1
|
Daei Sorkhabi A, Komijani E, Sarkesh A, Ghaderi Shadbad P, Aghebati-Maleki A, Aghebati-Maleki L. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice. Cell Commun Signal 2023; 21:321. [PMID: 37946301 PMCID: PMC10634124 DOI: 10.1186/s12964-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/19/2023] [Indexed: 11/12/2023] Open
Abstract
Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer therapy, ICP-based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), have garnered considerable attention and hold great potential for developing effective therapeutic strategies. Given the well-established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibitory signaling pathways to promote immune tolerance to self-antigens, a dysregulated expression pattern of ICPs has been observed in a significant proportion of patients with MS and its animal model called experimental autoimmune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while suppressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, such as program death-1 (PD-1), or designing fusion proteins, namely abatacept, to bind and inhibit the co-stimulatory pathways involved in overactivated T-cell mediated autoimmunity, and other strategies that will be discussed in-depth in the current review. Video Abstract.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Komijani
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Wang J, Nan Y, Liu M, Hu K. The Role of CD4 + T Cells in the Immunotherapy of Brain Disease by Secreting Different Cytokines. J Neuroimmune Pharmacol 2022; 17:409-422. [PMID: 36443518 DOI: 10.1007/s11481-022-10056-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Upon different stimulation, naïve CD4+ T cells differentiate into various subsets of T helper (Th) cells, including Th1, Th2, Th17, and Tregs. They play both protective and pathogenic roles in the central nervous system (CNS) by secreting different cytokines. Failure of the homeostasis of the subgroups in the CNS can result in different brain diseases. Recently, immunotherapy has drawn more and more attention in the therapy of various brain diseases. Here, we describe the role of different CD4+ T cell subsets and their secreted cytokines in various brain diseases, as well as the ways in which by affecting CD4+ T cells in therapy of the CNS diseases. Understanding the role of CD4+ T cells and their secreted cytokines in the immunotherapy of brain disease will provide new targets and therapeutics for the treatment of brain disease. The role of CD4 + T cell subtypes in different diseases and their associated regulatory genes, proteins, and enzymes. CD4 + T cell subtypes play both protective (green) and pathogenic (red) roles in different brain diseases. The immune regulatory effects of CD4 + T cells and their subtypes are promoted or inhibited by different genes, proteins, and enzymes.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunrong Nan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mei Liu
- Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Kaili Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Suvarna V, Deshmukh K, Murahari M. miRNA and antisense oligonucleotide-based α-synuclein targeting as disease-modifying therapeutics in Parkinson's disease. Front Pharmacol 2022; 13:1034072. [PMID: 36506536 PMCID: PMC9728483 DOI: 10.3389/fphar.2022.1034072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is the synaptic protein majorly involved in neuronal dysfunction and death and it is well known for the last two decades as a hallmark of Parkinson's disease. Alpha-synuclein is involved in neurodegeneration mediated through various neurotoxic pathways, majorly including autophagy or lysosomal dysregulation, mitochondrial disruption, synaptic dysfunction, and oxidative stress. Moreover, the alpha-synuclein aggregation has been associated with the development of several neurodegenerative conditions such as various forms of Parkinson's disease. The recent discovery in oligonucleotide chemistry has developed potential alpha-synuclein targeting molecules for the treatment of neurodegenerative diseases. The present review article focuses on recent advances in the applications of oligonucleotides acting via alpha-synuclein targeting mechanisms and their implication in combating Parkinson's disease. Moreover, the article emphasizes the potential of miRNAs, and antisense oligonucleotides and the challenges associated with their use in the therapeutical management of Parkinson's disease.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kajal Deshmukh
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India,*Correspondence: Manikanta Murahari,
| |
Collapse
|
4
|
Mi Y, Han J, Zhu J, Jin T. Role of the PD-1/PD-L1 Signaling in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Recent Insights and Future Directions. Mol Neurobiol 2021; 58:6249-6271. [PMID: 34480337 PMCID: PMC8639577 DOI: 10.1007/s12035-021-02495-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmunity-related chronic demyelination disease of the central nervous system (CNS), causing young disability. Currently, highly specific immunotherapies for MS are still lacking. Programmed cell death 1 (PD-1) is an immunosuppressive co-stimulatory molecule, which is expressed on activated T lymphocytes, B lymphocytes, natural killer cells, and other immune cells. PD-L1, the ligand of PD-1, is expressed on T lymphocytes, B lymphocytes, dendritic cells, and macrophages. PD-1/PD-L1 delivers negative regulatory signals to immune cells, maintaining immune tolerance and inhibiting autoimmunity. This review comprehensively summarizes current insights into the role of PD-1/PD-L1 signaling in MS and its animal model experimental autoimmune encephalomyelitis (EAE). The potentiality of PD-1/PD-L1 as biomarkers or therapeutic targets for MS will also be discussed.
