1
|
Zhang B, Liu P, Sheng H, Guo Y, Han Y, Suo L, Yuan Q. New Insight into the Potential Protective Function of Sulforaphene against ROS-Mediated Oxidative Stress Damage In Vitro and In Vivo. Int J Mol Sci 2023; 24:13129. [PMID: 37685936 PMCID: PMC10487408 DOI: 10.3390/ijms241713129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Sulforaphene (SFE) is a kind of isothiocyanate isolated from radish seeds that can prevent free-radical-induced diseases. In this study, we investigated the protective effect of SFE on oxidative-stress-induced damage and its molecular mechanism in vitro and in vivo. The results of cell experiments show that SFE can alleviate D-gal-induced cytotoxicity, promote cell cycle transformation by inhibiting the production of reactive oxygen species (ROS) and cell apoptosis, and show a protective effect on cells with H2O2-induced oxidative damage. Furthermore, the results of mice experiments show that SFE can alleviate D-galactose-induced kidney damage by inhibiting ROS, malondialdehyde (MDA), and 4-hydroxyalkenals (4-HNE) production; protect the kidney against oxidative stress-induced damage by increasing antioxidant enzyme activity and upregulating the Nrf2 signaling pathway; and inhibit the activity of pro-inflammatory factors by downregulating the expression of Toll-like receptor 4 (TLR4)-mediated inflammatory response. In conclusion, this research shows that SFE has antioxidant effects, providing a new perspective for studying the anti-aging properties of natural compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (B.Z.); (P.L.); (H.S.); (Y.G.); (Y.H.); (L.S.)
| |
Collapse
|
2
|
López-Cantillo G, Urueña C, Camacho BA, Ramírez-Segura C. CAR-T Cell Performance: How to Improve Their Persistence? Front Immunol 2022; 13:878209. [PMID: 35572525 PMCID: PMC9097681 DOI: 10.3389/fimmu.2022.878209] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023] Open
Abstract
Adoptive cell therapy with T cells reprogrammed to express chimeric antigen receptors (CAR-T cells) has been highly successful in patients with hematological neoplasms. However, its therapeutic benefits have been limited in solid tumor cases. Even those patients who respond to this immunotherapy remain at risk of relapse due to the short-term persistence or non-expansion of CAR-T cells; moreover, the hostile tumor microenvironment (TME) leads to the dysfunction of these cells after reinfusion. Some research has shown that, in adoptive T-cell therapies, the presence of less differentiated T-cell subsets within the infusion product is associated with better clinical outcomes. Naive and memory T cells persist longer and exhibit greater antitumor activity than effector T cells. Therefore, new methods are being studied to overcome the limitations of this therapy to generate CAR-T cells with these ideal phenotypes. In this paper, we review the characteristics of T-cell subsets and their implications in the clinical outcomes of adoptive therapy with CAR-T cells. In addition, we describe some strategies developed to overcome the reduced persistence of CAR T-cells and alternatives to improve this therapy by increasing the expansion ability and longevity of modified T cells. These methods include cell culture optimization, incorporating homeostatic cytokines during the expansion phase of manufacturing, modulation of CAR-T cell metabolism, manipulating signaling pathways involved in T-cell differentiation, and strategies related to CAR construct designs.
