1
|
Chen Z, Cheng Z, Ding C, Cao T, Chen L, Wang H, Li J, Huang X. ROS-Activated TRPM2 Channel: Calcium Homeostasis in Cardiovascular/renal System and Speculation in Cardiorenal Syndrome. Cardiovasc Drugs Ther 2025; 39:615-631. [PMID: 38108918 DOI: 10.1007/s10557-023-07531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel is a nonselective calcium channel that is sensitive to oxidative stress (OS), and is widely expressed in multiple organs, such as the heart, kidney, and brain, which is inextricably related to calcium dyshomeostasis and downstream pathological events. Due to the increasing global burden of kidney or cardiovascular diseases (CVDs), safe and efficient drugs specific to novel targets are imperatively needed. Notably, investigation of the possibility to regard the TRPM2 channel as a new therapeutic target in ROS-related CVDs or renal diseases is urgently required because the roles of the TRPM2 channel in heart or kidney diseases have not received enough attention and thus have not been fully elaborated. Therefore, we aimed to review the involvement of the TRPM2 channel in cardiovascular disorders related to kidney or typical renal diseases and attempted to speculate about TRPM2-mediated mechanisms of cardiorenal syndrome (CRS) to provide representative perspectives for future research about novel and effective therapeutic strategies.
Collapse
Affiliation(s)
- Zihan Chen
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, China
| | - Zaihua Cheng
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Congcong Ding
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianyu Cao
- Biological anthropology, University of California, Santa Barbara, CA, USA
| | - Ling Chen
- Department of Cardiology, the First People's Hospital of Jiujiang, Jiujiang, China
| | - Hong Wang
- Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Junpei Li
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiao Huang
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Alaasam ER, Janabi AM, Al-Buthabhak KM, Almudhafar RH, Hadi NR, Alexiou A, Papadakis M, Abo-El Fetoh ME, Fouad D, El-Saber Batiha G. Nephroprotective role of resveratrol in renal ischemia-reperfusion injury: a preclinical study in Sprague-Dawley rats. BMC Pharmacol Toxicol 2024; 25:82. [PMID: 39468702 PMCID: PMC11520524 DOI: 10.1186/s40360-024-00809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) is a significant contributor to renal dysfunction, acute kidney injury (AKI), and associated morbidity and mortality. Resveratrol, a polyphenol and phytoalexin, is known for its anti-inflammatory, antioxidant, and anti-cancer properties. This study investigates the nephroprotective potential of resveratrol in a rat model of renal IRI. MATERIALS AND METHODS Twenty-eight male Sprague-Dawley rats were divided into four groups: Sham, IRI, DMSO, and Resveratrol. The Sham group underwent identical procedures without renal pedicle clamping, while the IRI group experienced 30 min of ischemia followed by 2 h of reperfusion. The DMSO group received dimethyl sulfoxide (DMSO) intraperitoneally 30 min before ischemia, and the Resveratrol group received 30 mg/kg resveratrol intraperitoneally 30 min before ischemia. Biochemical parameters (Urea, creatinine, IL-1β, NF-κβ, SOD, GSH, Bcl-2, and caspase-3) and histopathological changes were assessed. RESULTS IRI caused a substantial increase in serum creatinine, Urea, IL-1β, NF-κβ, and caspase-3 levels, while simultaneously decreasing SOD, GSH, and Bcl-2 levels. Resveratrol treatment mitigated these effects by lowering inflammatory and apoptotic markers, enhancing antioxidant defenses, and improving histological outcomes. CONCLUSION Resveratrol demonstrates significant nephroprotective effects in renal IRI, primarily through its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Elaf R Alaasam
- Alsadar Medical City, Directorate of Najaf Health, Najaf, Iraq
| | - Ali M Janabi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Karrar M Al-Buthabhak
- Department of Internal Medicine, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Rihab H Almudhafar
- Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Najah R Hadi
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Kufa, Najaf, Iraq
| | - Athanasios Alexiou
- Department of Research & Development, Funogen, Athens, 11741, Greece, Attiki
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Mohammed E Abo-El Fetoh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
3
|
Lou C, Zhou Y, Liao J, Xu X, Huang K, Fan X, Hu P, Wang X, Feng B, Zhu F. Effect of QingreHuoxue formula on Th17 cells and Tregs in mice with idiopathic membranous nephropathy. Am J Transl Res 2024; 16:5326-5336. [PMID: 39544812 PMCID: PMC11558394 DOI: 10.62347/hjvg8103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES This study aimed to evaluate the therapeutic effect of the QingreHuoxue formula on mice with Idiopathic Membranous Nephropathy (IMN) and its impact on Th17 cells and Tregs. METHODS A mouse model of IMN was established, and the mice were treated with traditional Chinese medicine, western medicine, or a combination of both. The efficacy and immunomodulatory effects of the QingreHuoxue formula were evaluated by examining renal pathology, urinary protein levels, peripheral blood Th17 and Treg cell counts, and comparing the expression levels of IL-17 and transforming growth factor-β1 in renal tissues. RESULTS Compared to the untreated IMN model group, the IMN mice treated with TCM, western medicine, or the combination showed significant improvements in proteinuria, renal pathology, peripheral T lymphocyte counts, and IL-17 expression in renal tissues. Notably, the group treated with a combination of Chinese and western medicine exhibited better outcomes than the group treated with western medicine alone. CONCLUSIONS The QingreHuoxue formula was effective in reducing proteinuria, modulating T cell immune function, and protecting renal tissue in mice with IMN.
Collapse
Affiliation(s)
- Chengli Lou
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University Jiaxing 314001, Zhejiang, China
| | - Yijing Zhou
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University Jiaxing 314001, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University Jiaxing 314001, Zhejiang, China
| | - Xiuqin Xu
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University Jiaxing 314001, Zhejiang, China
| | - Ke Huang
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University Jiaxing 314001, Zhejiang, China
| | - Xiaoping Fan
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University Jiaxing 314001, Zhejiang, China
| | - Pingxin Hu
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University Jiaxing 314001, Zhejiang, China
| | - Xiangjing Wang
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University Jiaxing 314001, Zhejiang, China
| | - Bo Feng
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University Jiaxing 314001, Zhejiang, China
| | - Fuxiang Zhu
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University Jiaxing 314001, Zhejiang, China
| |
Collapse
|
4
|
Jiang S, Su H. Exploration of the shared gene signatures and biological mechanisms between ischemia-reperfusion injury and antibody-mediated rejection in renal transplantation. Transpl Immunol 2024; 83:102001. [PMID: 38266883 DOI: 10.1016/j.trim.2024.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Antibody-mediated rejection (ABMR) plays a crucial role in graft loss during allogeneic renal transplantation. In renal transplantation, ischemia-reperfusion injury (IRI) is unavoidable, serves as a major contributor to acute rejection, and is linked to graft loss. However, the mechanisms underlying IRI and ABMR are unclear. Therefore, this study aimed to investigate the shared genetic characteristics and biological mechanisms between IRI and ABMR. METHODS Gene expressions for IRI (GSE43974) and ABMR (GSE129166 and GSE36059) were retrieved from the Gene Expression Omnibus database. The shared differentially expressed genes (DEGs) of IRI and ABMR were identified, and subsequent functional enrichment analysis was performed. Immune cell infiltration in ABMR and its relationship with the shared DEGs were investigated using the CIBERSORT method. Random forest analysis, a protein-protein interaction network, and Cytoscape were used to screen hub genes, which were subsequently subjected to gene set enrichment analysis, miRNA prediction, and transcription factors analysis. The survival analysis was performed through Kaplan-Meier curves. Finally, drug compound prediction was performed on the shared DEGs using the Drug Signature Database. RESULTS Overall, 27 shared DEGs were identified between the renal IRI and ABMR groups. Among these, 24 genes exhibited increased co-expression, whereas none showed decreased co-expression. The shared DEGs were primarily enriched in the inflammation signaling pathways. Notably, CD4 memory T cells were identified as potential critical mediators of IRI, leading to ABMR. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), interferon regulatory factor 1 (IRF1), and early growth response 2 (EGR2) were identified as key components in the potential mechanism that link IRI and ABMR. Patients undergoing renal transplantation with higher expression levels of TNFAIP3, IRF1, and EGR2 exhibited decreased survival rates compared to those with lower expression levels. CONCLUSION Inflammation is a key mechanism that links IRI and ABMR, with a potential role played by CD4 memory T cells. Furthermore, TNFAIP3, IRF1, and EGR2 are implicated in the underlying mechanism between IRI and ABMR.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Sabet Sarvestani F, Afshari A, Azarpira N. The role of non-protein-coding RNAs in ischemic acute kidney injury. Front Immunol 2024; 15:1230742. [PMID: 38390339 PMCID: PMC10881863 DOI: 10.3389/fimmu.2024.1230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Acute kidney injury (AKI) is a condition characterized by a rapid decline in kidney function within a span of 48 hours. It is influenced by various factors including inflammation, oxidative stress, excessive calcium levels within cells, activation of the renin-angiotensin system, and dysfunction in microcirculation. Ischemia-reperfusion injury (IRI) is recognized as a major cause of AKI; however, the precise mechanisms behind this process are not yet fully understood and effective treatments are still needed. To enhance the accuracy of diagnosing AKI during its early stages, the utilization of innovative markers is crucial. Numerous studies suggest that certain noncoding RNAs (ncRNAs), such as long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), play a central role in regulating gene expression and protein synthesis. These ncRNAs are closely associated with the development and recovery of AKI and have been detected in both kidney tissue and bodily fluids. Furthermore, specific ncRNAs may serve as diagnostic markers and potential targets for therapeutic interventions in AKI. This review aims to summarize the functional roles and changes observed in noncoding RNAs during ischemic AKI, as well as explore their therapeutic potential.
Collapse
Affiliation(s)
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Khorki ME, Shi T, Cianciolo EE, Burg AR, Chukwuma PC, Picarsic JL, Morrice MK, Woodle ES, Maltzman JS, Ferguson A, Katz JD, Baker BM, Hildeman DA. Prior viral infection primes cross-reactive CD8+ T cells that respond to mouse heart allografts. Front Immunol 2023; 14:1287546. [PMID: 38143762 PMCID: PMC10748599 DOI: 10.3389/fimmu.2023.1287546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Significant evidence suggests a connection between transplant rejection and the presence of high levels of pre-existing memory T cells. Viral infection can elicit viral-specific memory T cells that cross-react with allo-MHC capable of driving allograft rejection in mice. Despite these advances, and despite their critical role in transplant rejection, a systematic study of allo-reactive memory T cells, their specificities, and the role of cross-reactivity with viral antigens has not been performed. Methods Here, we established a model to identify, isolate, and characterize cross-reactive T cells using Nur77 reporter mice (C57BL/6 background), which transiently express GFP exclusively upon TCR engagement. We infected Nur77 mice with lymphocytic choriomeningitis virus (LCMV-Armstrong) to generate a robust memory compartment, where quiescent LCMV-specific memory CD8+ T cells could be readily tracked with MHC tetramer staining. Then, we transplanted LCMV immune mice with allogeneic hearts and monitored expression of GFP within MHC-tetramer defined viral-specific T cells as an indicator of their ability to cross-react with alloantigens. Results Strikingly, prior LCMV infection significantly increased the kinetics and magnitude of rejection as well as CD8+ T cell recruitment into allogeneic, but not syngeneic, transplanted hearts, relative to non-infected controls. Interestingly, as early as day 1 after allogeneic heart transplant an average of ~8% of MHC-tetramer+ CD8+ T cells expressed GFP, in contrast to syngeneic heart transplants, where the frequency of viral-specific CD8+ T cells that were GFP+ was <1%. These data show that a significant percentage of viral-specific memory CD8+ T cells expressed T cell receptors that also recognized alloantigens in vivo. Notably, the frequency of cross-reactive CD8+ T cells differed depending upon the viral epitope. Further, TCR sequences derived from cross-reactive T cells harbored distinctive motifs that may provide insight into cross-reactivity and allo-specificity. Discussion In sum, we have established a mouse model to track viral-specific, allo-specific, and cross-reactive T cells; revealing that prior infection elicits substantial numbers of viral-specific T cells that cross-react to alloantigen, respond very early after transplant, and may promote rapid rejection.
