1
|
Sun Y, Shi X, Lu F, Fu H, Yin Y, Xu J, Jin C, Han ET, Huang X, Chen Y, Dong C, Cheng Y. Vesicular stomatitis virus-based vaccine targeting plasmodium blood-stage antigens elicits immune response and protects against malaria with protein booster strategy. Front Microbiol 2022; 13:1042414. [PMID: 36504817 PMCID: PMC9731671 DOI: 10.3389/fmicb.2022.1042414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Merozoite invasion of the erythrocytes in humans is a key step in the pathogenesis of malaria. The proteins involved in the merozoite invasion could be potential targets for the development of malaria vaccines. Novel viral-vector-based malaria vaccine regimens developed are currently under clinical trials. Vesicular stomatitis virus (VSV) is a single-stranded negative-strand RNA virus widely used as a vector for virus or cancer vaccines. Whether the VSV-based malarial vaccine is more effective than conventional vaccines based on proteins involved in parasitic invasion is still unclear. In this study, we have used the reverse genetics system to construct recombinant VSVs (rVSVs) expressing apical membrane protein 1 (AMA1), rhoptry neck protein 2 (RON2), and reticulocyte-binding protein homolog 5 (RH5), which are required for Plasmodium falciparum invasion. Our results showed that VSV-based viral vaccines significantly increased Plasmodium-specific IgG levels and lymphocyte proliferation. Also, VSV-PyAMA1 and VSV-PyRON2sp prime-boost regimens could significantly increase the levels of IL-2 and IFN-γ-producing by CD4+ and CD8+ T cells and suppress invasion in vitro. The rVSV prime-protein boost regimen significantly increase Plasmodium antigen-specific IgG levels in the serum of mice compared to the homologous rVSV prime-boost. Furthermore, the protective efficacy of rVSV prime protein boost immunization in the mice challenged with P. yoelii 17XL was better compared to traditional antigen immunization. Together, our results show that VSV vector is a novel strategy for malarial vaccine development and preventing the parasitic diseases.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China,Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaodan Shi
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Feng Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Haitian Fu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China,Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yi Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jiahui Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Cheng Jin
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Eun-taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| | - Xuan Huang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China,*Correspondence: Chunsheng Dong,
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China,Yang Cheng,
| |
Collapse
|
2
|
Jian JY, Inoue SI, Bayarsaikhan G, Miyakoda M, Kimura D, Kimura K, Nozaki E, Sakurai T, Fernandez-Ruiz D, Heath WR, Yui K. CD49d marks Th1 and Tfh-like antigen-specific CD4+ T cells during Plasmodium chabaudi infection. Int Immunol 2021; 33:409-422. [PMID: 33914894 DOI: 10.1093/intimm/dxab020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Upon activation, specific CD4+ T cells up-regulate the expression of CD11a and CD49d, surrogate markers of pathogen-specific CD4+ T cells. However, using T-cell receptor transgenic mice specific for a Plasmodium antigen, termed PbT-II, we found that activated CD4+ T cells develop not only to CD11ahiCD49dhi cells, but also to CD11ahiCD49dlo cells during acute Plasmodium infection. CD49dhi PbT-II cells, localized in the red pulp of spleens, expressed transcription factor T-bet and produced IFN-γ, indicating that they were type 1 helper T (Th1)-type cells. In contrast, CD49dlo PbT-II cells resided in the white pulp/marginal zones and were a heterogeneous population, with approximately half of them expressing CXCR5 and a third expressing Bcl-6, a master regulator of follicular helper T (Tfh) cells. In adoptive transfer experiments, both CD49dhi and CD49dlo PbT-II cells differentiated into CD49dhi Th1-type cells after stimulation with antigen-pulsed dendritic cells, while CD49dhi and CD49dlo phenotypes were generally maintained in mice infected with Plasmodium chabaudi. These results suggest that CD49d is expressed on Th1-type Plasmodium-specific CD4+ T cells, which are localized in the red pulp of the spleen, and can be used as a marker of antigen-specific Th1 CD4+ T cells, rather than that of all pathogen-specific CD4+ T cells.