Collapse
Affiliation(s)
- Gina López-Cantillo
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Cesar Ramírez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
- Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| |
Collapse
|
3
|
Sachdeva M, Busser BW, Temburni S, Jahangiri B, Gautron AS, Maréchal A, Juillerat A, Williams A, Depil S, Duchateau P, Poirot L, Valton J. Repurposing endogenous immune pathways to tailor and control chimeric antigen receptor T cell functionality. Nat Commun 2019; 10:5100. [PMID: 31723132 PMCID: PMC6853973 DOI: 10.1038/s41467-019-13088-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/18/2019] [Indexed: 12/27/2022] Open
Abstract
Endowing chimeric antigen receptor (CAR) T cells with additional potent functionalities holds strong potential for improving their antitumor activity. However, because potency could be deleterious without control, these additional features need to be tightly regulated. Immune pathways offer a wide array of tightly regulated genes that can be repurposed to express potent functionalities in a highly controlled manner. Here, we explore this concept by repurposing TCR, CD25 and PD1, three major players of the T cell activation pathway. We insert the CAR into the TCRα gene (TRACCAR), and IL-12P70 into either IL2Rα or PDCD1 genes. This process results in transient, antigen concentration-dependent IL-12P70 secretion, increases TRACCAR T cell cytotoxicity and extends survival of tumor-bearing mice. This gene network repurposing strategy can be extended to other cellular pathways, thus paving the way for generating smart CAR T cells able to integrate biological inputs and to translate them into therapeutic outputs in a highly regulated manner. Engineered T cells work as living therapeutics, but are prone to hyperreactivity and exhaustion. Here the authors improve CAR T cell antitumor responses by simultaneously targeting a CAR to TCR locus and IL-12 to PD1 locus, placing the transgenes under a naturally regulated transcriptional network while disrupting unwanted signals.
Collapse
Affiliation(s)
- Mohit Sachdeva
- Cellectis, Inc., 430 East 29th Street, New York, NY, 10016, USA
| | - Brian W Busser
- Cellectis, Inc., 430 East 29th Street, New York, NY, 10016, USA
| | - Sonal Temburni
- Cellectis, Inc., 430 East 29th Street, New York, NY, 10016, USA
| | | | | | - Alan Maréchal
- Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France
| | | | - Alan Williams
- Cellectis, Inc., 430 East 29th Street, New York, NY, 10016, USA
| | - Stéphane Depil
- Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France
| | | | - Laurent Poirot
- Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France
| | - Julien Valton
- Cellectis, Inc., 430 East 29th Street, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Lee K, Shin K, Kim G, Song YC, Bae E, Kim I, Koh C, Kang C. Characterization of age-associated exhausted CD8⁺ T cells defined by increased expression of Tim-3 and PD-1. Aging Cell 2016; 15:291-300. [PMID: 26750587 PMCID: PMC4783346 DOI: 10.1111/acel.12435] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2015] [Indexed: 12/21/2022] Open
Abstract
Aging is accompanied by altered T‐cell responses that result in susceptibility to various diseases. Previous findings on the increased expression of inhibitory receptors, such as programmed cell death protein 1 (PD‐1), in the T cells of aged mice emphasize the importance of investigations into the relationship between T‐cell exhaustion and aging‐associated immune dysfunction. In this study, we demonstrate that T‐cell immunoglobulin mucin domain‐3 (Tim‐3), another exhaustion marker, is up‐regulated on aged T cells, especially CD8+ T cells. Tim‐3‐expressing cells also produced PD‐1, but Tim‐3+PD‐1+CD8+ T cells had a distinct phenotype that included the expression of CD44 and CD62L, from Tim‐3−PD‐1+ cells. Tim‐3+PD‐1+CD8+ T cells showed more evident properties associated with exhaustion than Tim‐3−PD‐1+CD8+ T cells: an exhaustion‐related marker expression profile, proliferative defects following homeostatic or TCR stimulation, and altered production of cytokines. Interestingly, these cells produced a high level of IL‐10 and induced normal CD8+ T cells to produce IL‐10, which might contribute to immune dysregulation in aged mice. The generation of Tim‐3‐expressing CD8+ T cells in aged mice seems to be mediated by encounters with antigens but not by specific infection, based on their high expression of CD49d and their unbiased TCR Vβ usage. In conclusion, we found that a CD8+ T‐cell population with age‐associated exhaustion was distinguishable by its expression of Tim‐3. These results provide clues for understanding the alterations that occur in T‐cell populations with age and for improving dysfunctions related to the aging of the immune system.