Collapse
Affiliation(s)
- M. Eyad Khorki
- Division of Nephrology & Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tiffany Shi
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Eileen E. Cianciolo
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ashley R. Burg
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - P. Chukwunalu Chukwuma
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - Jennifer L. Picarsic
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mary K. Morrice
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - E. Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jonathan S. Maltzman
- Department of Medicine, Stanford University, Palo Alto, CA, United States
- Geriatric Research and Education Clinical Center, Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, CA, United States
| | - Autumn Ferguson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brian M. Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
7
|
Kim TM, Lee KW, Kim HD, Hong SO, Cho HJ, Yang JH, Kim SJ, Park JB. Evaluation of Selected Markers in Kidneys of Cynomolgus Monkey ( Macaca fascicularis) with Induced Diabetes during Renal Ischemia-reperfusion Injury. Comp Med 2023; 73:357-372. [PMID: 38087409 PMCID: PMC10702167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 05/04/2023] [Indexed: 12/18/2023]
Abstract
We previously reported that induced type 1 diabetes mellitus (DM) increases the susceptibility of acute kidney injury in- duced by ischemia-reperfusion injury (IRI) in cynomolgus monkeys. In this follow-up study, we compared the expression of selected markers in the renal tissues of monkeys subjected to bilateral renal IRI with and without diabetes. All tissues were obtained from the original study. Renal biopsies were obtained before and 24 and 48 h after ischemia and were examined for expression of KI-67 (tubular proliferation), Na+ /K+ ATPase (sodium-potassium pump), TNF-α(tumor necrosis factor-α, inflammation), CD31 (microvessels), CD3 (T-cells), 2 fibrotic markers (fibroblast specific protein-1, FSP-1;α-smooth muscle actin,α -SMA), and cleaved caspase 3 (apoptosis). Generally, the expression of these markers differed in monkeys with and without DM. As compared with non-DM monkeys, DM monkeys had more cells that expressed KI-67 during progression of acute kidney injury (AKI). Na+ /K+ ATPase expression was clearly present at baseline in the basolateral tubular areas only in the non-DM monkeys. At 48 h, its expression in the basolateral area was not visible in DM monkeys, but was still present in intercellular junctions of non-DM monkeys. The expression of TNF-αwas higher in DM before and 48 h after ischemia. Before and 24 h after ischemia, the number of CD31-positive capillaries was not different between 2 groups, although more collapsed vessels were found at in DM at 24 h. At 48 h, the number of capillaries was less in DM compared with those from non-DM animals. DM monkeys had more interstitial CD3-positive cells than did non-DM monkeys at 24 and 48 h after ischemia. Finally, FSP-1-stained cells were more abundant in DM than non-DM at 24 and 48 h. Our results show that DM aggravates the recovery of renal ischemia/reperfusion injury by affecting tubular proliferation, capillary density, T cell infil- tration and by altering protein and mRNA expression of various genes involved in ion channel, inflammation, and fibrotic change. The results from this observational study demonstrate that DM aggravates the recovery of renal ischemia/reperfusion injury by affecting multiple events including tubular necrosis, proliferation, function, inflammation and by inducing capillary rarefaction in cynomolgus monkeys.
Collapse
Affiliation(s)
- Tae M Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea
| | - Kyo W Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
| | - Hong D Kim
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea
| | - Sung O Hong
- Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea
| | - Hye J Cho
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354, South Korea
| | - Je H Yang
- Laboratory Animal Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
| | - Sung J Kim
- GenNBio Inc., 80 Deurimsandan 2-ro, Cheongbuk-myeon, Pyeongtaek-si, Gyeonggi-do 17796, South Korea
| | - Jae B Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
| |
Collapse
|
8
|
Abdel-Razek HAD, Rizk MS, Amer GS, Kora MA, Afifi AM, Donia SS. Impact of combined ischemic preconditioning and melatonin on renal ischemia-reperfusion injury in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:235-240. [PMID: 36742133 PMCID: PMC9869875 DOI: 10.22038/ijbms.2022.67127.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 02/07/2023]
Abstract
Objectives Studying the effect of melatonin pretreatment and ischemic preconditioning on renal ischemia-reperfusion injury (IRI). Materials and Methods Forty-eight Wistar rats were randomized into six groups: control, sham operation, IRI (IRI in left kidney + right nephrectomy), IRI+ischemic preconditioning, IRI+Melatonin, and IRI+ischemic preconditioning+Melatonin groups. Melatonin (10 mg/kg) was intraperitoneally injected for 4 weeks before renal IRI. Ischemic preconditioning was performed by three cycles of 2 min-ischemia followed by 5 min-reperfusion period. A right nephrectomy was initially done and the left renal artery was clamped for 45 min. After 24 hr of ischemia-reperfusion, rats were decapitated. Kidney tissue samples were taken for histopathological assessment and the determination of kidney proinflammatory and anti-inflammatory cytokines, apoptotic protein caspase-3, oxidative stress markers, and activities of antioxidant enzymes. Serum creatinine and blood urea nitrogen (BUN) concentrations were measured for evaluation of renal function. Results Renal IRI animals showed increased levels of creatinine, BUN, tumor necrosis factor-α (TNF-α), caspase-3, total nitrite/nitrate, and malondialdehyde (MDA), and decreased levels of interleukin-13 (IL-13), and activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD). Melatonin pretreatment or ischemic preconditioning resulted in decreased creatinine, BUN, TNF-α, caspase-3, nitrite/nitrate, and MDA, and increased IL-13, GPx, and SOD, with improved histopathological changes. Combined melatonin and ischemic preconditioning showed more effective improvement in renal IRI changes rather than melatonin or ischemic preconditioning alone. Conclusion Combined melatonin and ischemic preconditioning have better beneficial effects on renal IRI than applying each one alone.
Collapse
Affiliation(s)
- Hesham AD Abdel-Razek
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebein El-Koum, Egypt
| | - Mohamed Soliman Rizk
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Menoufia University, Shebein El-Koum, Egypt
| | - Ghada S Amer
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebein El-Koum, Egypt
| | - Mona A Kora
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebein El-Koum, Egypt
| | - Aya M Afifi
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebein El-Koum, Egypt,Corresponding author: Aya Mohamed Afifi. Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebein El-Koum, Egypt. Tel: +201009150026;
| | - Sally S Donia
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebein El-Koum, Egypt
| |
Collapse
|
9
|
Li J, Yao Z, Liu X, Duan R, Yi X, Ayoub A, Sanders JO, Mesfin A, Xing L, Boyce BF. TGFβ1 +CCR5 + neutrophil subset increases in bone marrow and causes age-related osteoporosis in male mice. Nat Commun 2023; 14:159. [PMID: 36631487 PMCID: PMC9834218 DOI: 10.1038/s41467-023-35801-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
TGFβ1 induces age-related bone loss by promoting degradation of TNF receptor-associated factor 3 (TRAF3), levels of which decrease in murine and human bone during aging. We report that a subset of neutrophils (TGFβ1+CCR5+) is the major source of TGFβ1 in murine bone. Their numbers are increased in bone marrow (BM) of aged wild-type mice and adult mice with TRAF3 conditionally deleted in mesenchymal progenitor cells (MPCs), associated with increased expression in BM of the chemokine, CCL5, suggesting that TRAF3 in MPCs limits TGFβ1+CCR5+ neutrophil numbers in BM of young mice. During aging, TGFβ1-induced TRAF3 degradation in MPCs promotes NF-κB-mediated expression of CCL5 by MPCs, associated with higher TGFβ1+CCR5+ neutrophil numbers in BM where they induce bone loss. TGFβ1+CCR5+ neutrophils decreased bone mass in male mice. The FDA-approved CCR5 antagonist, maraviroc, reduced TGFβ1+CCR5+ neutrophil numbers in BM and increased bone mass in aged mice. 15-mon-old mice with TGFβRII specifically deleted in MPCs had lower numbers of TGFβ1+CCR5+ neutrophils in BM and higher bone volume than wild-type littermates. We propose that pharmacologic reduction of TGFβ1+CCR5+ neutrophil numbers in BM could treat or prevent age-related osteoporosis.
Collapse
Affiliation(s)
- Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Institute of Health and Medical Research, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xin Liu
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xiangjiao Yi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Akram Ayoub
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Leica Biosystems, Deer Park, IL, 60010, USA
| | - James O Sanders
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Addisu Mesfin
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Department of Orthopaedics and Rehabilitation Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
10
|
Jo SY, Cho HJ, Kim TM. Fenoldopam Mesylate Enhances the Survival of Mesenchymal Stem Cells Under Oxidative Stress and Increases the Therapeutic Function in Acute Kidney Injury. Cell Transplant 2023; 32:9636897221147920. [PMID: 36594258 PMCID: PMC9830573 DOI: 10.1177/09636897221147920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have gained interest as an alternative therapeutic option for renal diseases, including acute kidney injury (AKI). However, their use is often limited owing to low survival rates in vivo. Fenoldopam mesylate (FD) is a selective dopamine D1 receptor agonist with antioxidative and anti-apoptotic roles. Herein, we investigated whether FD can enhance the survival of MSCs undergoing oxidative stress in vitro. In addition, the therapeutic effect of MSCs and FD-treated MSCs (FD-MSCs) was compared in a mouse model of AKI induced by cisplatin. The survival of MSCs under oxidative stress was augmented by FD treatment. FD induced the phosphorylation of cAMP response element-binding protein and AKT, contributing to enhanced growth compared with untreated MSCs. The expression of nuclear factor erythroid-2-related factor 2 (NRF2) and heme oxygenase-1 was increased by FD treatment, and nuclear translocation of NRF2 was found exclusively in FD-MSCs. FD downregulated BAX expression, increased the mitochondrial membrane potential, reduced reactive oxygen species generation, and decreased the apoptotic death of MSCs induced by oxidative stress. Moreover, renal function and tubular injury were improved in FD-MSCs compared with non-treated MSCs. Furthermore, tubular injury, apoptosis, and macrophage infiltration, as well as the serum level of tumor necrosis factor-α were reduced, while tubular cell proliferation was markedly increased in FD-MSCs compared with MSCs. Our study demonstrated that FD increases the survivability of MSCs in an oxidative environment, and its use may be effective in preparing robust therapeutic MSCs.
Collapse
Affiliation(s)
- Seo Yeon Jo
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Hye Jin Cho
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Tae Min Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea,Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, South Korea,Tae Min Kim, Graduate School of International Agricultural Technology and Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang Daero 1447, Pyeongchang 25354, Gangwon-do, South Korea.
| |
Collapse
|
11
|
Castro LUC, Otsuki DA, Sanches TR, Souza FL, Santinho MAR, da Silva C, Noronha IDL, Duarte-Neto AN, Gomes SA, Malbouisson LMS, Andrade L. Terlipressin combined with conservative fluid management attenuates hemorrhagic shock-induced acute kidney injury in rats. Sci Rep 2022; 12:20443. [PMID: 36443404 PMCID: PMC9705717 DOI: 10.1038/s41598-022-24982-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Hemorrhagic shock (HS), a major cause of trauma-related mortality, is mainly treated by crystalloid fluid administration, typically with lactated Ringer's (LR). Despite beneficial hemodynamic effects, such as the restoration of mean arterial pressure (MAP), LR administration has major side effects, including organ damage due to edema. One strategy to avoid such effects is pre-hospitalization intravenous administration of the potent vasoconstrictor terlipressin, which can restore hemodynamic stability/homeostasis and has anti-inflammatory effects. Wistar rats were subjected to HS for 60 min, at a target MAP of 30-40 mmHg, thereafter being allocated to receive LR infusion at 3 times the volume of the blood withdrawn (liberal fluid management); at 2 times the volume (conservative fluid management), plus terlipressin (10 µg/100 g body weight); and at an equal volume (conservative fluid management), plus terlipressin (10 µg/100 g body weight). A control group comprised rats not subjected to HS and receiving no fluid resuscitation or treatment. At 15 min after fluid resuscitation/treatment, the blood previously withdrawn was reinfused. At 24 h after HS, MAP was higher among the terlipressin-treated animals. Terlipressin also improved post-HS survival and provided significant improvements in glomerular/tubular function (creatinine clearance), neutrophil gelatinase-associated lipocalin expression, fractional excretion of sodium, aquaporin 2 expression, tubular injury, macrophage infiltration, interleukin 6 levels, interleukin 18 levels, and nuclear factor kappa B expression. In terlipressin-treated animals, there was also significantly higher angiotensin II type 1 receptor expression and normalization of arginine vasopressin 1a receptor expression. Terlipressin associated with conservative fluid management could be a viable therapy for HS-induced acute kidney injury, likely attenuating such injury by modulating the inflammatory response via the arginine vasopressin 1a receptor.