Collapse
Affiliation(s)
- Yan Mi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Present Address: Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| |
Collapse
|
5
|
Li H, Zheng C, Han J, Zhu J, Liu S, Jin T. PD-1/PD-L1 Axis as a Potential Therapeutic Target for Multiple Sclerosis: A T Cell Perspective. Front Cell Neurosci 2021; 15:716747. [PMID: 34381337 PMCID: PMC8350166 DOI: 10.3389/fncel.2021.716747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
The programmed cell death protein-1/programmed death ligand-1 (PD-1/PD-L1) axis is a widely studied immune checkpoint that modulates signaling pathways related to T cell activation. The use of PD-1/PD-L1 inhibitors is a promising immune therapy strategy for cancer patients. However, individuals treated with PD-1/PD-L1 inhibitors may develop immune-related adverse events due to excessive immune reactions. Multiple sclerosis (MS) is a chronic demyelinating and neurodegenerative disease of the central nervous system. T cells and the PD-1/PD-L1 axis play vital roles in the pathogenesis of MS. A better understanding of the complex relationship between the PD-1/PD-L1 axis and T cells may extend our knowledge of the molecular mechanisms and therapeutic approaches for MS. In this review, we summarize the most recent findings regarding the role of the PD-1/PD-L1 axis in MS and discuss the potential therapeutic strategies to modulate the expression of PD-1/PD-L1 in MS.
Collapse
Affiliation(s)
- HaiXia Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jinming Han
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Shan Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Wang X, HuangFu C, Zhu X, Liu J, Gong X, Pan Q, Ma X. Exosomes and Exosomal MicroRNAs in Age-Associated Stroke. Curr Vasc Pharmacol 2021; 19:587-600. [PMID: 33563154 DOI: 10.2174/1570161119666210208202621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Aging has been considered to be the most important non-modifiable risk factor for stroke and death. Changes in circulation factors in the systemic environment, cellular senescence and artery hypertension during human ageing have been investigated. Exosomes are nanosize membrane vesicles that can regulate target cell functions via delivering their carried bioactive molecules (e.g. protein, mRNA, and microRNAs). In the central nervous system, exosomes and exosomal microRNAs play a critical role in regulating neurovascular function, and are implicated in the initiation and progression of stroke. MicroRNAs are small non-coding RNAs that have been reported to play critical roles in various biological processes. Recently, evidence has shown that microRNAs are packaged into exosomes and can be secreted into the systemic and tissue environment. Circulating microRNAs participate in cellular senescence and contribute to age-associated stroke. Here, we provide an overview of current knowledge on exosomes and their carried microRNAs in the regulation of cellular and organismal ageing processes, demonstrating the potential role of exosomes and their carried microRNAs in age-associated stroke.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Changmei HuangFu
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiudeng Zhu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Jiehong Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xinqin Gong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| |
Collapse
|
7
|
Skafi N, Fayyad-Kazan M, Badran B. Immunomodulatory role for MicroRNAs: Regulation of PD-1/PD-L1 and CTLA-4 immune checkpoints expression. Gene 2020; 754:144888. [PMID: 32544493 DOI: 10.1016/j.gene.2020.144888] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
The development and progression of different pathologies including, cancer, are associated with suppressed immune responses. This restrained immune activity could be associated with the activation of different immune checkpoint pathways that mediate immunosuppressive functions. Therapeutic Protocols based on abolishing the activity of immune check points provided a promising potential for treating cancer. Among the distinct known immune checkpoints, PD-1/PD-L1 and CTLA-4, are the most studied and have been the focus for development of different blocking agents. Monoclonal antibodies that can block PD-1, PD-L1 or CTLA4 have been approved for treatment of different cancers. MicroRNAs (miRNAs), short non-coding regulatory RNA molecules, could repress mRNA expression at a post-transcriptional level. Many miRNAs have been reported to modulate the expression of CTLA-4 and PD-1/PD-L1, either directly or indirectly, in multiple pathological cases, mainly cancer. In this review, after a brief introduction about T cell activation and immune checkpoints, the miRNAs regulating the expression of CTLA-4 and PD-1/PD-L1 are discussed with highlights on their role in cancer. Many of these miRNAs could serve as novel treatments in different types of cancer as detailed throughout the review.