Collapse
Affiliation(s)
- Jiun-Yu Jian
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Mana Miyakoda
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Kazumi Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| | - Eriko Nozaki
- Core Laboratory for Proteomics and Genomics, School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Takuya Sakurai
- Department of Molecular Predictive Medicine and Sport Science, School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan.,Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, Japan
| |
Collapse
|
3
|
RAGE modulatory effects on cytokines network and histopathological conditions in malarial mice. Exp Parasitol 2020; 216:107946. [PMID: 32622941 DOI: 10.1016/j.exppara.2020.107946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 11/23/2022]
Abstract
This study was aimed at investigating the involvement of Receptor for Advanced Glycation End Products (RAGE) during malaria infection and the effects of modulating RAGE on the inflammatory cytokines release and histopathological conditions of affected organs in malarial animal model. Plasmodium berghei (P. berghei) ANKA-infected ICR mice were treated with mRAGE/pAb and rmRAGE/Fc Chimera drugs from day 1 to day 4 post infection. Survival and parasitaemia levels were monitored daily. On day 5 post infection, mice were sacrificed, blood were drawn for cytokines analysis and major organs including kidney, spleen, liver, brain and lungs were extracted for histopathological analysis. RAGE levels were increased systemically during malaria infection. Positive correlation between RAGE plasma concentration and parasitaemia development was observed. Treatment with RAGE related drugs did not improve survival of malaria-infected mice. However, significant reduction on the parasitaemia levels were recorded. On the other hand, inhibition and neutralization of RAGE production during the infection significantly increased the plasma levels of interleukin (IL-4, IL-17A, IL-10 and IL-2) and reduced interferon (IFN)-γ secretion. Histopathological analysis revealed that all treated malarial mice showed a better outcome in histological assessment of affected organs (brain, liver, spleen, lungs and kidney). RAGE is involved in malaria pathogenesis and targeting RAGE could be beneficial in malaria infected host in which RAGE inhibition or neutralization increased the release of anti-inflammatory cytokines (IL-10 and IL-4) and reduce pro-inflammatory cytokine (IFNγ) which may help alleviate tissue injury and improve histopathological conditions of affected organs during the infection.
Collapse
|
4
|
Moncunill G, Scholzen A, Mpina M, Nhabomba A, Hounkpatin AB, Osaba L, Valls R, Campo JJ, Sanz H, Jairoce C, Williams NA, Pasini EM, Arteta D, Maynou J, Palacios L, Duran-Frigola M, Aponte JJ, Kocken CHM, Agnandji ST, Mas JM, Mordmüller B, Daubenberger C, Sauerwein R, Dobaño C. Antigen-stimulated PBMC transcriptional protective signatures for malaria immunization. Sci Transl Med 2020; 12:eaay8924. [PMID: 32404508 DOI: 10.1126/scitranslmed.aay8924] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/26/2019] [Accepted: 04/15/2020] [Indexed: 01/03/2025]
Abstract
Identifying immune correlates of protection and mechanisms of immunity accelerates and streamlines the development of vaccines. RTS,S/AS01E, the most clinically advanced malaria vaccine, has moderate efficacy in African children. In contrast, immunization with sporozoites under antimalarial chemoprophylaxis (CPS immunization) can provide 100% sterile protection in naïve adults. We used systems biology approaches to identifying correlates of vaccine-induced immunity based on transcriptomes of peripheral blood mononuclear cells from individuals immunized with RTS,S/AS01E or chemoattenuated sporozoites stimulated with parasite antigens in vitro. Specifically, we used samples of individuals from two age cohorts and three African countries participating in an RTS,S/AS01E pediatric phase 3 trial and malaria-naïve individuals participating in a CPS trial. We identified both preimmunization and postimmunization transcriptomic signatures correlating with protection. Signatures were validated in independent children and infants from the RTS,S/AS01E phase 3 trial and individuals from an independent CPS trial with high accuracies (>70%). Transcription modules revealed interferon, NF-κB, Toll-like receptor (TLR), and monocyte-related signatures associated with protection. Preimmunization signatures suggest that priming the immune system before vaccination could potentially improve vaccine immunogenicity and efficacy. Last, signatures of protection could be useful to determine efficacy in clinical trials, accelerating vaccine candidate testing. Nevertheless, signatures should be tested more extensively across multiple cohorts and trials to demonstrate their universal predictive capacity.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Maximillian Mpina
- Ifakara Health Institute, Bagamoyo Research and Training Centre. P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Aurore Bouyoukou Hounkpatin
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242 Lambaréné, Gabon
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | - Lourdes Osaba
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | | | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Hèctor Sanz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| | - Nana Aba Williams
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Erica M Pasini
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - David Arteta
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Joan Maynou
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Lourdes Palacios
- Progenika Biopharma. A Grifols Company, S.A., 48160 Derio, Vizcaya, Spain
| | - Miquel Duran-Frigola
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain
| | - John J Aponte
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain
| | - Clemens H M Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242 Lambaréné, Gabon
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | | | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, 6500 HB Nijmegen, Netherlands
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, E-08036 Barcelona, Catalonia, Spain.