Collapse
Affiliation(s)
- Kyoo‐A Lee
- Laboratory of Immunology Research Institute of Pharmaceutical Sciences College of Pharmacy Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 151‐742 Korea
| | - Kwang‐Soo Shin
- Laboratory of Immunology Research Institute of Pharmaceutical Sciences College of Pharmacy Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 151‐742 Korea
| | - Ga‐Young Kim
- Department of Molecular Medicine and Biopharmaceutical Science Graduate School of Convergence Science and Technology Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 151‐742 Korea
| | - You Chan Song
- Laboratory of Immunology Research Institute of Pharmaceutical Sciences College of Pharmacy Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 151‐742 Korea
| | - Eun‐Ah Bae
- Department of Molecular Medicine and Biopharmaceutical Science Graduate School of Convergence Science and Technology Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 151‐742 Korea
| | - Il‐Kyu Kim
- Laboratory of Immunology Research Institute of Pharmaceutical Sciences College of Pharmacy Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 151‐742 Korea
| | - Choong‐Hyun Koh
- Laboratory of Immunology Research Institute of Pharmaceutical Sciences College of Pharmacy Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 151‐742 Korea
| | - Chang‐Yuil Kang
- Laboratory of Immunology Research Institute of Pharmaceutical Sciences College of Pharmacy Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 151‐742 Korea
- Department of Molecular Medicine and Biopharmaceutical Science Graduate School of Convergence Science and Technology Seoul National University 1 Gwanak‐ro, Gwanak‐gu Seoul 151‐742 Korea
| |
Collapse
|
5
|
Petrozziello E, Sturmheit T, Mondino A. Exploiting cytokines in adoptive T-cell therapy of cancer. Immunotherapy 2016; 7:573-84. [PMID: 26065481 DOI: 10.2217/imt.15.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adoptive immunotherapy with tumor-reactive autologous T cells, either expanded from tumor specimens or genetically engineered to express tumor-reactive T-cell receptors and chimeric antigen receptors, is holding promising results in clinical trials. Several critical issues have been identified and results underline the possibility to exploit cytokines to further ameliorate the efficacy of current treatment protocols, also encompassing adoptive T-cell therapy. Here we review latest developments on the use of cytokines to better direct the nature of the T-cell infusion product, T-cell function and persistence in vivo, as well as to modulate the tumor microenvironment.
Collapse
Affiliation(s)
- Elisabetta Petrozziello
- Division of Immunology, Transplantation & Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy
| | - Tabea Sturmheit
- Division of Immunology, Transplantation & Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy.,Vita-Salute San Raffaele University, San Raffaele Scientific Institute Milan, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation & Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina, 58, 20132 Milan, Italy
| |
Collapse
|
6
|
Bartmann J, Frankenberger M, Neurohr C, Eickelberg O, Noessner E, von Wulffen W. A novel role of MMP-13 for murine DC function: its inhibition dampens T-cell activation. Int Immunol 2016; 28:473-487. [PMID: 26921214 DOI: 10.1093/intimm/dxw008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/19/2016] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) have been shown to express matrix metalloproteinase 13 (MMP-13), but little is known about its specific function in DCs and its role in inflammatory conditions. In the present study, we describe a novel role of MMP-13 in regulating the immunostimulatory function of murine DCs through moderating MHC-I surface presentation, endocytosis and cytokine/chemokine secretion. MMP-13 expression was confirmed in bone marrow-derived DCs at both the mRNA and the protein level and, furthermore, at the activity level. Remarkably, LPS treatment strongly enhanced MMP-13 mRNA expression