Collapse
Affiliation(s)
- Najwa Skafi
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
8
|
Haile Y, Adegoke A, Laribi B, Lin J, Anderson CC. Anti-CD52 blocks EAE independent of PD-1 signals and promotes repopulation dominated by double-negative T cells and newly generated T and B cells. Eur J Immunol 2020; 50:1362-1373. [PMID: 32388861 DOI: 10.1002/eji.201948288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 04/02/2020] [Accepted: 05/06/2020] [Indexed: 01/23/2023]
Abstract
Lymphocyte depletion using anti-CD52 antibody effectively reduces relapses of multiple sclerosis (MS). To begin to understand what mechanisms might control this outcome, we examined the effect of a murine-CD52-specific mAb on the depletion and repopulation of immune cells in mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We tested whether the tolerance-promoting receptor programmed cell death protein-1 (PD-1) is required for disease remission post anti-CD52, and found that PD-1-deficient mice with a more severe EAE were nevertheless effectively treated with anti-CD52. Anti-CD52 increased the proportions of newly generated T cells and double-negative (DN) T cells while reducing newly generated B cells; the latter effect being associated with a higher expression of CD52 by these cells. In the longer term, anti-CD52 caused substantial increases in the proportion of newly generated lymphocytes and DN T cells in mice with EAE. Thus, the rapid repopulation of lymphocytes from central lymphoid organs post anti-CD52 may limit further disease. Furthermore, these data identify DN T cells, a subset with immunoregulatory potential, as a significant hyperrepopulating subset following CD52-mediated depletion.
Collapse
Affiliation(s)
- Yohannes Haile
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Adeolu Adegoke
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Bahareh Laribi
- Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Jiaxin Lin
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| | - Colin C Anderson
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes and Transplant Institutes, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Ding L, Lu S, Li Y. Regulation of PD-1/PD-L1 Pathway in Cancer by Noncoding RNAs. Pathol Oncol Res 2020; 26:651-663. [PMID: 31748880 DOI: 10.1007/s12253-019-00735-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022]
Abstract
Immune checkpoint blockade has demonstrated significant anti-tumor immunity in an array of cancer types, yet the underlying regulatory mechanism of it is still obscure, and many problems remain to be solved. As an inhibitory costimulatory signal of T-cells, the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway can paralyze T-cells at the tumor site, enabling the immune escape of tumor cells. Although many antibodies targeting PD-1/PD-L1 have been developed to block their interaction for the treatment of cancer, the reduced response rate and resistance to the therapies call for further comprehension of this pathway in the tumor microenvironment. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two main types of noncoding RNAs that play critical parts in the regulation of immune response in tumorigenesis, including the PD-1/PD-L1 pathway. Here we summarize the most recent studies on the control of this pathway by noncoding RNAs in cancer and hopefully will offer new insights into immune checkpoint blockade therapies.
