady-state conditions, major histocompatibility complex (MHC) I molecules are associated with self-peptides that are collectively referred to as the MHC class I peptide (MIP) repertoire. Very little is known about the genesis and molecular composition of the MIP repertoire. We developed a novel high-throughput mass spectrometry approach that yields an accurate definition of the nature and relative abundance of unlabeled peptides presented by MHC I molecules. We identified 189 and 196 MHC I-associated peptides from normal and neoplastic mouse thymocytes, respectively. By integrating our peptidomic data with global profiling of the transcriptome, we reached two conclusions. The MIP repertoire of primary mouse thymocytes is biased toward peptides derived from highly abundant transcripts and is enriched in peptides derived from cyclins/cyclin-dependent kinases and helicases. Furthermore, we found that approximately 25% of MHC I-associated peptides were differentially expressed on normal versus neoplastic thymocytes. Approximately half of those peptides are derived from molecules directly implicated in neoplastic transformation (e.g., components of the PI3K-AKT-mTOR pathway). In most cases, overexpression of MHC I peptides on cancer cells entailed posttranscriptional mechanisms. Our results show that high-throughput analysis and sequencing of MHC I-associated peptides yields unique insights into the genesis of the MIP repertoire in normal and neoplastic cells.
Collapse
Affiliation(s)
- Marie-Hélène Fortier
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
14
|
Cerutti JM, Latini FRM, Nakabashi C, Delcelo R, Andrade VP, Amadei MJ, Maciel RMB, Hojaij FC, Hollis D, Shoemaker J, Riggins GJ. Diagnosis of suspicious thyroid nodules using four protein biomarkers. Clin Cancer Res 2007; 12:3311-8. [PMID: 16740752 DOI: 10.1158/1078-0432.ccr-05-2226] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Fine-needle aspiration (FNA) cytology, a standard method for thyroid nodule diagnosis, cannot distinguish between benign follicular thyroid adenoma (FTA) and malignant follicular thyroid carcinoma (FTC). Previously, using expression profiling, we found that a combination of transcript expression levels from DDIT3, ARG2, C1orf24, and ITM1 distinguished between FTA and FTC. The goal of this study was to determine if antibody markers used alone or in combination could accurately distinguish between a wider variety of benign and malignant thyroid lesions in fixed sections and FNA samples. EXPERIMENTAL DESIGN Immunohistochemistry was done on 27 FTA, 25 FTC, and 75 other benign and malignant thyroid tissue sections using custom antibodies for chromosome 1 open reading frame 24 (C1orf24) and integral membrane protein 1 (ITM1) and commercial antibodies for DNA damage-inducible transcript 3 (DDIT3) and arginase II (ARG2). FNA samples were also tested using the same antibodies. RNA expression was measured by quantitative PCR in 33 thyroid lesions. RESULTS C1orf24 and ITM1 antibodies had an estimated sensitivity of 1.00 for distinguishing FTA from FTC. For the expanded analysis of all lesions studied, ITM1 had an estimated sensitivity of 1.00 for detecting malignancy. Because all four cancer biomarkers did well, producing overlapping confidence intervals, not one best marker was distinguished. Transcript levels also reliably predicted malignancy, but immunohistochemistry had a higher sensitivity. Malignant cells were easily detected in FNA samples using these markers. CONCLUSIONS We improved this diagnostic test by adding C1orf24 and ITM1 custom antibodies and showing use on a wider variety of thyroid pathology. We recommend that testing of all four cancer biomarkers now be advanced to larger trials. Use of one or more of these antibodies should improve diagnostic accuracy of suspicious thyroid nodules from both tissue sections and FNA samples.
Collapse
Affiliation(s)
- Janete M Cerutti
- Department of Neurosurgery, Johns Hopkins University Medical School, Baltimore, Maryland 21231, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yewdell JW. Plumbing the sources of endogenous MHC class I peptide ligands. Curr Opin Immunol 2006; 19:79-86. [PMID: 17140786 DOI: 10.1016/j.coi.2006.11.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/21/2006] [Indexed: 11/24/2022]
Abstract
From fish to fowl to pharaohs, nearly all cells in jawed vertebrates constitutively process and present peptides derived from endogenously synthesized polypeptides. Such peptides, snug in the binding groove of cell surface MHC class I molecules, enable CD8(+) T cell mediated immunosurveillance of viruses, other intracellular pathogens, and spontaneously arising tumors. The MHC class I system also plays an important role in olfactory-based vertebrate mate selection and perhaps even in preventing direct transmission of tumors between individuals. Recent findings indicate that MHC class I bound peptides are generated at higher efficiency from rapidly degraded polypeptides (including defective ribosomal products) than from old proteins. Intimately linking translation and antigen presentation makes perfect sense for immunosurveillance of acute virus infections, in which speed is of the essence to minimize viral replication, pathogenesis and transmission. The intriguing question of how translation is linked to presentation has prompted the immunoribosome hypothesis of immunosurveillance, which posits that MHC class I peptide ligands are preferentially generated from a subset of translation products.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0440, USA.
| |
Collapse
|
16
|
Meunier MC, Delisle JS, Baron C, Perreault C. Immunothérapie anti-cancer sans dommages collatéraux. Med Sci (Paris) 2006; 22:794-5. [PMID: 17026920 DOI: 10.1051/medsci/20062210794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Caron E, Côté C, Parisien M, Major F, Perreault C. Identification of two distinct intracellular localization signals in STT3-B. Arch Biochem Biophys 2005; 445:108-14. [PMID: 16297371 DOI: 10.1016/j.abb.2005.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 09/30/2005] [Accepted: 10/04/2005] [Indexed: 12/25/2022]
Abstract
The STT3 subunit of the oligosaccharyltransferase complex plays a critical role in the N-glycosylation process. From Arabidopsis thaliana to Homo sapiens, two functional STT3 isoforms have been identified, STT3-A and STT3-B. We report that the last transmembrane (TM) segment of STT3-B corresponds to a topogenic determinant that is sufficient for proper integration and orientation of STT3-B C-terminal domain. Notably, the last TM segment of STT3-A and -B isoforms present major differences in amino acid sequence and predicted 3D structure. We also identified a bipartite nuclear targeting sequence in the C-terminal tail of STT3-B that is absent in STT3-A. The latter sequence is sufficient to induce nucleolar localization of a reporter protein. Our results show that STT3-A and -B display two structural differences that may have a drastic influence on their function and might account for the remarkable evolutionary conservation of the two STT3 paralogs.
Collapse
Affiliation(s)
- Etienne Caron
- Institute of Research in Immunology and Cancer, University of Montreal, CP 6128, Downtown Station, Montreal, Que., Canada H3C 3J7
| | | | | | | | | |
Collapse
|