Collapse
Affiliation(s)
- Leticia Urbano Cardoso Castro
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| | - Denise Aya Otsuki
- grid.11899.380000 0004 1937 0722Laboratory of Anesthesiology, Division of Anesthesiology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Talita Rojas Sanches
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| | - Felipe Lima Souza
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Mirela Aparecida Rodrigues Santinho
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| | - Cleonice da Silva
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Irene de Lourdes Noronha
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Amaro Nunes Duarte-Neto
- grid.11899.380000 0004 1937 0722Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Samirah Abreu Gomes
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz-Marcelo Sá Malbouisson
- grid.11899.380000 0004 1937 0722Laboratory of Anesthesiology, Division of Anesthesiology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lucia Andrade
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| |
Collapse
|
12
|
Khanahmad H, Mirbod SM, Karimi F, Kharazinejad E, Owjfard M, Najaflu M, Tavangar M. Pathological Mechanisms Induced by TRPM2 Ion Channels Activation in Renal Ischemia-Reperfusion Injury. Mol Biol Rep 2022; 49:11071-11079. [PMID: 36104583 DOI: 10.1007/s11033-022-07836-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
Abstract
Renal ischemia-reperfusion (IR) injury triggers a cascade of signaling reactions involving an increase in Ca2 + charge and reactive oxygen species (ROS) levels resulting in necrosis, inflammation, apoptosis, and subsequently acute kidney injury (AKI).Transient receptor potential (TRP) channels include an essential class of Ca2+ permeable cation channels, which are segregated into six main channels: the canonical channel (TRPC), the vanilloid-related channel (TRPV), the melastatin-related channel (TRPM), the ankyrin-related channel (TRPA), the mucolipin-related channel (TRPML) and polycystin-related channel (TRPP) or polycystic kidney disease protein (PKD2). TRP channels are involved in adjusting vascular tone, vascular permeability, cell volume, proliferation, secretion, angiogenesis and apoptosis.TRPM channels include eight isoforms (TRPM1-TRPM8) and TRPM2 is the second member of this subfamily that has been expressed in various tissues and organs such as the brain, heart, kidney and lung. Renal TRPM2 channels have an important role in renal IR damage. So that TRPM2 deficient mice are resistant to renal IR injury. TRPM2 channels are triggered by several chemicals including hydrogen peroxide, Ca2+, and cyclic adenosine diphosphate (ADP) ribose (cADPR) that are generated during AKI caused by IR injury, as well as being implicated in cell death caused by oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Hossein Khanahmad
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of medical science, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran, Isfahan University of Medical sciences, Isfahan, Iran
| | - Seyedeh Mahnaz Mirbod
- Resident of Cardiology, Department of cardiology, Isfahan University of Medical Science, Isfahan, Iran
- Department of Cardiology, Isfahan University of Medical Sciences, Isfahan, Iran., Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Karimi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran.
- Behbahan Faculty of Medical Sciences, No.8, Shahid Zibaei Blvd. Behbahan city, Behbahan, Khozestan province, Iran.
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran., Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| | - Ebrahim Kharazinejad
- Abadan University of Medical Sciences, Abadan, Iran
- Department of Anatomy, Abadan University of Medical Sciences, Abadan, Iran, Abadan University of Medical Sciences, Abadan , Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran, Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | - Malihe Najaflu
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrsa Tavangar
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Jia P, Xu S, Ren T, Pan T, Wang X, Zhang Y, Zou Z, Guo M, Zeng Q, Shen B, Ding X. LncRNA IRAR regulates chemokines production in tubular epithelial cells thus promoting kidney ischemia-reperfusion injury. Cell Death Dis 2022; 13:562. [PMID: 35732633 PMCID: PMC9217935 DOI: 10.1038/s41419-022-05018-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Increasing evidence demonstrates that long noncoding RNAs (lncRNAs) play an important role in several pathogenic processes of the kidney. However, functions of lncRNAs in ischemic acute kidney injury (AKI) remain undefined. In this study, global lncRNA profiling indicated that many lncRNA transcripts were deregulated in kidney after ischemia reperfusion (IR). Among them, we identified IRAR (ischemia-reperfusion injury associated RNA) as a potential lncRNA candidate, which was mostly expressed by the tubular epithelial cells (TECs) after IR, involved in the development of AKI. GapmeR-mediated silencing and viral-based overexpression of IRAR were carried out to assess its function and contribution to IR-induced AKI. The results revealed that in vivo silencing of IRAR significantly reduced IR-induced proinflammatory cells infiltration and AKI. IRAR overexpression induced chemokine CCL2, CXCL1 and CXCL2 expression both in mRNA and protein levels in TECs, while, silencing of IRAR resulted in downregulation of these chemokines. RNA immunoprecipitation and RNA pulldown assay validated the association between IRAR and CCL2, CXCL1/2. Further examination revealed that specific ablation of CCL2 in TECs reduced macrophages infiltration and proinflammatory cytokine production, attenuated renal dysfunction in IR mice. Inhibition of CXC chemokine receptor 2 (receptor of CXCL1/2) reduced neutrofils infiltration, but had no overt effect on kidney function. To explore the mechanism of IRAR upregulation in kidney during IR, we analyzed promoter region of IRAR and predicted a potential binding site for transcription factor C/EBP β on IRAR promoter. Silencing of C/EBP β reduced IRAR expression in TECs. A dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) confirmed that IRAR was a transcriptional target of the C/EBP β. Altogether, our findings identify IRAR as a new player in the development of ischemic AKI through regulating chemokine production and immune cells infiltration, suggesting that IRAR is a potential target for prevention and/or attenuation of AKI.
Collapse
Affiliation(s)
- Ping Jia
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China ,Shanghai Medical Center of Kidney, Shanghai, China ,Kidney and Dialysis Institute of Shanghai, Shanghai, China ,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Sujuan Xu
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ting Ren
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianyi Pan
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Wang
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunlu Zhang
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhouping Zou
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Man Guo
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zeng
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Shen
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China ,Kidney and Dialysis Institute of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- grid.8547.e0000 0001 0125 2443Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China ,Shanghai Medical Center of Kidney, Shanghai, China ,Kidney and Dialysis Institute of Shanghai, Shanghai, China ,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China ,Hemodialysis quality control center of Shanghai, Shanghai, China
| |
Collapse
|
14
|
Ashour H, Hashem HA, Khowailed AA, Rashed LA, Hassan RM, Soliman AS. Necrostatin-1 mitigates renal ischemia-reperfusion injury - time dependent- via aborting the interacting protein kinase (RIPK-1)-induced inflammatory immune response. Clin Exp Pharmacol Physiol 2022; 49:501-514. [PMID: 35090059 DOI: 10.1111/1440-1681.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/13/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
The recently defined necroptosis process participates in the pathophysiology of several tissue injuries. Targeting the necroptosis mediator receptor-interacting protein kinase (RIPK1) by necrostatin-1 in different phases of ischemia-reperfusion injury (IRI) may provide new insight into the protection against renal IRI. The rat groups included (n= 8 in each group); 1) Sham, 2) Renal IRI, 3) Necrostatin-1 treatment 20 min before ischemia induction in a dose of 1.65 mg/kg/intravenous. 4) Necrostatin-1 injection just before reperfusion, 5) Necrostatin-1 injection 20 min after reperfusion establishment, and 6) drug injection at both the pre-ischemia and at reperfusion time in the same dose. Timing dependent, necrostatin-1 diminished RIPK1 (P < 0.001), and aborted the necroptosis induced renal cell injury. Necrostatin-1 decreased the renal chemokine (CXCL1), interleukin-6, intercellular adhesion molecule (ICAM-1), myeloperoxidase, and the nuclear factor (NFκB), concomitant with reduced inducible nitric oxide synthase (iNOS), inflammatory cell infiltration, and diminished cell death represented by apoptotic cell count and the BAX/Bcl2 protein ratio. In group six, the cell injury was minimum and the renal functions (creatinine, BUN, and creatinine clearance) were almost normalized. The inflammatory markers were diminished (P < 0.001) compared to the IRI group. The results were confirmed by histopathological examination. In conclusion, RIPK1 inhibition ameliorates the inflammatory immune response induced by renal IRI. The use of two doses was more beneficial as the pathophysiology of cell injury is characterized.
Collapse
Affiliation(s)
- Hend Ashour
- Department of Medical Physiology, Faculty of Medicine, King Khalid University, Abha, KSA.,Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Heba A Hashem
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Akef A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Egypt
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Ayman S Soliman
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
15
|
CCN2 Aggravates the Immediate Oxidative Stress-DNA Damage Response following Renal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2021; 10:antiox10122020. [PMID: 34943123 PMCID: PMC8698829 DOI: 10.3390/antiox10122020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
AKI, due to the fact of altered oxygen supply after kidney transplantation, is characterized by renal ischemia–reperfusion injury (IRI). Recent data suggest that AKI to CKD progression may be driven by cellular senescence evolving from prolonged DNA damage response (DDR) following oxidative stress. Cellular communication factor 2 (CCN2, formerly called CTGF) is a major contributor to CKD development and was found to aggravate DNA damage and the subsequent DDR–cellular senescence–fibrosis sequence following renal IRI. We therefore investigated the impact of CCN2 inhibition on oxidative stress and DDR in vivo and in vitro. Four hours after reperfusion, full transcriptome RNA sequencing of mouse IRI kidneys revealed CCN2-dependent enrichment of several signaling pathways, reflecting a different immediate stress response to IRI. Furthermore, decreased staining for γH2AX and p-p53 indicated reduced DNA damage and DDR in tubular epithelial cells of CCN2 knockout (KO) mice. Three days after IRI, DNA damage and DDR were still reduced in CCN2 KO, and this was associated with reduced oxidative stress, marked by lower lipid peroxidation, protein nitrosylation, and kidney expression levels of Nrf2 target genes (i.e., HMOX1 and NQO1). Finally, silencing of CCN2 alleviated DDR and lipid peroxidation induced by anoxia-reoxygenation injury in cultured PTECs. Together, our observations suggest that CCN2 inhibition might mitigate AKI by reducing oxidative stress-induced DNA damage and the subsequent DDR. Thus, targeting CCN2 might help to limit post-IRI AKI.
Collapse
|
16
|
Aal-Aaboda MS, Abu Raghif AR, Hadi NR. Renoprotective Potential of the Ultra-Pure Lipopolysaccharide from Rhodobacter Sphaeroides on Acutely Injured Kidneys in an Animal Model. ARCHIVES OF RAZI INSTITUTE 2021; 76:1755-1764. [PMID: 35546979 PMCID: PMC9083871 DOI: 10.22092/ari.2021.356202.1803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 06/15/2023]
Abstract
One of the main causes of acute kidney injury is ischemic reperfusion injury (IRI). Inflammatory response, apoptotic damages, and oxidative stress-related injuries are all involved in the pathogenesis of IRI. Toll-like receptors (TLR) are strongly associated with IRIs, especially TLR4, which is markedly induced in response to IRI. Accordingly, the current study aimed to investigate the potential renoprotective effect of ultrapure lipopolysaccharide from Rhodobacter sphaeroides (ULPS-RS) at two doses in an animal model of bilateral IRI. A total of 30 adult male rats were divided randomly into five equal groups of control (laparotomy plus bilateral renal IRI), vehicle (same as the control group, but pretreated with the vehicle), sham (laparotomy only), ULPS-RS (same as the control group, but pretreated with 0.1 mg/kg of ULPS-RS), and ULPS-RSH (same as the control group, but pretreated with 0.2 mg/kg of ULPS-RS). Subsequent to 30 min of ischemia and 2 h of reperfusion, serum samples were collected for measuring urea, creatinine, and neutrophil gelatinase-associated lipocalin. Afterward, tissue samples were obtained from all animals to measure inflammatory mediators (interleukin 6, interleukin 1β, and tumor necrosis factor α), oxidative stress marker (8-isoprostane), apoptosis mediators (B cell lymphoma 2 [Bcl2]), and Bcl2-associated X protein (Bax). In the control group, all of the measured parameters were significantly elevated in response to IRI, except for Bcl2, which decreased significantly. On the other hand, exactly opposite effects were observed in the ULPS-RS treated groups indicating the nephroprotective effect of this compound against IRI at both tested doses. The findings reveal for the first time that ULPS-RS has the therapeutic potential of attenuating the renal dysfunction induced by IRI.