- Centro de Investigação em Saúde de Manhiça (CISM), Rua 12, Cambeve, Vila de Manhiça, CP 1929 Maputo, Mozambique
| |
Collapse
|
5
|
Gbedande K, Carpio VH, Stephens R. Using two phases of the CD4 T cell response to blood-stage murine malaria to understand regulation of systemic immunity and placental pathology in Plasmodium falciparum infection. Immunol Rev 2020; 293:88-114. [PMID: 31903675 PMCID: PMC7540220 DOI: 10.1111/imr.12835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum infection and malaria remain a risk for millions of children and pregnant women. Here, we seek to integrate knowledge of mouse and human T helper cell (Th) responses to blood-stage Plasmodium infection to understand their contribution to protection and pathology. Although there is no complete Th subset differentiation, the adaptive response occurs in two phases in non-lethal rodent Plasmodium infection, coordinated by Th cells. In short, cellular immune responses limit the peak of parasitemia during the first phase; in the second phase, humoral immunity from T cell-dependent germinal centers is critical for complete clearance of rapidly changing parasite. A strong IFN-γ response kills parasite, but an excess of TNF compared with regulatory cytokines (IL-10, TGF-β) can cause immunopathology. This common pathway for pathology is associated with anemia, cerebral malaria, and placental malaria. These two phases can be used to both understand how the host responds to rapidly growing parasite and how it attempts to control immunopathology and variation. This dual nature of T cell immunity to Plasmodium is discussed, with particular reference to the protective nature of the continuous generation of effector T cells, and the unique contribution of effector memory T cells.
Collapse
Affiliation(s)
- Komi Gbedande
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Robin Stephens
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
6
|
Soni B, Singh S. Cytokine Milieu in Infectious Disease: A Sword or a Boon? J Interferon Cytokine Res 2019; 40:24-32. [PMID: 31553263 DOI: 10.1089/jir.2019.0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytokines have a myriad role in an infectious disease, whether being pathogenic, bacterial, or viral. All proinflammatory and anti-inflammatory cytokine biological function are dependent on its concentration, followed by combination with the other cytokines and the stage of the disease. Plasticity in switching off from one phenotype to the other of these regulatory mediators in congruence with the traditional concept of inhibitory and stimulatory effects on immune system is dealt with. This review highlights the dual functionality of some of these cytokines and cytokine-based immunotherapy.
Collapse
Affiliation(s)
- Bhavnita Soni
- Department of Pathogenesis and Cellular Response, National Centre for Cell Science, Pune, India
| | - Shailza Singh
- Department of Pathogenesis and Cellular Response, National Centre for Cell Science, Pune, India
| |
Collapse
|
7
|
Nakamae S, Kimura D, Miyakoda M, Sukhbaatar O, Inoue SI, Yui K. Role of IL-10 in inhibiting protective immune responses against infection with heterologous Plasmodium parasites. Parasitol Int 2019; 70:5-15. [PMID: 30639137 DOI: 10.1016/j.parint.2019.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/25/2022]
Abstract
Malaria is induced by infection with Plasmodium parasites, which are genetically diverse, and the immune response to Plasmodium infection has both allele-specific and cross-reactive components. To determine the role of the cross-reactive immune response in the protection and disease manifestation in heterologous Plasmodium infection, we used infection models of P. chabaudi chabaudi (Pcc) and P. berghei ANKA (PbA). CD4+ T cells primed with Pcc infection exhibited strong cross-reactivity to PbA antigens. We infected C57BL/6 mice with Pcc and subsequently treated them with an anti-Plasmodium drug. The Pcc-primed mice exhibited reduced parasitemia and showed no signs of experimental cerebral malaria after infection with PbA. CD4+ T cells from the Pcc-primed mice produced high levels of IFN-γ and IL-10 in response to PbA early after PbA infection. The blockade of IL-10 signaling with anti-IL-10 receptor antibody increased the proportion of activated CD4+ and γδ T cells and the IFN-γ production by CD4+ T cells in response to PbA antigens, while markedly reducing the levels of parasitemia. In contrast, IL-10 blockade did not have a significant effect on parasitemia levels in unprimed mice after PbA infection. These data suggest a potent regulatory role of IL-10 in the cross-reactive memory response to the infection with heterologous Plasmodium parasites leading to the inhibition of the protective immunity and pathogenesis.