as well as MMP-13 activity, indicating an important role of MMP-13 in inflammatory processes. Functionally, MMP-13 inhibition did not influence the DC migratory capacity, while endocytosis of ovalbumin was significantly decreased. Inhibition of MMP-13 lowered the capability of murine DCs to activate CD8+ T cells, apparently through reducing MHC-I surface presentation. Decreased surface expression of CD11c on DCs, as well as changes in the DC cytokine/chemokine profile after MMP-13 inhibition, emphasizes the influence of MMP-13 on DC function. Moreover, T-cell-targeting cytokines such as IL-12, IL-23 and IL-6 were significantly reduced. Collectively, our data reveal a novel involvement of MMP-13 in regulating DC immunobiology through moderating MHC-I surface presentation, endocytosis and cytokine/chemokine secretion. Furthermore, the reduced MHC-I surface presentation by DCs resulted in a poor CD8+ T-cell response in vitro This novel finding indicates that MMP-13 might be a promising target for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Juliane Bartmann
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich, Asklepios Kliniken Gauting and Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany
| | - Marion Frankenberger
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich, Asklepios Kliniken Gauting and Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany
| | - Claus Neurohr
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich, Asklepios Kliniken Gauting and Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany Department of Pneumology, Klinikum der Universität München-Großhadern, 81377 Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich, Asklepios Kliniken Gauting and Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Werner von Wulffen
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich, Asklepios Kliniken Gauting and Helmholtz Zentrum München, Member of the German Center for Lung Research, 81377 Munich, Germany Department of Respiratory Diseases, Klinik Augustinum München, 81375 Munich, Germany
| |
Collapse
|
7
|
A cytokine cocktail directly modulates the phenotype of DC-enriched anti-tumor T cells to convey potent anti-tumor activities in a murine model. Cancer Immunol Immunother 2013; 62:1649-62. [PMID: 23982483 DOI: 10.1007/s00262-013-1464-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
Abstract
Adoptive cell transfer (ACT) using ex vivo-expanded anti-tumor T cells such as tumor-infiltrated lymphocytes or genetically engineered T cells potently eradicates established tumors. However, these two approaches possess obvious limitations. Therefore, we established a novel methodology using total tumor RNA (ttRNA) to prime dendritic cells (DC) as a platform for the ex vivo generation of anti-tumor T cells. We evaluated the antigen-specific expansion and recognition of T cells generated by the ttRNA-DC-T platform, and directly modulated the differentiation status of these ex vivo-expanded T cells with a cytokine cocktail. Furthermore, we evaluated the persistence and in vivo anti-tumor efficacy of these T cells through murine xenograft and syngeneic tumor models. During ex vivo culture, IL-2 preferentially expanded CD4 subset, while IL-7 enabled homeostatic proliferation from the original precursors. T cells tended to lose CD62L during ex vivo culture using IL-2; however, IL-12 could maintain high levels of CD62L by increasing expression on effector T cells (Tem). In addition, we validated that OVA RNA-DC only selectively expanded T cells in an antigen-specific manner. A cytokine cocktail excluding the use of IL-2 greatly increased CD62Lhigh T cells which specifically recognized tumor cells, engrafted better in a xenograft model and exhibited superior anti-tumor activities in a syngeneic intracranial model. ACT using the ex vivo ttRNA-DC-T platform in conjunction with a cytokine cocktail generated potent CD62Lhigh anti-tumor T cells and imposes a novel T cell-based therapeutic with the potential to treat brain tumors and other cancers.