Collapse
Affiliation(s)
- M S Aal-Aaboda
- Department of Pharmacology, Faculty of Pharmacy, University of Misan, Iraq
| | - A R Abu Raghif
- Department of Pharmacology, Faculty of Medicine, Al-Nahrain University, Iraq
| | - N R Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Iraq
| |
Collapse
|
17
|
Guo S, Dong L, Li J, Chen Y, Yao Y, Zeng R, Shushakova N, Haller H, Xu G, Rong S. C-X3-C motif chemokine ligand 1/receptor 1 regulates the M1 polarization and chemotaxis of macrophages after hypoxia/reoxygenation injury. Chronic Dis Transl Med 2021; 7:254-265. [PMID: 34786544 PMCID: PMC8579018 DOI: 10.1016/j.cdtm.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/29/2022] Open
Abstract
Background Macrophages play an important role in renal ischemia reperfusion injury, but the functional changes of macrophages under hypoxia/reoxygenation and the related mechanism are unclear and need to be further clarified. Methods The effects of hypoxia/reoxygenation on functional characteristics of RAW264.7 macrophages were analyzed through the protein expression detection of pro-inflammatory factors TNF-α and CD80, anti-inflammatory factors ARG-1 and CD206. The functional implications of C-X3-C motif chemokine receptor 1(CX3CR1) down-regulation in hypoxic macrophages were explored using small interfering RNA technology. Significance was assessed by the parametric t-test or nonparametric Mann-Whitney test for two group comparisons, and a one-way ANOVA or the Kruskal-Wallis test for multiple group comparisons. Results Hypoxia/reoxygenation significantly increased the protein expression of M1-related pro-inflammatory factors TNF-α, CD80 and chemokine C-X3-C motif chemokine ligand 1 (CX3CL1)/CX3CR1 and inhibited the protein expression of M2-related anti-inflammatory factors ARG-1 and CD206 in a time-dependent manner in RAW264.7 cells. However, the silencing of CX3CR1 in RAW264.7 cells using specific CX3CR1-siRNA, significantly attenuated the increase in protein expression of TNF-α (P < 0.05) and CD80 (P < 0.01) and the inhibition of ARG-1 (P < 0.01) and CD206 (P < 0.01) induced by hypoxia/reoxygenation. In addition, we also found that hypoxia/reoxygenation could significantly enhance the migration (2.2-fold, P < 0.01) and adhesion capacity (1.5-fold, P < 0.01) of RAW264.7 macrophages compared with the control group, and CX3CR1-siRNA had an inhibitory role (40% and 20% reduction, respectively). For elucidating the mechanism, we showed that the phosphorylation levels of ERK (P < 0.01) and the p65 subunit of NF-κB (P < 0.01) of the RAW264.7 cells in the hypoxic/reoxygenation group were significantly increased, which could be attenuated by down-regulation of CX3CR1 expression (P < 0.01, both). ERK inhibitors also significantly blocked the effects of hypoxic/reoxygenation on the protein expression of M1-related pro-inflammatory factors TNF-α, CD80 and M2-related anti-inflammatory factors ARG-1 and CD206. Moreover, we found that conditioned medium from polarized M1 macrophages induced by hypoxia/reoxygenation, notably increased the degree of apoptosis of hypoxia/reoxygenation-induced TCMK-1 cells, and promoted the protein expression of pro-apoptotic proteins bax (P < 0.01) and cleaved-caspase 3 (P < 0.01) and inhibited the expression of anti-apoptotic protein bcl-2 (P < 0.01), but silencing CX3CR1 in macrophages had a protective role. Finally, we also found that the secretion of soluble CX3CL1 in RAW264.7 macrophages under hypoxia/reoxygenation was significantly increased. Conclusions The findings suggest that hypoxia/reoxygenation could promote M1 polarization, cell migration, and adhesion of macrophages, and that polarized macrophages induce further apoptosis of hypoxic renal tubular epithelial cells by regulating of CX3CL1/CX3CR1 signaling pathway.
Collapse
Affiliation(s)
- Shuiming Guo
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lei Dong
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junhua Li
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuetao Chen
- Department of Respiratory, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ying Yao
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Zeng
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Nelli Shushakova
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany
| | - Gang Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
18
|
Casili G, Ardizzone A, Basilotta R, Lanza M, Filippone A, Paterniti I, Esposito E, Campolo M. The Protective Role of Prolyl Oligopeptidase (POP) Inhibition in Kidney Injury Induced by Renal Ischemia-Reperfusion. Int J Mol Sci 2021; 22:11886. [PMID: 34769337 PMCID: PMC8584363 DOI: 10.3390/ijms222111886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) is a complex pathophysiological process characterized by blood circulation disorder caused by various factors, such as traumatic shock, surgery, organ transplantation, and thrombus. Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. The kidney is a highly perfused organ, sensitive to ischemia and reperfusion injury, and the incidence of renal IRI has high morbidity and mortality. Several studies showed that infiltration of inflammatory cells, apoptosis, and angiogenesis are important mechanisms involved in renal IRI. Despite advances in research, effective therapies for renal IRI are lacking. Recently it has been demonstrated the role of KYP2047, a selective inhibitor of prolyl oligopeptidase (POP), in the regulation of inflammation, apoptosis, and angiogenesis. Thus, this research focused on the role of POP in kidney ischemia/reperfusion (KI/R). An in vivo model of KI/R was performed and mice were subjected to KYP2047 treatment (intraperitoneal, 0.5, 1 and 5 mg/kg). Histological analysis, Masson's trichrome and periodic acid shift (PAS) staining, immunohistochemical and Western blots analysis, real-time PCR (RT-PCR) and ELISA were performed on kidney samples. Moreover, serum creatinine and blood urea nitrogen (BUN) were quantified. POP-inhibition by KYP2047 treatment, only at the doses of 1 and 5 mg/kg, significantly reduced renal injury and collagen amount, regulated inflammation through canonical and non-canonical NF-κB pathway, and restored renal function. Moreover, KYP2047 modulated angiogenesis markers, such as TGF-β and VEGF, also slowing down apoptosis. Interestingly, treatment with KYP2047 modulated PP2A activity. Thus, these findings clarified the role of POP inhibition in AKI, also offering novel therapeutic target for renal injury after KI/R.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31-98166 Messina, Italy; (G.C.); (A.A.); (R.B.); (M.L.); (A.F.); (I.P.); (M.C.)
| | | |
Collapse
|
19
|
Hamdan D, Robinson LA. Role of the CX 3CL1-CX 3CR1 axis in renal disease. Am J Physiol Renal Physiol 2021; 321:F121-F134. [PMID: 34121453 DOI: 10.1152/ajprenal.00059.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive infiltration of immune cells into the kidney is a key feature of acute and chronic kidney diseases. The family of chemokines comprises key drivers of this process. Fractalkine [chemokine (C-X3-C motif) ligand 1 (CX3CL1)] is one of two unique chemokines synthesized as a transmembrane protein that undergoes proteolytic cleavage to generate a soluble species. Through interacting with its cognate receptor, chemokine (C-X3-C motif) receptor 1 (CX3CR1), CX3CL1 was originally shown to act as a conventional chemoattractant in the soluble form and as an adhesion molecule in the transmembrane form. Since then, other functions of CX3CL1 beyond leukocyte recruitment have been described, including cell survival, immunosurveillance, and cell-mediated cytotoxicity. This review summarizes diverse roles of CX3CL1 in kidney disease and potential uses as a therapeutic target and novel biomarker. As the CX3CL1-CX3CR1 axis has been shown to contribute to both detrimental and protective effects in various kidney diseases, a thorough understanding of how the expression and function of CX3CL1 are regulated is needed to unlock its therapeutic potential.
Collapse
Affiliation(s)
- Diana Hamdan
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Lisa A Robinson
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|
21
|
Chemokine (C-C motif) Ligand 6 Aggravates Hypoxia Reoxygenation-induced Apoptosis in H9c2 Cells Through Enhancing the Expression of Insulin-like Growth Factor 2-Antisense. J Cardiovasc Pharmacol 2021; 76:549-555. [PMID: 32833905 DOI: 10.1097/fjc.0000000000000905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokine (C-C motif) ligand 6 (CCL6), one of the small cytokines in the CC chemokine family, has been reported to involve in renal ischemia-reperfusion (I/R) injury. However, the role of CCL-6 in myocardial I/R injury is nonelucidated. In this study, we used in vitro H9c2 cell model to investigate the overall contributions of CCL6 to myocardial I/R injury. We found the elevated level of CCL6 from the reanalysis of data set GSE-4105 and in hypoxia-reoxygenation (H/R)-injured H9c2 cells. CCL6 silencing attenuated the cardiomyocyte apoptosis induced by H/R injury, whereas exogenous CCL6 treatment aggravated the apoptosis of H/R-injured H9c2 cells. During CCL6 administration, the expression of numerous long noncoding RNAs was differentially regulated. Quantitative RT-Polymerase chain reaction assay demonstrated that insulin-like growth factor 2 (IGF2)-Antisense (AS) had the highest induction by CCL6 addition. IGF2-AS silencing alleviated the apoptosis of H/R-injured H9c2 cells. Collectively, we have identified a potential mechanism by which high expression of CCL6 contributes to the H/R-induced apoptosis in H9c2 cells through enhancing the expression of IGF2-AS. These findings also give evidence of the feasibility of CCL6 or long noncoding RNA IGF2-AS as a potential target for modulation or therapeutic intervention in myocardial I/R injury.
Collapse
|
22
|
Javaherforooshzadeh F, Bhandori H, Jarirahmadi S, Bakhtiari N. Investigating the Effect of Near Infra-Red Spectroscopy (NIRS) on Early Diagnosis of Cardiac Surgery-Associated Acute Kidney Injury. Anesth Pain Med 2020; 10:e109863. [PMID: 34150576 PMCID: PMC8207845 DOI: 10.5812/aapm.109863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023] Open
Abstract
Background Cardiac surgery-associated acute kidney injury (CSA-AKI) is a major adverse effect of cardiac surgery. The early detection of this complication can improve the quality of postoperative care and help prevent this phenomenon. Methods In this prospective descriptive-analytical study, 148 patients were enrolled, 107 of whom were selected for analysis between February and September 2019 in the Cardiac Surgery Unit of Golestan Hospital, Ahvaz, Iran. Kidney tissue oxygen saturation was measured at multiple definite times during surgery. Hemoglobin, blood urea nitrogen, creatinine, and lactate were measured during and 48 hours after the surgery. Results Forty-one patients were diagnosed with CSA-AKI according to the KDIGO criteria. Parametric and non-parametric analyses showed no significant difference between the CSA-AKI and non-CSA-AKI groups in the demographic parameters. Repeated measures ANOVA showed no significant difference in parameters, except for BUN. Repeated measures ANOVA showed a significant difference between both groups and time factors (P < 0.001, P = 0.0006, respectively). The ROC curve analyses showed that in a single point of time, the difference in the middle of CPB time from baseline had a high value in the prediction of AKI (AUC: 0.764; CI: 0.57 - 0.951). Conclusions Kidney saturation monitoring could be considered in cardiac surgery for the rapid detection of CSA-AKI. Although kidney tissue saturation is not correlated directly to the arterial oxygen saturation, the physician and the surgery team can predict the chance of acute kidney injury.
Collapse
Affiliation(s)
- Fatemeh Javaherforooshzadeh
- Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Corresponding Author: Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Hojatolah Bhandori
- Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Jarirahmadi
- Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nima Bakhtiari
- Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Corresponding Author: Ahvaz Anesthesiology and Pain Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Meng C, Qian Y, Zhang C, Liu H, Mu X, Zhang A. IKKε deficiency inhibits acute lung injury following renal ischemia reperfusion injury. Mol Med Rep 2020; 22:4213-4220. [PMID: 33000218 PMCID: PMC7533469 DOI: 10.3892/mmr.2020.11532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI) after surgery may promote acute lung injury (ALI) by inducing an inflammatory response. However, the underlying molecular mechanism is still unclear. Studies have reported that inhibitor of κB kinase (IKK)ε primarily regulates inflammation and cell proliferation. The present study aimed to investigate the regulatory role of IKKε in ALI in mice, in order to provide an experimental basis for preventing ALI following surgery-induced renal IRI. C57BL/6J wild-type (WT) and IKKε knockout (IKKε−/−) mice underwent bilateral renal pedicle occlusion. The plasma creatinine concentration, urea nitrogen level and lung wet-to-dry ratio were measured at baseline, and at 24 and 48 h after declamping. The histological localization and protein levels of inflammatory factors, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10, were analyzed in lung tissues. Subsequently, the interactions between IKKε and components of the nuclear factor (NF)-κB pathway were studied. The results of the present study demonstrated that the IKKε−/− groups displayed similar renal function but less pulmonary edema compared with that of the WT groups. The levels of proinflammatory factors in the lungs were significantly upregulated in WT mice compared with those in IKKε−/− mice after IRI surgery. The NF-κB pathway components and downstream factors were substantially upregulated in the WT groups after acute ischemic kidney injury, and these effects were significantly inhibited in the IKKε−/− groups. Based on these data, the present study hypothesized that IKKε may serve a negative role in kidney-lung crosstalk after renal IRI and may be a novel target for the treatment of patients with renal IRI.
Collapse
Affiliation(s)
- Chao Meng
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210001, P.R. China
| | - Yi Qian
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Cui Zhang
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210001, P.R. China
| | - Han Liu
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210001, P.R. China
| | - Xinwei Mu
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210001, P.R. China
| | - Aiping Zhang
- Department of Cardiothoracic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210001, P.R. China
| |
Collapse
|
24
|
Sears SM, Sharp CN, Krueger A, Oropilla GB, Saforo D, Doll MA, Megyesi J, Beverly LJ, Siskind LJ. C57BL/6 mice require a higher dose of cisplatin to induce renal fibrosis and CCL2 correlates with cisplatin-induced kidney injury. Am J Physiol Renal Physiol 2020; 319:F674-F685. [PMID: 32830540 DOI: 10.1152/ajprenal.00196.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
C57BL/6 mice are one of the most commonly used mouse strains in research, especially in kidney injury studies. However, C57BL/6 mice are resistant to chronic kidney disease-associated pathologies, particularly the development of glomerulosclerosis and interstitial fibrosis. Our laboratory and others developed a more clinically relevant dosing regimen of cisplatin (7 mg/kg cisplatin once a week for 4 wk and mice euthanized at day 24) that leads to the development of progressive kidney fibrosis in FVB/n mice. However, we found that treating C57BL/6 mice with this same dosing regimen does not result in kidney fibrosis. In this study, we demonstrated that increasing the dose of cisplatin to 9 mg/kg once a week for 4 wk is sufficient to consistently induce fibrosis in C57BL/6 mice while maintaining animal survival. In addition, we present that cohorts of C57BL/6 mice purchased from Jackson 1 yr apart and mice bred in-house display variability in renal outcomes following repeated low-dose cisplatin treatment. Indepth analyses of this intra-animal variability revealed C-C motif chemokine ligand 2 as a marker of cisplatin-induced kidney injury through correlation studies. In addition, significant immune cell infiltration was observed in the kidney after four doses of 9 mg/kg cisplatin, contrary to what has been previously reported. These results indicate that multiple strains of mice can be used with our repeated low-dose cisplatin model with dose optimization. Results also indicate that littermate control mice should be used with this model to account for population variability.