Collapse
Affiliation(s)
- Sayuri Nakamae
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Daisuke Kimura
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Immunology, School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4-7-2 Minatojima-nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | - Mana Miyakoda
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Immunology, School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Research and Education Center for Drug Fostering and Evolution, School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| | - Odsuren Sukhbaatar
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Immunology, School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Program for Nurturing Global Leaders in Tropical and Emerging Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Immunology, School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Graduate School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
8
|
Controlled Infection Immunization Using Delayed Death Drug Treatment Elicits Protective Immune Responses to Blood-Stage Malaria Parasites. Infect Immun 2018; 87:IAI.00587-18. [PMID: 30323025 PMCID: PMC6300636 DOI: 10.1128/iai.00587-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/23/2018] [Indexed: 01/27/2023] Open
Abstract
Naturally acquired immunity to malaria is robust and protective against all strains of the same species of Plasmodium. This develops as a result of repeated natural infection, taking several years to develop. Naturally acquired immunity to malaria is robust and protective against all strains of the same species of Plasmodium. This develops as a result of repeated natural infection, taking several years to develop. Evidence suggests that apoptosis of immune lymphocytes due to uncontrolled parasite growth contributes to the slow acquisition of immunity. To hasten and augment the development of natural immunity, we studied controlled infection immunization (CII) using low-dose exposure to different parasite species (Plasmodium chabaudi, P. yoelii, or P. falciparum) in two rodent systems (BALB/c and C57BL/6 mice) and in human volunteers, with drug therapy commencing at the time of initiation of infection. CIIs with infected erythrocytes and in conjunction with doxycycline or azithromycin, which are delayed death drugs targeting the parasite’s apicoplast, allowed extended exposure to parasites at low levels. In turn, this induced strong protection against homologous challenge in all immunized mice. We show that P. chabaudi/P. yoelii infection initiated at the commencement of doxycycline therapy leads to cellular or antibody-mediated protective immune responses in mice, with a broad Th1 cytokine response providing the best correlate of protection against homologous and heterologous species of Plasmodium. P. falciparum CII with doxycycline was additionally tested in a pilot clinical study (n = 4) and was found to be well tolerated and immunogenic, with immunological studies primarily detecting increased cell-associated immune responses. Furthermore, we report that a single dose of the longer-acting drug, azithromycin, given to mice (n = 5) as a single subcutaneous treatment at the initiation of infection controlled P. yoelii infection and protected all mice against subsequent challenge.
Collapse
|
9
|
Sadreev II, Chen MZQ, Umezawa Y, Biktashev VN, Kemper C, Salakhieva DV, Welsh GI, Kotov NV. The competitive nature of signal transducer and activator of transcription complex formation drives phenotype switching of T cells. Immunology 2017; 153:488-501. [PMID: 29030870 DOI: 10.1111/imm.12851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/16/2017] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are key molecular determinants of T-cell fate and effector function. Several inflammatory diseases are characterized by an altered balance of T-cell phenotypes and cytokine secretion. STATs, therefore, represent viable therapeutic targets in numerous pathologies. However, the underlying mechanisms by which the same STAT proteins regulate both the development of different T-cell phenotypes and their plasticity during changes in extracellular conditions remain unclear. In this study, we investigated the STAT-mediated regulation of T-cell phenotype formation and plasticity using mathematical modelling and experimental data for intracellular STAT signalling proteins. The close fit of our model predictions to the experimental data allows us to propose a potential mechanism for T-cell switching. According to this mechanism, T-cell phenotype switching is the result of the relative redistribution of STAT dimer complexes caused by the extracellular cytokine-dependent STAT competition effects. The developed model predicts that the balance between the intracellular STAT species defines the amount of the produced cytokines and thereby T-cell phenotypes. The model predictions are consistent with the experimentally observed interferon-γ to interleukin-10 switching that regulates human T helper type 1/type 1 regulatory T-cell responses. The proposed model is applicable to a number of STAT signalling circuits.