Collapse
|
8
|
Krebs K, Böttinger N, Huang LR, Chmielewski M, Arzberger S, Gasteiger G, Jäger C, Schmitt E, Bohne F, Aichler M, Uckert W, Abken H, Heikenwalder M, Knolle P, Protzer U. T cells expressing a chimeric antigen receptor that binds hepatitis B virus envelope proteins control virus replication in mice. Gastroenterology 2013; 145:456-65. [PMID: 23639914 DOI: 10.1053/j.gastro.2013.04.047] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 03/20/2013] [Accepted: 04/17/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Antiviral agents suppress hepatitis B virus (HBV) replication but do not clear the infection. A strong effector T-cell response is required to eradicate HBV, but this does not occur in patients with chronic infection. T cells might be directed toward virus-infected cells by expressing HBV-specific receptors and thereby clear HBV and help to prevent development of liver cancer. In mice, we studied whether redirected T cells can engraft after adoptive transfer, without prior T-cell depletion, and whether the large amounts of circulating viral antigens inactivate the transferred T cells or lead to uncontrolled immune-mediated damage. METHODS CD8(+) T cells were isolated from mice and stimulated using an optimized protocol. Chimeric antigen receptors (CARs) that bind HBV envelope proteins (S-CAR) and activate T cells were expressed on the surface of cells using retroviral vectors. S-CAR-expressing CD8(+) T cells, which carried the marker CD45.1, were injected into CD45.2(+) HBV transgenic mice. We compared these mice with mice that received CD8(+) T cells induced by vaccination, cells that express a CAR without a proper signaling domain, or cells that express a CAR that does not bind HBV proteins (controls). RESULTS CD8(+) T cells that expressed HBV-specific CARs recognized different HBV subtypes and were able to engraft and expand in immune-competent HBV transgenic mice. After adoptive transfer, the S-CAR-expressing T cells localized to and functioned in the liver and rapidly and efficiently controlled HBV replication compared with controls, causing only transient liver damage. The large amount of circulating viral antigen did not impair or overactivate the S-CAR-grafted T cells. CONCLUSIONS T cells with a CAR specific for HBV envelope proteins localize to the liver in mice to reduce HBV replication, causing only transient liver damage. This immune cell therapy might be developed for patients with chronic hepatitis B, regardless of their HLA type.
Collapse
Affiliation(s)
- Karin Krebs
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang S, Ji Y, Gattinoni L, Zhang L, Yu Z, Restifo NP, Rosenberg SA, Morgan RA. Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunol Immunother 2012. [PMID: 23207483 DOI: 10.1007/s00262-012-1378-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The genetic modification of CD8+ T cells using anti-tumor T-cell receptors (TCR) or chimeric antigen receptors is a promising approach for the adoptive cell therapy of patients with cancer. We previously developed a simplified method for the clinical-scale generation of central memory-like (Tcm) CD8+ T cells following transduction with lentivirus encoding anti-tumor TCR and culture in the presence of IL-2. In this study, we compared different cytokines or combinations of IL-2, IL-7, IL-12, IL-15, and IL-21 to expand genetically engineered CD8+ T cells. We demonstrated that specific cytokine combinations IL-12 plus IL-7 or IL-21 for 3 days followed by withdrawal of IL-12 yielded the phenotype of CD62L(high)CD28(high) CD127(high)CD27(high)CCR7(high), which is associated with less-differentiated T cells. Genes associated with stem cells (SOX2, NANOG, OCT4, and LIN28A), were also up-regulated by this cytokine cocktail. Moreover, the use of IL-12 plus IL-7 or IL-21 yielded CD8 T cells showing enhanced persistence in the NOD/SCID/γc-/- mouse model. This defined cytokine combination could also alter highly differentiated TIL from melanoma patients into cells with a less-differentiated phenotype. The methodology that we developed for generating a less-differentiated anti-tumor CD8+ T cells ex vivo may be ideal for the adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- Shicheng Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, CRC 3 W-3864, Bethesda, MD, 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Thacker RI, Janssen EM. Cross-presentation of cell-associated antigens by mouse splenic dendritic cell populations. Front Immunol 2012; 3:41. [PMID: 22566924 PMCID: PMC3342388 DOI: 10.3389/fimmu.2012.00041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/19/2012] [Indexed: 11/13/2022] Open
Abstract
Cross-presentation of cell-associated antigens (Ag) plays an important role in the induction of anti-tumor responses, autoimmune diseases, and transplant rejection. While several dendritic cell (DC) populations can induce pro-inflammatory CD8(+) T cell responses to cell-associated Ag during infection, in the absence of infection, cross-priming of naïve CD8(+) T cells is highly restricted. Comparison of the main splenic DC populations in mice - including the classic, cross-presenting CD8α DC and the recently described merocytic DC (mcDC) - reveals that cross-priming DCs display a distinct phenotype in cell-associated Ag uptake, endosomal/lysosomal trafficking, lysosomal acidification, and Ag persistence compared to non-cross-priming DC populations. Although the CD8α DC and mcDC subsets utilize similar processing pathways to cross-present cell-associated Ag, cross-priming by CD8α DCs is associated with IL-12 production, while the superior priming of the mcDC is critically dependent on type I IFN production. This discussion illustrates how subtle differences in internal processing pathways and their signaling sequelae significantly affect the duration of Ag cross-presentation and cytokine production by DCs, thereby shaping the ensuing CD8(+) T cell response.