Collapse
Affiliation(s)
- Sophia M Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Cierra N Sharp
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Austin Krueger
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Gabrielle B Oropilla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Douglas Saforo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky
| | - Judit Megyesi
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Levi J Beverly
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.,Department of Medicine, University of Louisville, Louisville, Kentucky.,James Graham Brown Cancer Center, Louisville, Kentucky
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky.,James Graham Brown Cancer Center, Louisville, Kentucky
| |
Collapse
|
25
|
Martínez-Burgo B, Cobb SL, Pohl E, Kashanin D, Paul T, Kirby JA, Sheerin NS, Ali S. A C-terminal CXCL8 peptide based on chemokine-glycosaminoglycan interactions reduces neutrophil adhesion and migration during inflammation. Immunology 2019; 157:173-184. [PMID: 31013364 DOI: 10.1111/imm.13063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Leucocyte recruitment is critical during many acute and chronic inflammatory diseases. Chemokines are key mediators of leucocyte recruitment during the inflammatory response, by signalling through specific chemokine G-protein-coupled receptors (GPCRs). In addition, chemokines interact with cell-surface glycosaminoglycans (GAGs) to generate a chemotactic gradient. The chemokine interleukin-8/CXCL8, a prototypical neutrophil chemoattractant, is characterized by a long, highly positively charged GAG-binding C-terminal region, absent in most other chemokines. To examine whether the CXCL8 C-terminal peptide has a modulatory role in GAG binding during neutrophil recruitment, we synthesized the wild-type CXCL8 C-terminal [CXCL8 (54-72)] (Peptide 1), a peptide with a substitution of glutamic acid (E) 70 with lysine (K) (Peptide 2) to increase positive charge; and also, a scrambled sequence peptide (Peptide 3). Surface plasmon resonance showed that Peptide 1, corresponding to the core CXCL8 GAG-binding region, binds to GAG but Peptide 2 binding was detected at lower concentrations. In the absence of cellular GAG, the peptides did not affect CXCL8-induced calcium signalling or neutrophil chemotaxis along a diffusion gradient, suggesting no effect on GPCR binding. All peptides equally inhibited neutrophil adhesion to endothelial cells under physiological flow conditions. Peptide 2, with its greater positive charge and binding to polyanionic GAG, inhibited CXCL8-induced neutrophil transendothelial migration. Our studies suggest that the E70K CXCL8 peptide, may serve as a lead molecule for further development of therapeutic inhibitors of neutrophil-mediated inflammation based on modulation of chemokine-GAG binding.
Collapse
Affiliation(s)
- Beatriz Martínez-Burgo
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne, UK
| | | | - Ehmke Pohl
- Chemistry Department, Durham University, Durham, UK
| | | | | | - John A Kirby
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Simi Ali
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
Li Y, Hou D, Chen X, Zhu J, Zhang R, Sun W, Li P, Tian Y, Kong X. Hydralazine protects against renal ischemia-reperfusion injury in rats. Eur J Pharmacol 2018; 843:199-209. [PMID: 30472201 DOI: 10.1016/j.ejphar.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023]
Abstract
In this study, we investigated whether hydralazine could reduce renal ischemia and reperfusion (I/R) injury in rats. Renal I/R was induced by a 70-min occlusion of the bilateral renal arteries and a 24-h reperfusion, which was confirmed by the increased the mortality, the levels of blood urea nitrogen (BUN), blood creatinine (Cr), renal tissue NO and the visible histological damage of the kidneys. Apoptosis was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) staining. Furthermore, the serum levels of malonaldehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were significantly elevated in renal I/R group, while the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels were suppressed. However, intragastric pretreatment with hydralazine at doses of 7.5-30 mg/kg before renal I/R significantly limited the increase in mortality, BUN, Cr, oxidative stress, inflammatory factors, histological damage and apoptosis in the kidneys. In addition, hydralazine also increased p-AKT, Bcl-2 expression and decreased iNOS, Bax, cleaved caspase-3 expression in the kidneys. In conclusion, hydralazine reduced renal I/R injury probably via inhibiting NO production by iNOS/NO pathway, inhibiting oxidative stress, inflammatory response and apoptosis by a mitochondrial-dependent pathway.
Collapse
Affiliation(s)
- Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Daorong Hou
- Key Laboratory of the Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Xuguan Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Jingfeng Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Ruyi Zhang
- Animal Laboratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Yunfan Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Recent studies indicate that acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes. Although the majority of patients who suffer an episode of AKI will recover laboratory indices suggesting complete or near complete recovery of renal function, a significant portion of post-AKI survivors will develop major kidney events, including development of late-stage CKD, need for renal replacement therapies, and death. RECENT FINDINGS Our review highlights epidemiology of adverse post-AKI events, association of AKI with late development of nonrenal adverse outcomes, use of bedside equations that facilitate prognostication of adverse renal outcomes of AKI, and how variability in serum creatinine values in individual patients, even among those with normal baseline renal function may indicate risk for the development of CKD. Use of common laboratory parameters such as serum creatinine and albumin, along with certain clinical and demographic markers, individualize patients at high risk of complications and in need of close postdischarge follow-up. Evidence that 'organ crosstalk' following a major AKI episode may increase the risk of heart failure, stroke, and hypertension, places its survivors in a special patient category deserving active efforts to minimize risk for cardiovascular events. SUMMARY AKI is a major cause for acute in-hospital mortality and development of both late-stage CKD and cardiovascular events. Perioperative care to prevent AKI must challenge the notion that a single normal point of contact serum creatinine value substantially reduces the likelihood of its occurrence.
Collapse
|
28
|
Bai Y, Han G, Guo K, Yu L, Du X, Xu Y. Effect of lentiviral vector-mediated KSR1 gene silencing on the proliferation of renal tubular epithelial cells and expression of inflammatory factors in a rat model of ischemia/reperfusion injury. Acta Biochim Biophys Sin (Shanghai) 2018; 50:807-816. [PMID: 30020400 DOI: 10.1093/abbs/gmy071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/31/2018] [Indexed: 11/14/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) is a common cause of acute renal failure in many clinical settings. Our study aimed to elucidate the role of lentiviral vector-mediated KSR1 gene silencing in inflammatory factor expression and proliferation of renal tubular epithelial cells (RTECs) in a rat model of I/R injury. Male Sprague-Dawley (SD) rats were used for I/R model establishment and subject to different treatments, followed by the measurement of neurological severity score (NSS), tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, 47-kDa heat-shock protein (HSP47), KSR1, and factors related to the Ras/MAPK pathway, as well as cell apoptosis. As compared with the blank group, the neurologic impairment induced by I/R in the siKSR1, U0126, and siKSR1 + U0126 groups was alleviated. Compared with the control group, the other five groups showed increased levels of TNF-α, IL-6, IL-1β, HSP47, N-ras, Raf-1, c-fos, TNF-α, IL-6, p38 MAPK, and cell apoptosis, accompanied by a declined mRNA and protein level of Bcl-2. As compared with the blank and NC groups, the siKSR1, U0126, and siKSR1 + U0126 groups showed decreased levels of TNF-α, IL-6, IL-1β, HSP47, N-ras, Raf-1, c-fos, TNF-α, IL-6, p38 MAPK, cleaved caspase-3, cleaved caspase-9, p53, and cell apoptosis, accompanied by an increased mRNA and protein level of Bcl-2. Our findings demonstrated that KSR1 gene silencing might inhibit the expression of inflammatory factors in RTECs and promote their proliferation by inactivating the Ras/MAPK pathway in the rat model of I/R injury.
Collapse
Affiliation(s)
- Yang Bai
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Yu
- Social Development Bureau, Changchun Jingyue High-Tech Industrial Development Zone Management Committee, Changchun, China
| | - Xiadong Du
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Panah F, Ghorbanihaghjo A, Argani H, Asadi Zarmehri M, Nazari Soltan Ahmad S. Ischemic acute kidney injury and klotho in renal transplantation. Clin Biochem 2018; 55:3-8. [PMID: 29608890 DOI: 10.1016/j.clinbiochem.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Post-transplant ischemic acute kidney injury (AKI), secondary to ischemia reperfusion injury (IRI), is a major problem influencing on the short and long term graft and patient survival. Many molecular and cellular modifications are observed during IRI, for example, tissue damage result production of reactive oxygen species (ROS), cytokines, chemokines, and leukocytes recruitment which are activated by NF-κB (nuclear factor kappa B) signaling pathway. Therefore, inhibiting these processes can significantly protect renal parenchyma from tissue damage. Klotho protein, mainly produced in distal convoluted tubules (DCT), is an anti-senescence protein. There is increasing evidence to confirm a relationship between Klotho levels and renal allograft function. Many studies have also demonstrated that expression of the Klotho gene would be down regulated with IRI, so it will be used as an early biomarker for acute kidney injury after renal transplantation. Other studies suggest that Klotho may have a renoprotective effect for attenuating of kidney injury. In this review, we will discuss pathophysiology of IRI-induced acute kidney injury and its relation with klotho level in renal transplantation procedure.
Collapse
Affiliation(s)
- Fatemeh Panah
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hassan Argani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Asadi Zarmehri
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Kappa-opioid receptor agonist U50448H protects against renal ischemia-reperfusion injury in rats via activating the PI3K/Akt signaling pathway. Acta Pharmacol Sin 2018; 39:97-106. [PMID: 28770825 DOI: 10.1038/aps.2017.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/05/2017] [Indexed: 02/06/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is regarded as a leading cause of acute kidney failure and renal dysfunction. Previous studies show that kappa opioid receptor (KOR) agonists can attenuate IRI in cardiomycytes and neuronal cells. In this study we explored the effects of a KOR agonist on renal IRI and the underlying mechanisms in vivo and in vitro. An IRI model was established in SD rats, which were intravenously pretreated with a KOR agonist U50448H (1 mg/kg), a KOR antagonist Nor-BNI (2 mg/kg) followed by U50448H (1 mg/kg), or the PI3K inhibitor wortmannin (1.4 mg/kg) followed by U50448H (1 mg/kg). U50448H pretreatment significantly decreased the serum levels of creatinine (Cr) and BUN, the renal tubular injury scores and the apoptotic index (AI) in IRI model rats. Furthermore, U50448H significantly increased SOD activity and NO levels, and reduced the MDA levels in the kidney tissues of IRI model rats. Moreover, U50448H significantly increased the phosphorylation of Akt, eNOS and PI3K in the kidney tissues of IRI model rats. All the beneficial effects of U50448H were blocked by Nor-BNI or wortmannin pre-administered. Similar results were observed in vitro in renal tubular epithelial NRK-52E cells subjected to a hypoxia-reoxygenation (HR) procedure. Our results demonstrate that the KOR agonist U50448H protects against renal IRI via activating the PI3K/Akt signaling pathway.
Collapse
|
31
|
Moser MAJ, Sawicka K, Arcand S, O'Brien P, Luke P, Beck G, Sawicka J, Cohen A, Sawicki G. Proteomic Analysis of Perfusate from Machine Cold Perfusion of Transplant Kidneys: Insights Into Protection from Injury. Ann Transplant 2017; 22:730-739. [PMID: 29217818 PMCID: PMC6248313 DOI: 10.12659/aot.905347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Machine cold perfusion is beneficial to the preservation of kidneys for transplantation. At the end of preservation, the perfusion solution contains many proteins. Using a proteomics approach, we searched for useful biomarkers and potential therapeutic targets in the perfusate. Our program is unique in that all transplant kidneys (even living donor kidneys, LKD) are placed on machine cold perfusion prior to transplantation. Material/Methods Perfusates from donation after neurological and circulatory determination of death (DNDD and DCDD respectively) and LKD were collected (n=41) and analyzed for LDH, neutrophil gelatinase-associated lipocalin (NGAL), and matrix metalloproteinase-2 (MMP-2) as markers of injury. Perfusate from each kidney was subjected to 2-dimensional gel electrophoresis, then analyzed using software to identify those spots which are significantly different between the 3 groups. Mass spectrometry was used to identify the proteins and their identity was confirmed with Western blot. Results The highest levels of MMP-2, LDH, and NGAL were seen for the DCDD kidneys, followed by the DNDD kidneys and then LDK. Peroxiredoxin-2, NGAL, and alpha-1-antitrypsin were identified as significantly different between the different types of donor kidneys, and their role and possible therapeutic strategies are discussed. Collagen fragments, albumin, and immunoglobulin were also identified as possible byproducts of the injury and may be useful is assessing the degree of injury. Conclusions Comparison of the perfusates from the different types of kidneys has allowed us to identify proteins that will be useful in future research into reducing injury in transplant kidneys.