Collapse
Affiliation(s)
- Ildar I Sadreev
- Centre for Systems, Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Michael Z Q Chen
- School of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Yoshinori Umezawa
- Department of Dermatology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Vadim N Biktashev
- Centre for Systems, Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.,Division of Transplant Immunology and Mucosal Biology, King's College London, London, UK.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Diana V Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Gavin I Welsh
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Nikolay V Kotov
- Biophysics & Bionics Laboratory, Institute of Physics, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
10
|
Longwe H, Phiri KS, Mbeye NM, Gondwe T, Mandala WL, Jambo KC. Delayed acquisition of Plasmodium falciparum antigen-specific CD4(+) T cell responses in HIV-exposed uninfected Malawian children receiving daily cotrimoxazole prophylaxis. Malar J 2016; 15:264. [PMID: 27165269 PMCID: PMC4862093 DOI: 10.1186/s12936-016-1318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/28/2016] [Indexed: 11/16/2022] Open
Abstract
Background Cotrimoxazole (CTX) prophylaxis, recommended in HIV-exposed uninfected (HEU) children primarily against HIV-related opportunistic infections, has been shown to have some efficacy against Plasmodium falciparum malaria. The effects of CTX prophylaxis on the acquisition of P. falciparum antigen specific CD4+ T cells-mediated immunity in HEU children is still not fully understood. Methods Peripheral blood was collected from HEU and HIV-unexposed uninfected (HUU) children at 6, 12 and 18 months of age. Proportion of CD4+ T cells subsets were determined by immunophenotyping. P. falciparum antigen-specific CD4+ T cells responses were measured by intracellular cytokine staining assay. Results There were no differences in the proportions of naïve, effector and memory CD4+ T cell subsets between HEU and HUU children at all ages. There was a trend showing acquisition of P. falciparum-specific IFN-γ and TNF-producing CD4+ T cells with age in both HUU and HEU children. There was, however, lower frequency of P. falciparum-specific IFN-γ-producing CD4+ T cells in HEU compared to HUU at 6 and 12 months, which normalized 6 months after stopping CTX prophylaxis. Conclusion The results demonstrate that there is delayed acquisition of P. falciparum-specific IFN-γ-producing CD4+ T cells in HEU children on daily cotrimoxazole prophylaxis, which is evident at 6 and 12 months of age in comparison to HUU age-matched controls. However, whether this delayed acquisition of P. falciparum-specific IFN-γ-producing CD4+ T cells leads to higher risk to malaria disease remains unknown and warrants further investigation.
Collapse
Affiliation(s)
- Herbert Longwe
- Department of Basic Medical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi. .,Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Kamija S Phiri
- Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nyanyiwe M Mbeye
- Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Thandile Gondwe
- Tropical Haematology Research Unit, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Public Health, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Wilson L Mandala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi. .,Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
11
|
Interleukin-27-Producing CD4(+) T Cells Regulate Protective Immunity during Malaria Parasite Infection. Immunity 2016; 44:672-682. [PMID: 26968425 DOI: 10.1016/j.immuni.2016.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/02/2015] [Accepted: 12/07/2015] [Indexed: 11/22/2022]
Abstract
Interleukin-27 (IL-27) is a heterodimeric regulatory cytokine of the IL-12 family, which is produced by macrophages, dendritic cells, and B cells upon stimulation through innate immune receptors. Here, we described regulatory CD4(+) T cells that produce IL-27 in response to T cell receptor stimulation during malaria infection, inhibiting IL-2 production and clonal expansion of other T cells in an IL-27-dependent manner. IL-27-producing CD4(+) T cells were Foxp3(-)CD11a(+)CD49d(+) malaria antigen-specific CD4(+) T cells and were distinct from interferon-γ (IFN-γ) producing Th1 or IL-10 producing Tr1 cells. In mice lacking IL-27 in T cells, IL-2 production was restored and clonal expansion and IFN-γ production by specific CD4(+) T cells were improved, culminating in reduced parasite burden. This study highlights a unique population of IL-27 producing regulatory CD4(+) T cells and their critical role in the regulation of the protective immune response against malaria parasites.