Collapse
Affiliation(s)
- Lei Ding
- Lab for Noncoding RNA & Cancer, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Shengdi Lu
- Shanghai Sixth People's Hospital, affiliated to Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
Juźwik CA, S Drake S, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS, Fournier AE. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol 2019; 182:101664. [PMID: 31356849 DOI: 10.1016/j.pneurobio.2019.101664] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
While the root causes for individual neurodegenerative diseases are distinct, many shared pathological features and mechanisms contribute to neurodegeneration across diseases. Altered levels of microRNAs, small non-coding RNAs involved in post transcriptional regulation of gene expression, are reported for numerous neurodegenerative diseases. Yet, comparison between diseases to uncover commonly dysregulated microRNAs during neurodegeneration in general is lagging. We performed a systematic review of peer-reviewed publications describing differential microRNA expression in neurodegenerative diseases and related animal models. We compiled the results from studies covering the prevalent neurodegenerative diseases in the literature: Alzheimer's disease, amyotrophic lateral sclerosis, age-related macular degeneration, ataxia, dementia, myotonic dystrophy, epilepsy, glaucoma, Huntington's disease, multiple sclerosis, Parkinson's disease, and prion disorders. MicroRNAs which were dysregulated most often in these diseases and their models included miR-9-5p, miR-21-5p, the miR-29 family, miR-132-3p, miR-124-3p, miR-146a-5p, miR-155-5p, and miR-223-3p. Common pathways targeted by these predominant miRNAs were identified and revealed great functional overlap across diseases. We also identified a strong role for each microRNA in both the neural and immune components of diseases. microRNAs regulate broad networks of genes and identifying microRNAs commonly dysregulated across neurodegenerative diseases could cultivate novel hypotheses related to common molecular mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Camille A Juźwik
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Sienna S Drake
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Yang Zhang
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Nicolas Paradis-Isler
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Alexandra Sylvester
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Alexandre Amar-Zifkin
- McGill University Health Centre- Medical Libraries, 3801 University Street, Montréal, QC, H3A 2B4, Canada.
| | - Chelsea Douglas
- Program Manager, Plotly Technologies Inc, 5555 Gaspe Avenue #118, Montréal, QC, H2T 2A3, Canada.
| | - Barbara Morquette
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| | - Craig S Moore
- Division of BioMedical Sciences Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Alyson E Fournier
- McGill University, Montréal Neurological Institute, 3801 University Street, room BT-109, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
11
|
Zhu SK, Xu T, Wang R. Prospects and challenges of immunotherapy for pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2019; 27:6-12. [DOI: 10.11569/wcjd.v27.i1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shi-Kai Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Tian Xu
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| | - Rui Wang
- Department of Hepatobiliary and Pancreatic Surgery, Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan Province, China
| |
Collapse
|
12
|
Obst J, Mancuso R, Simon E, Gomez-Nicola D. PD-1 deficiency is not sufficient to induce myeloid mobilization to the brain or alter the inflammatory profile during chronic neurodegeneration. Brain Behav Immun 2018; 73:708-716. [PMID: 30086399 PMCID: PMC6191933 DOI: 10.1016/j.bbi.2018.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022] Open
Abstract
Innate immune activation is a major driver of neurodegenerative disease and immune regulatory pathways could be potential targets for therapeutic intervention. Recently, Programmed cell death-1 (PD-1) immune checkpoint inhibition has been proposed to mount an IFN-γ-dependent systemic immune response, leading to the recruitment of peripheral myeloid cells to the brain and neuropathological and functional improvements in mice with Alzheimer's disease-like β-amyloid pathology. Here we investigate the impact of PD-1 deficiency on murine prion disease (ME7 strain), a model of chronic neurodegeneration. Although PD-1 was found to be increased in the brain of prion mice, the absence of PD-1 did not cause myeloid cell infiltration into the brain or major changes in the inflammatory profile. However, we observed a slight exacerbation of the behavioural phenotype of ME7 mice upon PD-1 deficiency. These results do not support the possibility of using immune checkpoint blockade as a therapeutic strategy in neurodegenerative disease.
Collapse
Affiliation(s)
- J Obst
- Biological Sciences, University of Southampton, United Kingdom
| | - R Mancuso
- Biological Sciences, University of Southampton, United Kingdom
| | - E Simon
- Biological Sciences, University of Southampton, United Kingdom
| | - D Gomez-Nicola
- Biological Sciences, University of Southampton, United Kingdom.