Collapse
Affiliation(s)
- Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, Canada
| | - Katherine Sawicka
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Steven Arcand
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Preston O'Brien
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Patrick Luke
- Department of Surgery, Western University, London, Canada
| | - Gavin Beck
- Department of Surgery, University of Saskatchewan, London, Canada
| | - Jolanta Sawicka
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Alejandro Cohen
- Proteomics and Mass Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Canada
| | - Grzegorz Sawicki
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Canada.,Department of Clinical Chemistry, Medical University of Wrocław, Wrocław, Poland
| |
Collapse
|
32
|
Wang J, Djudjaj S, Gibbert L, Lennartz V, Breitkopf DM, Rauen T, Hermert D, Martin IV, Boor P, Braun GS, Floege J, Ostendorf T, Raffetseder U. YB-1 orchestrates onset and resolution of renal inflammation via IL10 gene regulation. J Cell Mol Med 2017; 21:3494-3505. [PMID: 28664613 PMCID: PMC5706504 DOI: 10.1111/jcmm.13260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 12/24/2022] Open
Abstract
The Y‐box‐binding protein (YB)‐1 plays a non‐redundant role in both systemic and local inflammatory response. We analysed YB‐1‐mediated expression of the immune regulatory cytokine IL‐10 in both LPS and sterile inflammation induced by unilateral renal ischaemia–reperfusion (I/R) and found an important role of YB‐1 not only in the onset but also in the resolution of inflammation in kidneys. Within a decisive cis‐regulatory region of the IL10 gene locus, the fourth intron, we identified and characterized an operative YB‐1 binding site via gel shift experiments and reporter assays in immune and different renal cells. In vivo, YB‐1 phosphorylated at serine 102 localized to the fourth intron, which was paralleled by enhanced IL‐10 mRNA expression in mice following LPS challenge and in I/R. Mice with half‐maximal expression of YB‐1 (Yb1+/−) had diminished IL‐10 expression upon LPS challenge. In I/R, Yb1+/− mice exhibited ameliorated kidney injury/inflammation in the early‐phase (days 1 and 5), however showed aggravated long‐term damage (day 21) with increased expression of IL‐10 and other known mediators of renal injury and inflammation. In conclusion, these data support the notion that there are context‐specific decisions concerning YB‐1 function and that a fine‐tuning of YB‐1, for example, via a post‐translational modification regulates its activity and/or localization that is crucial for systemic processes such as inflammation.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Sonja Djudjaj
- Institute of Pathology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Lydia Gibbert
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Vera Lennartz
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Daniel M Breitkopf
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Thomas Rauen
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Daniela Hermert
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Ina V Martin
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Gerald S Braun
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Tammo Ostendorf
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Aachen, Germany
| |
Collapse
|
33
|
Wu H, Zhou J, Ou W, Li Y, Liu M, Yang C. TAK1 as the mediator in the protective effect of propofol on renal interstitial fibrosis induced by ischemia/reperfusion injury. Eur J Pharmacol 2017; 811:134-140. [PMID: 28603043 DOI: 10.1016/j.ejphar.2017.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 06/07/2017] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion injury (IRI), which is a major cause of acute and chronic renal dysfunction, induces both apoptosis and fibrotic processes. The mitogen-activated protein kinase kinase kinase transforming growth factor-β-activated kinase 1 (TAK1) was implicated in the processes of inflammation and fibrosis. The protective effect of propofol on renal functionality after acute kidney injury (AKI) in mice has been identified, whereas the mechanisms underlying fibrosis induced by kidney injury remain obscure. Herein, we investigated whether the protective effect of propofol on renal interstitial fibrosis induced by ischemia/reperfusion injury was modulated by TAK1 in renal ischemia /reperfusion (I/R) mouse models. The results of immunohistochemistry and western blotting revealed that TAK1 was significantly upregulated in IR group versus the control group, which was reversed by propofol administration. In addition, fibronectin (FN), α-smooth muscle actin (α-SMA) and type I collagen (COL1) were significantly downregulated and Tunnel staining revealed the number of tubular apoptotic cells was markedly reduced in IRP group versus IR group. Collectively, our results validated that propofol could ameliorate the IRI-induced renal interstitial fibrosis in mice by downregulation of TAK1 and inhibition of apoptosis at the early stage.
Collapse
Affiliation(s)
- Huiping Wu
- The First People's Hospital of Foshan, Foshan, Guangdong 528000, China.
| | - Jun Zhou
- The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Weiming Ou
- The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Yun Li
- The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Meifang Liu
- The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Chengxiang Yang
- The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| |
Collapse
|
34
|
Moser MAJ, Ginther N, Luo Y, Beck G, Ginther R, Ewen M, Matsche-Neufeld R, Shoker A, Sawicki G. Early experience with hypothermic machine perfusion of living donor kidneys - a retrospective study. Transpl Int 2017; 30:706-712. [PMID: 28390094 DOI: 10.1111/tri.12964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/31/2016] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Although hypothermic machine perfusion (HMP) has been shown to be beneficial to deceased donor kidneys, the effect of HMP on living donor kidneys (LDK) is unknown. LDK are subjected to minutes of normothermic ischemia at the time of recovery. Comparison of 16 LDK preserved by HMP with 16 LDK preserved by static cold storage (SCS). Outcomes of interest are resistive indices (RI), both while on HMP and postoperatively, and creatinine clearance (CrCl). Injury markers NGAL and LDH were seen in the perfusate of LDK in amounts similar to what is found for donation after neurological determination of death kidneys. Compared to SCS kidneys, CrCl was significantly higher in the HMP group from days 2 through 7 post-transplant [ie: day 7 (78.8 ± 5.4 vs. 54.0 ± 4.6 ml/min, P = 0.005)]. CrCl at 1 year was higher in the HMP group (81.2 ± 5.8 vs. 70.0 ± 5.3 ml/min, P = 0.03). Early post-transplant RI was significantly lower in the HMP group (0.61 ± 0.02 vs. 0.71 ± 0.02, P < 0.0001). Our data support the assertion that injury does occur during LDK procurement and suggest that some of this injury may be reversed with HMP, resulting in more favorable early RI and graft function compared to SCS kidneys.
Collapse
Affiliation(s)
- Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada.,Saskatchewan Renal Transplant Program, Saskatoon, SK, Canada
| | - Nathan Ginther
- Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yigang Luo
- Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada.,Saskatchewan Renal Transplant Program, Saskatoon, SK, Canada
| | - Gavin Beck
- Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada.,Saskatchewan Renal Transplant Program, Saskatoon, SK, Canada
| | - Ronn Ginther
- Saskatchewan Renal Transplant Program, Saskatoon, SK, Canada
| | - Marla Ewen
- Saskatchewan Renal Transplant Program, Saskatoon, SK, Canada
| | | | - Ahmed Shoker
- Saskatchewan Renal Transplant Program, Saskatoon, SK, Canada.,Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Grzegorz Sawicki
- Department of Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Clinical Chemistry, Medical University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
35
|
Rodrigues CE, Capcha JMC, de Bragança AC, Sanches TR, Gouveia PQ, de Oliveira PAF, Malheiros DMAC, Volpini RA, Santinho MAR, Santana BAA, Calado RDT, Noronha IDL, Andrade L. Human umbilical cord-derived mesenchymal stromal cells protect against premature renal senescence resulting from oxidative stress in rats with acute kidney injury. Stem Cell Res Ther 2017; 8:19. [PMID: 28129785 PMCID: PMC5273809 DOI: 10.1186/s13287-017-0475-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 01/07/2017] [Indexed: 02/08/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) represent an option for the treatment of acute kidney injury (AKI). It is known that young stem cells are better than are aged stem cells at reducing the incidence of the senescent phenotype in the kidneys. The objective of this study was to determine whether AKI leads to premature, stress-induced senescence, as well as whether human umbilical cord-derived MSCs (huMSCs) can prevent ischaemia/reperfusion injury (IRI)-induced renal senescence in rats. Methods By clamping both renal arteries for 45 min, we induced IRI in male rats. Six hours later, some rats received 1 × 106 huMSCs or human adipose-derived MSCs (aMSCs) intraperitoneally. Rats were euthanised and studied on post-IRI days 2, 7 and 49. Results On post-IRI day 2, the kidneys of huMSC-treated rats showed improved glomerular filtration, better tubular function and higher expression of aquaporin 2, as well as less macrophage infiltration. Senescence-related proteins (β-galactosidase, p21Waf1/Cip1, p16INK4a and transforming growth factor beta 1) and microRNAs (miR-29a and miR-34a) were overexpressed after IRI and subsequently downregulated by the treatment. The IRI-induced pro-oxidative state and reduction in Klotho expression were both reversed by the treatment. In comparison with huMSC treatment, the treatment with aMSCs improved renal function to a lesser degree, as well as resulting in a less pronounced increase in the renal expression of Klotho and manganese superoxide dismutase. Treatment with huMSCs ameliorated long-term kidney function after IRI, minimised renal fibrosis, decreased β-galactosidase expression and increased the expression of Klotho. Conclusions Our data demonstrate that huMSCs attenuate the inflammatory and oxidative stress responses occurring in AKI, as well as reducing the expression of senescence-related proteins and microRNAs. Our findings broaden perspectives for the treatment of AKI. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0475-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Eleuterio Rodrigues
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil.
| | - José Manuel Condor Capcha
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Ana Carolina de Bragança
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Talita Rojas Sanches
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Priscila Queiroz Gouveia
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | | | | | - Rildo Aparecido Volpini
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | | | - Bárbara Amélia Aparecida Santana
- Department of Internal Medicine, Division of Haematology, University of São Paulo at Ribeirão Preto School of Medicine, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - Rodrigo do Tocantins Calado
- Department of Internal Medicine, Division of Haematology, University of São Paulo at Ribeirão Preto School of Medicine, Av. Bandeirantes, 3900, 14049-900, Ribeirão Preto, Brazil
| | - Irene de Lourdes Noronha
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| | - Lúcia Andrade
- Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 01246-903, São Paulo, Brazil
| |
Collapse
|
36
|
Zhuang Q, Cheng K, Ming Y. CX3CL1/CX3CR1 Axis, as the Therapeutic Potential in Renal Diseases: Friend or Foe? Curr Gene Ther 2017; 17:442-452. [PMID: 29446734 PMCID: PMC5902862 DOI: 10.2174/1566523218666180214092536] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/06/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
The fractalkine receptor chemokine (C-X3-C motif) receptor 1 (CX3CR1) and its highly selective ligand CX3CL1 mediate chemotaxis and adhesion of immune cells, which are involved in the pathogenesis and progression of numerous inflammatory disorders and malignancies. The CX3CL1/CX3CR1 axis has recently drawn attention as a potential therapeutic target because it is involved in the ontogeny, homeostatic migration, or colonization of renal phagocytes. We performed a Medline/PubMed search to detect recently published studies that explored the relationship between the CX3CL1/CX3CR1 axis and renal diseases and disorders, including diabetic nephropathy, renal allograft rejection, infectious renal diseases, IgA nephropathy, fibrotic kidney disease, lupus nephritis and glomerulonephritis, acute kidney injury and renal carcinoma. Most studies demonstrated its role in promoting renal pathopoiesis; however, several recent studies showed that the CX3CL1/CX3CR1 axis could also reduce renal pathopoiesis. Thus, the CX3CL1/CX3CR1 axis is now considered to be a double-edged sword that could provide novel perspectives into the pathogenesis and treatment of renal diseases and disorders.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, Hunan410013, China
| | - Ke Cheng
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, Hunan410013, China
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, Hunan410013, China
| |
Collapse
|
37
|
Effect of TREM-1 blockade and single nucleotide variants in experimental renal injury and kidney transplantation. Sci Rep 2016; 6:38275. [PMID: 27928159 PMCID: PMC5143803 DOI: 10.1038/srep38275] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
Renal ischemia reperfusion (IR)-injury induces activation of innate immune response which sustains renal injury and contributes to the development of delayed graft function (DGF). Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory evolutionary conserved pattern recognition receptor expressed on a variety of innate immune cells. TREM-1 expression increases following acute and chronic renal injury. However, the function of TREM-1 in renal IR is still unclear. Here, we investigated expression and function of TREM-1 in a murine model of renal IR using different TREM-1 inhibitors: LP17, LR12 and TREM-1 fusion protein. In a human study, we analyzed the association of non-synonymous single nucleotide variants in the TREM1 gene in a cohort comprising 1263 matching donors and recipients with post-transplant outcomes, including DGF. Our findings demonstrated that, following murine IR, renal TREM-1 expression increased due to the influx of Trem1 mRNA expressing cells detected by in situ hybridization. However, TREM-1 interventions by means of LP17, LR12 and TREM-1 fusion protein did not ameliorate IR-induced injury. In the human renal transplant cohort, donor and recipient TREM1 gene variant p.Thr25Ser was not associated with DGF, nor with biopsy-proven rejection or death-censored graft failure. We conclude that TREM-1 does not play a major role during experimental renal IR and after kidney transplantation.