Collapse
Affiliation(s)
- Robert I Thacker
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | | |
Collapse
|
11
|
Kono M, Nakamura Y, Suda T, Uchijima M, Tsujimura K, Nagata T, Giermasz AS, Kalinski P, Nakamura H, Chida K. Enhancement of protective immunity against intracellular bacteria using type-1 polarized dendritic cell (DC) vaccine. Vaccine 2012; 30:2633-9. [PMID: 22365841 DOI: 10.1016/j.vaccine.2012.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 11/30/2022]
Abstract
The development of effective vaccine strategies for intracellular bacteria, including tuberculosis, is one of the major frontiers of medical research. Our previous studies showed that dendritic cell (DC) vaccine is a promising approach for eliciting protective immunity against intracellular bacteria. However, it has been reported that standard fully mature DCs show reduced ability to produce IL-12p70 upon subsequent interaction with antigen (Ag)-specific T cells, limiting their in vivo performance for vaccines. Recently, we found that such "DC exhaustion" could be prevented by the presence of IL-4 and IFN-γ during the maturation of mouse DCs (type-1 polarization), resulting in improved induction of anti-tumor immunity in cancer. Here we show that such type-1 polarized DCs promote dramatic enhancement of protective immunity against an intracellular bacterium, Listeria monocytogenes. Murine bone marrow-derived DCs were cultured and matured with LPS, IL-4 and IFN-γ (type-1 polarized DCs), and with LPS alone (non-polarized DCs). DCs were loaded with listeriolysin O (LLO) 91-99, H2-K(d)-restricted epitope of L. monocytogenes, and were injected into naïve BALB/c mice intravenously. Type-1 polarized DCs produced significantly higher levels of IL-12p70 than non-polarized DCs in vitro, and this vaccine strongly enhanced LLO 91-99-specific CD8(+) T cells exhibiting epitope-specific cytotoxic activity and IFN-γ production, leading to significant induction of protective immunity against L. monocytogenes. Type-1 polarized DCs are potential candidates for enhancing protective immunity in the design of effective vaccination strategies against intracellular bacteria.
Collapse
Affiliation(s)
- Masato Kono
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Henry CJ, Grayson JM, Brzoza-Lewis KL, Mitchell LM, Westcott MM, Cook AS, Hiltbold EM. The roles of IL-12 and IL-23 in CD8+ T cell-mediated immunity against Listeria monocytogenes: Insights from a DC vaccination model. Cell Immunol 2010; 264:23-31. [PMID: 20483409 PMCID: PMC2902594 DOI: 10.1016/j.cellimm.2010.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/21/2010] [Indexed: 02/02/2023]
Abstract
Listeria monocytogenes infection induces a strong inflammatory response characterized by the production of IL-12 and IFN-gamma and protective immunity against this pathogen is dependent on CD8+ T cells (CTL). Recent studies have suggested that these inflammatory cytokines affect the rate of memory CD8+ T cell generation as well as the number of short-lived effector cells generated. The role of the closely related cytokine, IL-23, in this response has not been examined. We hypothesized that IL-12 and IL-23 produced by dendritic cells collectively enhance the generation and function of memory cells. To test this hypothesis, we employed a DC vaccination approach. Mice lacking IL-12 and IL-23 were vaccinated with wild-type (WT), IL-12(-/-), or IL-12/23(-/-) DC and protection to Lm was monitored. Mice vaccinated with WT and IL-12(-/-) DC were resistant to lethal challenge with Lm. Surprisingly, mice vaccinated with IL-12/23(-/-) DC exhibited significantly reduced protection when challenged. Protection correlated with the relative size of the memory pools generated. In summary, these data indicate that IL-23 can partially compensate for the lack of IL-12 in the generation protective immunity against Lm.