| |
Collapse
|
13
|
Zitzer NC, Snyder K, Meng X, Taylor PA, Efebera YA, Devine SM, Blazar BR, Garzon R, Ranganathan P. MicroRNA-155 Modulates Acute Graft-versus-Host Disease by Impacting T Cell Expansion, Migration, and Effector Function. THE JOURNAL OF IMMUNOLOGY 2018; 200:4170-4179. [PMID: 29720426 DOI: 10.4049/jimmunol.1701465] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/10/2018] [Indexed: 02/01/2023]
Abstract
MicroRNA-155 (miR-155) is a small noncoding RNA critical for the regulation of inflammation as well as innate and adaptive immune responses. MiR-155 has been shown to be dysregulated in both donor and recipient immune cells during acute graft-versus-host disease (aGVHD). We previously reported that miR-155 is upregulated in donor T cells of mice and humans with aGVHD and that mice receiving miR-155-deficient (miR155-/-) splenocytes had markedly reduced aGVHD. However, molecular mechanisms by which miR-155 modulates T cell function in aGVHD have not been fully investigated. We identify that miR-155 expression in both donor CD8+ T cells and conventional CD4+ CD25- T cells is pivotal for aGVHD pathogenesis. Using murine aGVHD transplant experiments, we show that miR-155 strongly impacts alloreactive T cell expansion through multiple distinct mechanisms, modulating proliferation in CD8+ donor T cells and promoting exhaustion in donor CD4+ T cells in both the spleen and colon. Additionally, miR-155 drives a proinflammatory Th1 phenotype in donor T cells in these two sites, and miR-155-/- donor T cells are polarized toward an IL-4-producing Th2 phenotype. We further demonstrate that miR-155 expression in donor T cells regulates CCR5 and CXCR4 chemokine-dependent migration. Notably, we show that miR-155 expression is crucial for donor T cell infiltration into multiple target organs. These findings provide further understanding of the role of miR-155 in modulating aGVHD through T cell expansion, effector cytokine production, and migration.
Collapse
Affiliation(s)
- Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210.,Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210
| | - Katiri Snyder
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Xiamoei Meng
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Patricia A Taylor
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and.,Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454
| | - Yvonne A Efebera
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Steven M Devine
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Bruce R Blazar
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and.,Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
14
|
Dragomir M, Chen B, Fu X, Calin GA. Key questions about the checkpoint blockade-are microRNAs an answer? Cancer Biol Med 2018; 15:103-115. [PMID: 29951335 PMCID: PMC5994554 DOI: 10.20892/j.issn.2095-3941.2018.0006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022] Open
Abstract
The introduction of immune-checkpoint blockade in the cancer therapy led to a paradigm change of the management of late stage cancers. There are already multiple FDA approved checkpoint inhibitors and many other agents are undergoing phase 2 and early phase 3 clinical trials. The therapeutic indication of immune checkpoint inhibitors expanded in the last years, but still remains unclear who can benefit. MicroRNAs are small RNAs with no coding potential. By complementary pairing to the 3' untranslated region of messenger RNA, microRNAs exert posttranscriptional control of protein expression. A network of microRNAs directly and indirectly controls the expression of checkpoint receptors and several microRNAs can target multiple checkpoint molecules, mimicking the therapeutic effect of a combined immune checkpoint blockade. In this review, we will describe the microRNAs that control the expression of immune checkpoints and we will present four specific issues of the immune checkpoint therapy in cancer: (1) imprecise therapeutic indication, (2) difficult response evaluation, (3) numerous immunologic adverse-events, and (4) the absence of response to immune therapy. Finally, we propose microRNAs as possible solutions for these pitfalls. We consider that in the near future microRNAs could become important therapeutic partners of the immune checkpoint therapy.
Collapse
Affiliation(s)
- Mihnea Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest 4192910, Romania
| | - Baoqing Chen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiao Fu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
15
|
Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, Bonafè M. DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget 2016; 6:35509-21. [PMID: 26431329 PMCID: PMC4742121 DOI: 10.18632/oncotarget.5899] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
A major issue in aging research is how cellular phenomena affect aging at the systemic level. Emerging evidence suggests that DNA damage response (DDR) signaling is a key mechanism linking DNA damage accumulation, cell senescence, and organism aging. DDR activation in senescent cells promotes acquisition of a proinflammatory secretory phenotype (SASP), which in turn elicits DDR and SASP activation in neighboring cells, thereby creating a proinflammatory environment extending at the local and eventually the systemic level. DDR activation is triggered by genomic lesions as well as emerging bacterial and viral metagenomes. Therefore, the buildup of cells with an activated DDR probably fuels inflamm-aging and predisposes to the development of the major age-related diseases (ARDs). Micro (mi)-RNAs - non-coding RNAs involved in gene expression modulation - are released locally and systemically by a variety of shuttles (exosomes, lipoproteins, proteins) that likely affect the efficiency of their biological effects. Here we suggest that some miRNAs, previously found to be associated with inflammation and senescence - miR-146, miR-155, and miR-21 - play a central role in the interplay among DDR, cell senescence and inflamm-aging. The identification of the functions of shuttled senescence-associated miRNAs is expected to shed light on the aging process and on how to delay ARD development.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Maria Cristina Albertini