Collapse
|
12
|
Doe HT, Kimura D, Miyakoda M, Kimura K, Akbari M, Yui K. Expression of PD-1/LAG-3 and cytokine production by CD4+T cells during infection withPlasmodiumparasites. Microbiol Immunol 2016; 60:121-31. [DOI: 10.1111/1348-0421.12354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/11/2015] [Accepted: 12/20/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Henrietta T. Doe
- Division of Immunology; Department of Molecular Microbiology and Immunology; Graduate School of Biomedical Sciences; Nagasaki University; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Daisuke Kimura
- Division of Immunology; Department of Molecular Microbiology and Immunology; Graduate School of Biomedical Sciences; Nagasaki University; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Mana Miyakoda
- Division of Immunology; Department of Molecular Microbiology and Immunology; Graduate School of Biomedical Sciences; Nagasaki University; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Kazumi Kimura
- Division of Immunology; Department of Molecular Microbiology and Immunology; Graduate School of Biomedical Sciences; Nagasaki University; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Masoud Akbari
- Division of Immunology; Department of Molecular Microbiology and Immunology; Graduate School of Biomedical Sciences; Nagasaki University; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| | - Katsuyuki Yui
- Division of Immunology; Department of Molecular Microbiology and Immunology; Graduate School of Biomedical Sciences; Nagasaki University; 1-12-4 Sakamoto Nagasaki 852-8523 Japan
| |
Collapse
|
13
|
Cheng Q, Zhang Q, Xu X, Yin L, Sun L, Lin X, Dong C, Pan W. MAPK phosphotase 5 deficiency contributes to protection against blood-stage Plasmodium yoelii 17XL infection in mice. THE JOURNAL OF IMMUNOLOGY 2014; 192:3686-96. [PMID: 24634491 DOI: 10.4049/jimmunol.1301863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell-mediated immunity plays a crucial role in the development of host resistance to asexual blood-stage malaria infection. However, little is known of the regulatory factors involved in this process. In this study, we investigated the impact of MAPK phosphotase 5 (MKP5) on protective immunity against a lethal Plasmodium yoelii 17XL blood-stage infection using MKP5 knockout C57BL/6 mice. Compared with wild-type control mice, MKP5 knockout mice developed significantly lower parasite burdens with prolonged survival times. We found that this phenomenon correlated with a rapid and strong IFN-γ-dependent cellular immune response during the acute phase of infection. Inactivation of IFN-γ by the administration of a neutralizing Ab significantly reduced the protective effects in MKP5 knockout mice. By analyzing IFN-γ production in innate and adaptive lymphocyte subsets, we observed that MKP5 deficiency specifically enhanced the IFN-γ response mediated by CD4+ T cells, which was attributable to the increased stimulatory capacity of splenic CD11c+ dendritic cells. Furthermore, following vaccination with whole blood-stage soluble plasmodial Ag, MKP5 knockout mice acquired strongly enhanced Ag-specific immune responses and a higher level of protection against subsequent P. yoelii 17XL challenge. Finally, we found the enhanced response mediated by MKP5 deficiency resulted in a lethal consequence in mice when infected with nonlethal P. yoelii 17XNL. Thus, our data indicate that MKP5 is a potential regulator of immune resistance against Plasmodium infection in mice, and that an understanding of the role of MKP5 in manipulating anti-malaria immunity may provide valuable information on the development of better control strategies for human malaria.
Collapse
Affiliation(s)
- Qianqian Cheng
- Institute of Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai 200092, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Akbari M, Honma K, Kimura D, Miyakoda M, Kimura K, Matsuyama T, Yui K. IRF4 in Dendritic Cells Inhibits IL-12 Production and Controls Th1 Immune Responses against Leishmania major. THE JOURNAL OF IMMUNOLOGY 2014; 192:2271-9. [DOI: 10.4049/jimmunol.1301914] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Miyakoda M, Kimura D, Honma K, Kimura K, Yuda M, Yui K. Development of Memory CD8+T Cells and Their Recall Responses during Blood-Stage Infection withPlasmodium bergheiANKA. THE JOURNAL OF IMMUNOLOGY 2012; 189:4396-404. [DOI: 10.4049/jimmunol.1200781] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Chimeric parasites as tools to study Plasmodium immunology and assess malaria vaccines. Methods Mol Biol 2012; 923:465-79. [PMID: 22990798 DOI: 10.1007/978-1-62703-026-7_32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of pathogen immunity relies upon being able to track antigen specific immune responses and assess their protective capacity. To study immunity to Plasmodium antigens, chimeric rodent or human malaria parasites that express proteins from other Plasmodium species or unrelated species have been developed. Different types of chimeric parasites have been used to address a range of specific questions. Parasites expressing model T cell epitopes have been used to monitor cellular immune responses to the preerythrocytic and blood stages of malaria. Other parasites have been used to assess the functional significance of immune responses targeting particular proteins. Finally, a number of rodent malaria parasites that express vaccine-candidate antigens from P. falciparum and P. vivax have been used in functional assays of vaccine-induced antibody responses. Here, I review the experimental contributions that have been made using these parasites, and discuss the potential of these approaches to continue advancing our understanding of malaria immunology and vaccine research.
Collapse
|