Collapse
|
38
|
Emal D, Rampanelli E, Stroo I, Butter LM, Teske GJ, Claessen N, Stokman G, Florquin S, Leemans JC, Dessing MC. Depletion of Gut Microbiota Protects against Renal Ischemia-Reperfusion Injury. J Am Soc Nephrol 2016; 28:1450-1461. [PMID: 27927779 DOI: 10.1681/asn.2016030255] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
An accumulating body of evidence shows that gut microbiota fulfill an important role in health and disease by modulating local and systemic immunity. The importance of the microbiome in the development of kidney disease, however, is largely unknown. To study this concept, we depleted gut microbiota with broad-spectrum antibiotics and performed renal ischemia-reperfusion (I/R) injury in mice. Depletion of the microbiota significantly attenuated renal damage, dysfunction, and remote organ injury and maintained tubular integrity after renal I/R injury. Gut flora-depleted mice expressed lower levels of F4/80 and chemokine receptors CX3CR1 and CCR2 in the F4/80+ renal resident macrophage population and bone marrow (BM) monocytes than did control mice. Additionally, compared with control BM monocytes, BM monocytes from gut flora-depleted mice had decreased migratory capacity toward CX3CL1 and CCL2 ligands. To study whether these effects were driven by depletion of the microbiota, we performed fecal transplants in antibiotic-treated mice and found that transplant of fecal material from an untreated mouse abolished the protective effect of microbiota depletion upon renal I/R injury. In conclusion, we show that depletion of gut microbiota profoundly protects against renal I/R injury by reducing maturation status of F4/80+ renal resident macrophages and BM monocytes. Therefore, dampening the inflammatory response by targeting microbiota-derived mediators might be a promising therapy against I/R injury.
Collapse
Affiliation(s)
- Diba Emal
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Elena Rampanelli
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Ingrid Stroo
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Loes M Butter
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Gwendoline J Teske
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Nike Claessen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Geurt Stokman
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and.,Department of Pathology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jaklien C Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | - Mark C Dessing
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| |
Collapse
|
39
|
Modena BD, Kurian SM, Gaber LW, Waalen J, Su AI, Gelbart T, Mondala TS, Head SR, Papp S, Heilman R, Friedewald JJ, Flechner S, Marsh CL, Sung RS, Shidban H, Chan L, Abecassis MM, Salomon DR. Gene Expression in Biopsies of Acute Rejection and Interstitial Fibrosis/Tubular Atrophy Reveals Highly Shared Mechanisms That Correlate With Worse Long-Term Outcomes. Am J Transplant 2016; 16:1982-98. [PMID: 26990570 PMCID: PMC5501990 DOI: 10.1111/ajt.13728] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 01/25/2023]
Abstract
Interstitial fibrosis and tubular atrophy (IFTA) is found in approximately 25% of 1-year biopsies posttransplant. It is known that IFTA correlates with decreased graft survival when histological evidence of inflammation is present. Identifying the mechanistic etiology of IFTA is important to understanding why long-term graft survival has not changed as expected despite improved immunosuppression and dramatically reduced rates of clinical acute rejection (AR) (Services UDoHaH. http://www.ustransplant.org/annual_reports/current/509a_ki.htm). Gene expression profiles of 234 graft biopsy samples were obtained with matching clinical and outcome data. Eighty-one IFTA biopsies were divided into subphenotypes by degree of histological inflammation: IFTA with AR, IFTA with inflammation, and IFTA without inflammation. Samples with AR (n = 54) and normally functioning transplants (TX; n = 99) were used in comparisons. A novel analysis using gene coexpression networks revealed that all IFTA phenotypes were strongly enriched for dysregulated gene pathways and these were shared with the biopsy profiles of AR, including IFTA samples without histological evidence of inflammation. Thus, by molecular profiling we demonstrate that most IFTA samples have ongoing immune-mediated injury or chronic rejection that is more sensitively detected by gene expression profiling. These molecular biopsy profiles correlated with future graft loss in IFTA samples without inflammation.
Collapse
Affiliation(s)
- B. D. Modena
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - S. M. Kurian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA,DNA Microarray and Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, CA
| | - L. W. Gaber
- Department of Pathology, The Methodist Hospital, Houston, TX
| | - J. Waalen
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - A. I. Su
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - T. Gelbart
- DNA Microarray and Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, CA
| | - T. S. Mondala
- DNA Microarray and Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, CA
| | - S. R. Head
- DNA Microarray and Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, CA
| | - S. Papp
- DNA Microarray and Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, CA
| | - R. Heilman
- Transplant Genomics Collaborative Group (TGCG), La Jolla, CA,Department of Transplant Nephrology, Mayo Clinic, Phoenix, AZ
| | - J. J. Friedewald
- Northwestern Comprehensive Transplant Center, Northwestern University, Chicago, IL
| | - S.M. Flechner
- Transplant Genomics Collaborative Group (TGCG), La Jolla, CA,Glickman Urology and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH
| | - C. L. Marsh
- Transplant Genomics Collaborative Group (TGCG), La Jolla, CA,Scripps Center for Organ and Cell Transplantation, Scripps Health, La Jolla, CA
| | - R. S. Sung
- Transplant Genomics Collaborative Group (TGCG), La Jolla, CA,Section of Transplant Surgery, University of Michigan, Ann Arbor, MI
| | - H. Shidban
- Transplant Genomics Collaborative Group (TGCG), La Jolla, CA,Department of Surgery, St Vincent Medical Center, Los Angeles, CA
| | - L. Chan
- Transplant Genomics Collaborative Group (TGCG), La Jolla, CA,Department of Transplant/Nephrology, University of Colorado, Aurora, CO
| | - M. M. Abecassis
- Northwestern Comprehensive Transplant Center, Northwestern University, Chicago, IL
| | - D. R. Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA,DNA Microarray and Next Generation Sequencing Core, The Scripps Research Institute, La Jolla, CA,Transplant Genomics Collaborative Group (TGCG), La Jolla, CA,Corresponding author: Daniel R. Salomon,
| |
Collapse
|
40
|
Bertinat R, Westermeier F, Silva P, Shi J, Nualart F, Li X, Yáñez AJ. Anti-Diabetic Agent Sodium Tungstate Induces the Secretion of Pro- and Anti-Inflammatory Cytokines by Human Kidney Cells. J Cell Physiol 2016; 232:355-362. [PMID: 27186953 DOI: 10.1002/jcp.25429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/16/2016] [Indexed: 02/04/2023]
Abstract
Diabetic kidney disease (DKD) is the major cause of end stage renal disease. Sodium tungstate (NaW) exerts anti-diabetic and immunomodulatory activities in diabetic animal models. Here, we used primary cultures of renal proximal tubule epithelial cells derived from type-2-diabetic (D-RPTEC) and non-diabetic (N-RPTEC) subjects as in vitro models to study the effects of NaW on cytokine secretion, as these factors participate in intercellular regulation of inflammation, cell growth and death, differentiation, angiogenesis, development, and repair, all processes that are dysregulated during DKD. In basal conditions, D-RPTEC cells secreted higher levels of prototypical pro-inflammatory IL-6, IL-8, and MCP-1 than N-RPTEC cells, in agreement with their diabetic phenotype. Unexpectedly, NaW further induced IL-6, IL-8, and MCP-1 secretion in both N- and D-RPTEC, together with lower levels of IL-1 RA, IL-4, IL-10, and GM-CSF, suggesting that it may contribute to the extent of renal damage/repair during DKD. Besides, NaW induced the accumulation of IκBα, the main inhibitor protein of one major pathway involved in cytokine production, suggesting further anti-inflammatory effect in the long-term. A better understanding of the mechanisms involved in the interplay between the anti-diabetic and immunomodulatory properties of NaW will facilitate future studies about its clinical relevance. J. Cell. Physiol. 232: 355-362, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile. .,Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile. .,Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Francisco Westermeier
- Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Centro Avanzado de Enfermedades Crónicas (ACCDiS), Universidad de Chile, Santiago, Chile.,Facultad de Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pamela Silva
- Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jie Shi
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Xuhang Li
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alejandro J Yáñez
- Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile. .,Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
41
|
Jacobo-Estrada T, Cardenas-Gonzalez M, Santoyo-Sánchez M, Parada-Cruz B, Uria-Galicia E, Arreola-Mendoza L, Barbier O. Evaluation of kidney injury biomarkers in rat amniotic fluid after gestational exposure to cadmium. J Appl Toxicol 2016; 36:1183-93. [PMID: 26815315 DOI: 10.1002/jat.3286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 12/24/2022]
Abstract
Cadmium is a well-characterized nephrotoxic agent that is also capable of accumulating and diffusing across the placenta; however, only a few studies have addressed its effects over fetal kidneys and none of them has used a panel of sensitive and specific biomarkers for the detection of kidney injury. The goal of this study was to determine cadmium renal effects in rat fetuses by the quantification of early kidney injury biomarkers. Pregnant Wistar rats were exposed by inhalation to an isotonic saline solution or to CdCl2 solution (DDel =1.48 mg Cd kg(-1) day(-1) ) during gestational days (GD) 8-20. On GD 21, dams were euthanized and samples obtained. Kidney injury biomarkers were quantified in amniotic fluid samples and fetal kidneys were microscopically evaluated to search for histological alterations. Our results showed that cadmium exposure significantly raised albumin, osteopontin, vascular endothelial growth factor and tissue inhibitor of metalloproteinases-1 levels in amniotic fluid, whereas it decreased creatinine. Clusterin, calbindin and IFN-inducible protein 10 did not show any change. Accordingly, histological findings showed tubular damage and precipitations in the renal pelvis. In conclusion, gestational exposure to cadmium induces structural alterations in fetal renal tissue that can be detected by some kidney injury biomarkers in amniotic fluid samples. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tania Jacobo-Estrada
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., México
| | - Mariana Cardenas-Gonzalez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., México
| | - Mitzi Santoyo-Sánchez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., México
| | - Benjamín Parada-Cruz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., México
| | - Esther Uria-Galicia
- Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, CP 11340, México, D.F., México
| | - Laura Arreola-Mendoza
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, CP 07340, México, D.F., México
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., México
| |
Collapse
|
42
|
Xin Y, Li G, Liu H, Ai D. AS-IV protects against kidney IRI through inhibition of NF-κB activity and PUMA upregulation. Int J Clin Exp Med 2015; 8:18293-18301. [PMID: 26770431 PMCID: PMC4694331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To determine and explore the effect of Astragalus saponin IV (AS-IV) on ischemia/reperfusion (IR)-induced renal injury and its mechanisms. METHODS Experimental model of renal I/R was induced in rats by bilateral renal artery clamp for 45 min followed by reperfusion of 6 h. Rats were divided into three groups: ① sham ② IRI ③ IRI/AS-IV. In IRI/AS-IV groups, AS-IV was orally administered once a day to rats at 2 mg·kg(-1)·d(-1) for 7 days prior to ischemia. At 6 h after reperfusion, the inflammatory cytokines and renal function was assessed and NF-κB activity and PUMA expression was detected. Apoptotic cells was detected by TUNEL assay. RESULTS AS-IV significantly decreased serum and tissue levels of IL-6 and TNF-α, and reduced apoptotic cell counts and histological damage. AS-IV down-regulated the phosphorylation of p65 subunit of NF-κB (NF-κB p65) and PUMA expression, and the NF-κB activity compared to the I/R groups. CONCLUSIONS AS-IV provided protection against IRI-induced renal injury by reducing apoptosis and inflammation through inhibition of NF-κB activity and PUMA expression. AS-IV pre-treatment ameliorated tubular damage and suppressed the NF-κB p65 expression.
Collapse
Affiliation(s)
- Yan Xin
- Department of Anesthesia, Qingdao Municipal HospitalQingdao, Shandong, China
| | - Gang Li
- Department of Anesthesia, People’s Hospital of RizhaoRizhao, Shandong, China
| | - Hongxiu Liu
- Department of Anesthesia, People’s Hospital of RizhaoRizhao, Shandong, China
| | - Dengbin Ai
- Department of Anesthesia, Qingdao Municipal HospitalQingdao, Shandong, China
| |
Collapse
|
43
|
Remus EW, Sayeed I, Won S, Lyle AN, Stein DG. Progesterone protects endothelial cells after cerebrovascular occlusion by decreasing MCP-1- and CXCL1-mediated macrophage infiltration. Exp Neurol 2015; 271:401-8. [PMID: 26188381 DOI: 10.1016/j.expneurol.2015.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
The neuroprotective effects of progesterone after ischemic stroke have been established, but the role of progesterone in promoting cerebrovascular repair remains under-explored. Male Sprague-Dawley rats underwent transient middle cerebral artery occlusion (tMCAO) for 90 min followed by reperfusion for 3 days. Progesterone (8 mg/kg/day) was administered intraperitoneally at 1h after initial occlusion followed by subcutaneous injections at 6, 24 and 48 h post-occlusion. Rats were euthanized after 72 h and brain endothelial cell density and macrophage infiltration were evaluated within the cerebral cortex. We also assessed progesterone's ability to induce macrophage migration toward hypoxic/reoxygenated cultured endothelial cells. We found that progesterone treatment post-tMCAO protects ischemic endothelial cells from macrophage infiltration. We further demonstrate that infiltration of monocytes/macrophages can be induced by potent chemotactic factors such as monocyte chemoattractant protein-1 (MCP-1) and the chemokine ligand 1 (CXCL1), secreted by hypoxic/reoxygenated endothelial cells. Progesterone blunts secretion of MCP-1 and CXCL1 from endothelial cells after hypoxia/reoxygenation injury and decreases leukocyte infiltration. The treatment protects ischemic endothelial cells from macrophage infiltration and thus preserves vascularization after ischemic injury.