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Artan Ceka
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Monica Cricca
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Zhang J, Braun MY. Protoporphyrin Treatment Modulates Susceptibility to Experimental Autoimmune Encephalomyelitis in miR-155-Deficient Mice. PLoS One 2015; 10:e0145237. [PMID: 26670809 PMCID: PMC4684403 DOI: 10.1371/journal.pone.0145237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022] Open
Abstract
We previously identified heme oxygenase 1 (HO-1) as a specific target of miR-155, and inhibition of HO-1 activity restored the capacity of miR-155-/- CD4+ T cells to promote antigen-driven inflammation after adoptive transfer in antigen-expressing recipients. Protoporphyrins are molecules recognized for their modulatory effect on HO-1 expression and function. In the present study, we investigated the effect of protoporphyrin treatment on the development of autoimmunity in miR-155-deficient mice. MiR-155-mediated control of HO-1 expression in promoting T cell-driven chronic autoimmunity was confirmed since HO-1 inhibition restored susceptibility to experimental autoimmune encephalomyelitis (EAE) in miR-155-deficient mice. The increased severity of the disease was accompanied by an enhanced T cell infiltration into the brain. Taken together, these results underline the importance of miR-155-mediated control of HO-1 expression in regulating the function of chronically-stimulated T cells in EAE.
Collapse
Affiliation(s)
- Jinyu Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
- * E-mail:
| | - Michel Y. Braun
- Institute for Medical Immunology, Faculty of Medicine, UniversitéLibre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
17
|
Arruda LCM, Lorenzi JCC, Sousa APA, Zanette DL, Palma PVB, Panepucci RA, Brum DS, Barreira AA, Covas DT, Simões BP, Silva WA, Oliveira MC, Malmegrim KCR. Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant 2014; 50:380-9. [PMID: 25486582 DOI: 10.1038/bmt.2014.277] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 12/29/2022]
Abstract
Autologous hematopoietic SCT (AHSCT) has been investigated in the past as a therapeutic alternative for multiple sclerosis (MS). Despite advances in clinical management, knowledge about mechanisms involved with clinical remission post transplantation is still limited. Abnormal microRNA and gene expression patterns were described in MS and have been suggested as disease biomarkers and potential therapeutic targets. Here we assessed T- and B-cell reconstitution, microRNAs and immunoregulatory gene expression after AHSCT. Early immune reconstitution was mainly driven by peripheral homeostatic proliferation. AHSCT increased CD4(+)CD25(hi)FoxP3(+) regulatory T-cell counts and expression of CTLA-4 and GITR (glucocorticoid-induced TNFR) on CD4(+)CD25(hi) T cells. We found transient increase in exhausted PD-1(+) T cells and of suppressive CD8(+)CD28(-)CD57(+) T cells. At baseline, CD4(+) and CD8(+) T cells from MS patients presented upregulated miR-16, miR-155 and miR-142-3p and downregulated FOXP3, FOXO1, PDCD1 and IRF2BP2. After transplantation, the expression of FOXP3, FOXO1, PDCD1 and IRF2BP2 increased, reaching control levels at 2 years. Expression of miR-16, miR-155 and miR-142-3p decreased towards normal levels at 6 months post therapy, remaining downregulated until the end of follow-up. These data strongly suggest that AHSCT normalizes microRNA and gene expression, thereby improving the immunoregulatory network. These mechanisms may be important for disease control in the early periods after AHSCT.
Collapse
Affiliation(s)
- L C M Arruda
- 1] Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil [2] Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - J C C Lorenzi
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - A P A Sousa
- 1] Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil [2] Division of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - D L Zanette
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - P V B Palma
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - R A Panepucci
- 1] Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil [2] Division of Hematology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - D S Brum
- Department of Neuroscience and Behavioral Science, Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - A A Barreira
- Department of Neuroscience and Behavioral Science, Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - D T Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - B P Simões
- 1] Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil [2] Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - W A Silva
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - M C Oliveira
- 1] Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil [2] Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - K C R Malmegrim
- 1] Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil [2] Department of Clinical, Toxicological and Bromatological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|