Collapse
Affiliation(s)
- Curtis J. Henry
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 88010
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206
| | - Jason M. Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Kristina L. Brzoza-Lewis
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Latoya M. Mitchell
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Department of Microbiology, University of Alabama-Birmingham, Birmingham, AL 35243
| | - Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Anne S. Cook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Elizabeth M. Hiltbold
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
13
|
Connerotte T, Van Pel A, Godelaine D, Tartour E, Schuler-Thurner B, Lucas S, Thielemans K, Schuler G, Coulie PG. Functions of Anti-MAGE T-cells induced in melanoma patients under different vaccination modalities. Cancer Res 2008; 68:3931-40. [PMID: 18483279 DOI: 10.1158/0008-5472.can-07-5898] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor regressions have been observed in a small proportion of melanoma patients vaccinated with a MAGE-A3 peptide presented by HLA-A1, administered as peptide, ALVAC canarypox virus containing a MAGE-A3 minigene, or peptide-pulsed dendritic cells (DC). There was a correlation between tumor regression and the detection of anti-MAGE-3.A1 CTL responses. These responses were monoclonal and often of a very low magnitude after vaccination with peptide or ALVAC, and usually polyclonal and of a higher magnitude after DC vaccination. These results suggested that, at least in some patients, surprisingly few anti-MAGE-3.A1 T-cells could initiate a tumor regression process. To understand the role of these T cells, we carried out a functional analysis of anti-MAGE-3.A1 CTL clones derived from vaccinated patients who displayed tumor regression. The functional avidities of these CTL clones, evaluated in lysis assays, were surprisingly low, suggesting that high avidity was not part of the putative capability of these CTL to trigger tumor rejection. Most anti-MAGE-3.A1 CTL clones obtained after DC vaccination, but not after peptide or ALVAC vaccination, produced interleukin 10. Transcript profiling confirmed these results and indicated that approximately 20 genes, including CD40L, prostaglandin D2 synthase, granzyme K, and granzyme H, were highly differentially expressed between the anti-MAGE-3.A1 CTL clones derived from patients vaccinated with either peptide-ALVAC or peptide-pulsed DC. These results indicate that the modality of vaccination with a tumor-specific antigen influences the differentiation pathway of the antivaccine CD8 T-cells, which may have an effect on their capacity to trigger a tumor rejection response.
Collapse
Affiliation(s)
- Thierry Connerotte
- de Duve Institute, Université Catholique de Louvain, Department of Physiology and Immunology, Medical School of Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A role for interleukin-12/23 in the maturation of human natural killer and CD56+ T cells in vivo. Blood 2008; 111:5008-16. [PMID: 18319400 DOI: 10.1182/blood-2007-11-122259] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Natural killer (NK) cells have been originally defined by their "naturally occurring" effector function. However, only a fraction of human NK cells is reactive toward a panel of prototypical tumor cell targets in vitro, both for the production of interferon-gamma (IFN-gamma) and for their cytotoxic response. In patients with IL12RB1 mutations that lead to a complete IL-12Rbeta1 deficiency, the size of this naturally reactive NK cell subset is diminished, in particular for the IFN-gamma production. Similar data were obtained from a patient with a complete deficit in IL-12p40. In addition, the size of the subset of effector memory T cells expressing CD56 was severely decreased in IL-12Rbeta1- and IL-12p40-deficient patients. Human NK cells thus require in vivo priming with IL-12/23 to acquire their full spectrum of functional reactivity, while T cells are dependent upon IL-12/23 signals for the differentiation and/or the maintenance of CD56(+) effector memory T cells. The susceptibility of IL-12/23 axis-deficient patients to Mycobacterium and Salmonella infections in combination with the absence of mycobacteriosis or salmonellosis in the rare cases of human NK cell deficiencies point to a role for CD56(+) T cells in the control of these infections in humans.
Collapse
|