Collapse
Affiliation(s)
- Ebony Washington Remus
- Department of Emergency Medicine Brain Research Laboratory, Emory University, Atlanta, GA, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine Brain Research Laboratory, Emory University, Atlanta, GA, USA
| | - Soonmi Won
- Department of Emergency Medicine Brain Research Laboratory, Emory University, Atlanta, GA, USA
| | - Alicia N Lyle
- Department of Cardiology, Emory University Atlanta, GA, USA
| | - Donald G Stein
- Department of Emergency Medicine Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| |
Collapse
|
44
|
Barrera-Chimal J, Pérez-Villalva R, Ortega JA, Sánchez A, Rodríguez-Romo R, Durand M, Jaisser F, Bobadilla NA. Mild ischemic injury leads to long-term alterations in the kidney: amelioration by spironolactone administration. Int J Biol Sci 2015; 11:892-900. [PMID: 26157344 PMCID: PMC4495407 DOI: 10.7150/ijbs.11729] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/05/2015] [Indexed: 11/05/2022] Open
Abstract
Administration of the mineralocorticoid receptor antagonist spironolactone prevents the development of chronic kidney disease (CKD) after a severe ischemic injury. However, whether brief periods of ischemia lead to CKD and whether spironolactone administration after ischemia may be a useful therapeutic strategy to prevent the gradual deterioration of structure and function remains unexplored. Nineteen male Wistar rats were divided into four groups: rats that underwent renal bilateral ischemia for 10, 20, or 45 min were compared with sham operated rats. Additionally, thirteen male Wistar rats that underwent renal bilateral ischemia for 20 min were divided into an untreated ischemic group (I) and two groups receiving spironolactone, 20 mg/kg by gavage, at either 0 (Sp0) or 1.5-h after ischemia (Sp1.5). The rats were followed up and studied after 9 months. Mild (20 min) and severe (45 min) ischemia induced a progressive increase in proteinuria at varying magnitudes, whereas minor ischemia (10 min) did not modify proteinuria. CKD induced by moderate ischemia was characterized by renal hypertrophy and tubulointerstitial fibrosis. These effects were associated with activation of the transforming growth factor β (TGFβ) signaling pathway and up-regulation of endothelin receptor A (ETA) and alpha smooth muscle actin (αSMA). Spironolactone treatment immediately or 1.5-h after the ischemic insult prevented the onset of these disorders. Our results show that moderate ischemic insult leads to long-term structural and molecular changes that may compromise renal function in later stages. Additionally, we demonstrate that spironolactone administration after mild ischemia prevents this detrimental effect.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- 1. Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México ; 2. Nephrology Department of Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán ; 4. INSERM U1138, Centre de Recherche de Cordeliers, Team 1, Paris, France
| | - Rosalba Pérez-Villalva
- 1. Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México ; 2. Nephrology Department of Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Juan Antonio Ortega
- 1. Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México ; 2. Nephrology Department of Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Andrea Sánchez
- 1. Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México ; 2. Nephrology Department of Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Roxana Rodríguez-Romo
- 1. Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México ; 2. Nephrology Department of Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Marta Durand
- 3. Reproductive Biology Department of Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| | - Frederic Jaisser
- 4. INSERM U1138, Centre de Recherche de Cordeliers, Team 1, Paris, France
| | - Norma A Bobadilla
- 1. Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México ; 2. Nephrology Department of Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán
| |
Collapse
|
45
|
Malek M, Nematbakhsh M. Renal ischemia/reperfusion injury; from pathophysiology to treatment. J Renal Inj Prev 2015; 4:20-7. [PMID: 26060833 PMCID: PMC4459724 DOI: 10.12861/jrip.2015.06] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) is caused by a sudden temporary impairment of the blood flow to the particular organ. IRI usually is associated with a robust inflammatory and oxidative stress response to hypoxia and reperfusion which disturbs the organ function. Renal IR induced acute kidney injury (AKI) contributes to high morbidity and mortality rate in a wide range of injuries. Although the pathophysiology of IRI is not completely understood, several important mechanisms resulting in kidney failure have been mentioned. In ischemic kidney and subsequent of re-oxygenation, generation of reactive oxygen species (ROS) at reperfusion phase initiates a cascade of deleterious cellular responses leading to inflammation, cell death, and acute kidney failure. Better understanding of the cellular pathophysiological mechanisms underlying kidney injury will hopefully result in the design of more targeted therapies to prevent and treatment the injury. In this review, we summarize some important potential mechanisms and therapeutic approaches in renal IRI.
Collapse
Affiliation(s)
- Maryam Malek
- Water and Electrolytes Research Center/Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center/Department of Physiology, Isfahan University of Medical Sciences, Isfahan, Iran ; Isfahan MN Institute of Basic and Applied Sciences Research, Isfahan , Iran
| |
Collapse
|
46
|
Stroo I, Claessen N, Teske GJD, Butter LM, Florquin S, Leemans JC. Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury. PLoS One 2015; 10:e0123203. [PMID: 25875776 PMCID: PMC4395234 DOI: 10.1371/journal.pone.0123203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/01/2015] [Indexed: 01/07/2023] Open
Abstract
Temporal expression of chemokines is a crucial factor in the regulation of renal ischemia/reperfusion (I/R) injury and repair. Beside their role in the migration and activation of inflammatory cells to sites of injury, chemokines are also involved in other processes such as angiogenesis, development and migration of stem cells. In the present study we investigated the role of the chemokine MCP-1 (monocyte chemoattractant protein-1 or CCL2), the main chemoattractant for monocytes, during renal I/R injury. MCP-1 expression peaks several days after inducing renal I/R injury coinciding with macrophage accumulation. However, MCP-1 deficient mice had a significant decreased survival and increased renal damage within the first two days, i.e. the acute inflammatory response, after renal I/R injury with no evidence of altered macrophage accumulation. Kidneys and primary tubular epithelial cells from MCP-1 deficient mice showed increased apoptosis after ischemia. Taken together, MCP-1 protects the kidney during the acute inflammatory response following renal I/R injury.
Collapse
Affiliation(s)
- Ingrid Stroo
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Nike Claessen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gwendoline J. D. Teske
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Loes M. Butter
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaklien C. Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Yang Y, Zhang ZX, Lian D, Haig A, Bhattacharjee RN, Jevnikar AM. IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia-reperfusion injury. Kidney Int 2015; 87:396-408. [PMID: 25207880 DOI: 10.1038/ki.2014.295] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/21/2022]
Abstract
Cytokines and chemokines produced by tubular epithelial and infiltrating cells are critical to inflammation in renal ischemia-reperfusion injury. IL-37, a newly described IL-1 family member, inhibits IL-18-dependent pro-inflammatory cytokine production by its binding to IL-18 receptors and IL-18 binding protein. The potential role of IL-37 in renal ischemia-reperfusion injury is unknown. Here we found that exposure of tubular epithelial cells to exogenous IL-37 downregulated hypoxia and the IL-18-induced expression of TNFα, IL-6, and IL-1β. Importantly, human PT-2 tubular epithelial cells have inducible expression of IL-37. Moreover, pro-inflammatory cytokine expression was augmented in IL-37 mRNA-silenced tubular epithelial cells and inhibited by transfection with pCMV6-XL5-IL-37. In a mouse ischemic injury model, transgenic expression of human IL-37 inhibited kidney expression of TNFα, IL-6, and IL-1β and improved mononuclear cell infiltration, kidney injury, and function. Thus, human tubular epithelial cells express the IL-18 contra-regulatory protein IL-37 as an endogenous control mechanism to reduce inflammation. Augmenting kidney IL-37 may represent a novel strategy to suppress renal injury responses and promote kidney function after renal ischemic injury and transplantation.
Collapse
Affiliation(s)
- Yunbo Yang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Zhu-Xu Zhang
- 1] Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada [2] Department of Pathology, London Health Sciences, Western University, London, Ontario, Canada [3] Department of Medicine, London Health Sciences, Western University, London, Ontario, Canada
| | - Dameng Lian
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Aaron Haig
- Department of Pathology, London Health Sciences, Western University, London, Ontario, Canada
| | - Rabindra N Bhattacharjee
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Anthony M Jevnikar
- 1] Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada [2] Department of Medicine, London Health Sciences, Western University, London, Ontario, Canada
| |
Collapse
|
48
|
Zhang J, Li G, Gao S, Yao Y, Pang L, Li Y, Wang W, Zhao Q, Kong D, Li C. Monocyte chemoattractant protein-1 released from polycaprolactone/chitosan hybrid membrane to promote angiogenesis in vivo. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514554146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have fabricated a hybrid membrane composed of polycaprolactone and a natural polysaccharide, chitosan. The incorporation of chitosan enabled heparinization of the material via electrostatic interaction between heparin and chitosan. More importantly, since multiple cytokines have exhibited binding affinity towards heparin, heparinization of the polycaprolactone/chitosan compound also facilitated immobilization of monocyte chemoattractant protein-1, which is a well-reported pro-angiogenic chemokine. Results demonstrated that the heparinized polycaprolactone/chitosan membrane with monocyte chemoattractant protein-1 immobilization was able to release monocyte chemoattractant protein-1 in a controlled and sustained manner. Bioactivity of the released monocyte chemoattractant protein-1 was uncompromised as shown by a chemotaxis chamber assay using isolated rat peripheral blood mononuclear cells. Enhanced local angiogenesis was subsequently observed in vivo after subcutaneous implantation of the heparinized polycaprolactone/chitosan membrane with monocyte chemoattractant protein-1-releasing property and the mechanisms underlying the angiogenic role of monocyte chemoattractant protein-1 were also investigated. We propose that the monocyte chemoattractant protein-1-induced local capillary formation is attributable to increased recruitment of macrophages, particularly the alternatively activated M2 macrophages, which have been implicated in wound healing. Moreover, a direct effect of monocyte chemoattractant protein-1 on angiogenesis was also observed, mainly via monocyte chemoattractant protein-1-stimulated vascular endothelial growth factor expression and activity. In summary, we report here a feasible way to fabricate a polycaprolactone/chitosan hybrid material that could be functionalized with angiogenic signalling agents, such as monocyte chemoattractant protein-1. Implantation of this material promoted angiogenesis and may therefore be developed into scaffold or dressing materials in treating local ischemia injuries or cutaneous wound.
Collapse
Affiliation(s)
- Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Guoping Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Shan Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yao Yao
- The Key Laboratory of Bioactive Materials of Ministry of Education, Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, China
| | - Liyun Pang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yuejie Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qiang Zhao
- The Key Laboratory of Bioactive Materials of Ministry of Education, Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- The Key Laboratory of Bioactive Materials of Ministry of Education, Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
49
|
Kato J, Nakayama M, Zhu WJ, Yokoo T, Ito S. Ischemia/Reperfusion of Unilateral Kidney Exaggerates Aging-Induced Damage to the Heart and Contralateral Kidney. ACTA ACUST UNITED AC 2014; 126:183-90. [DOI: 10.1159/000362555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 03/25/2014] [Indexed: 11/19/2022]
|
50
|
Abstract
The mammalian kidney has an intrinsic ability to repair after significant injury. However, this process is inefficient: patients are at high risk for the loss of kidney function in later life. No therapy exists to treat established acute kidney injury (AKI) per se: strategies to promote endogenous repair processes and retard associated fibrosis are a high priority. Whole-organ gene expression profiling has been used to identify repair responses initiated with AKI, and factors that may promote the transition from AKI to chronic kidney disease. Transcriptional profiling has shown molecular markers and potential regulatory pathways of renal repair. Activation of a few key developmental pathways has been reported during repair. Whether these are comparable networks with similar target genes with those in earlier nephrogenesis remains unclear. Altered microRNA profiles, persistent tubular injury responses, and distinct late inflammatory responses highlight continuing kidney pathology. Additional insights into injury and repair processes will be gained by study of the repair transcriptome and cell-specific translatome using high-resolution technologies such as RNA sequencing and translational profiling tailored to specific cellular compartments within the kidney. An enhanced understanding holds promise for both the identification of novel therapeutic targets and biomarker-based evaluation of the damage-repair process.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-California Institute of Regenerative Medicine (CIRM) Center for Regenerative Medicine and Stem Cell Research, The Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-California Institute of Regenerative Medicine (CIRM) Center for Regenerative Medicine and Stem Cell Research, The Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-California Institute of Regenerative Medicine (CIRM) Center for Regenerative Medicine and Stem Cell Research, The Keck School of Medicine of the University of Southern California, Los Angeles, CA.
| |
Collapse
|