1
|
Brindangnanam P, Sawant AR, Ashokkumar K, Sriraghavan K, P S, Prashanth K, Coumar MS. Unveiling the potential of a novel drug efflux pump inhibitor to combat multidrug resistance in ESKAPEE pathogens, with a focus on Acinetobacter baumannii. Microb Pathog 2025; 203:107513. [PMID: 40147556 DOI: 10.1016/j.micpath.2025.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 03/29/2025]
Abstract
ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli) is a group of nosocomial pathogens with alarming antibiotic resistance, representing a paramount public health menace. Their multidrug resistance (MDR) is often due to hyperactive drug efflux transporters (DETs) exporting antibiotics from bacterial cells. Fortunately, a breakthrough has been made by the synthetic molecule KSA5_1 (8,10-dimethyl-1,6,11-triazatetracene-5,12-dione). In vitro combination assays of KSA5_1 with antibiotics (colistin, ciprofloxacin, gentamicin) showed excellent reductions in minimum inhibitory concentrations (MICs), as much as 512-fold, against clinical MDR isolates such as Enterococcus faecium, Staphylococcus aureus and Acinetobacter baumannii. Surprisingly, KSA5_1 was more effective than the standard efflux pump inhibitor PAβN in inhibiting ciprofloxacin efflux from A. baumannii, primarily targeting the overexpressed AdeG gene, a key DET protein. Molecular docking and simulations indicated the improved binding of KSA5_1 to AdeG with a suggestion of tight DET inhibition. KSA5_1 also possessed good drug-like profiles. The improved physicochemical profile of the compound and the potential to increase the efficacy of antibiotics by inhibiting DETs offer KSA5_1 an exciting lead to combat antimicrobial resistance (AMR). The new approach promises to address the challenging issue of MDR among ESKAPEE pathogens and has the potential to restore the efficacy of existing antibiotics to combat the AMR crisis.
Collapse
Affiliation(s)
- Pownraj Brindangnanam
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India
| | - Ajit Ramesh Sawant
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India
| | - Krishnan Ashokkumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu state, India
| | - Kamaraj Sriraghavan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu state, India
| | - Shashikala P
- Department of Clinical Microbiology, Pondicherry Institute of Medical Sciences (PIMS), Pondicherry, India
| | - K Prashanth
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India.
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India.
| |
Collapse
|
2
|
Long J, Xu H, Qi X, Yan C, Sun X, Jin Y, Liu X, Liu H. The deletion of the uvrY in Aeromonas veronii disrupted the BarA/UvrY two-component system, decreasing persister formation and bacterial resistance to multiple antibiotics. Int J Food Microbiol 2025; 435:111183. [PMID: 40168752 DOI: 10.1016/j.ijfoodmicro.2025.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Antibiotic resistance (AR) is increasingly recognized as a critical global public health threat. Aeromonas species, widely distributed in aquatic environments, have emerged as potential foodborne pathogens. These bacteria are frequently detected in water sources and various ready-to-eat foods, posing a significant risk to food safety and human health. Two-component systems (TCSs) are key regulators of stress tolerance and adaptive behaviors, but the role of the BarA-UvrY TCS in AR is unclear. In our study, multidrug-resistant Aeromonas veronii (A. veronii) strains isolated from the grass carp intestinal contents were used to investigate the role of uvrY in AR, and mutant strain (Δ uvrY) was constructed using homologous recombination. The growth characteristics of wild-type (WT), Δ uvrY, and complemented strains (C-Δ uvrY) were evaluated under various stress conditions. Additionally, prokaryotic transcriptome analysis was performed to identify the downstream stress-factors in WT and Δ uvrY. The results indicated that the Δ uvrY strain exhibited reduced tolerance to osmotic and acid - base stress compared with the WT and C-Δ uvrY. Furthermore, the deletion of uvrY in A. veronii significantly impaired persister formation and decreased resistance to multiple antibiotics, particularly tetracyclines and chloramphenicol. The transcriptome analysis revealed that the increased susceptibility of Δ uvrY to tetracyclines was accompanied by a significant down-regulation of efflux pump genes and NADH dehydrogenase I. STRING network analysis further demonstrated that the BarA-UvrY TCS is associated with genes encoding NADH dehydrogenase I and efflux pump. Additionally, efflux experiments and respiratory rate assays confirmed that the Δ uvrY strain exhibited reduced efflux pump activity and a low respiratory rate, establishing a clear correlation between these two processes. Collectively, BarA-UvrY TCS play a crucial role in AR and persister formation by mediating energy-dependent efflux mechanisms. This study provides mechanistic insights into the regulatory functions of UvrY and offers a theoretical foundation for developing novel strategies to control A. veronii infections and enhance antimicrobial interventions.
Collapse
Affiliation(s)
- Jingfei Long
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenyang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaonan Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanjiang Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Ouyang Z, He W, Wu D, An H, Duan L, Jiao M, He X, Yu Q, Zhang J, Qin Q, Wang R, Zheng F, Hwang PM, Hua X, Zhu L, Wen Y. Cryo-EM structure and complementary drug efflux activity of the Acinetobacter baumannii multidrug efflux pump AdeG. Structure 2025; 33:539-551.e4. [PMID: 39798571 DOI: 10.1016/j.str.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
Multidrug-resistant Acinetobacter baumannii has emerged as one of the most antibiotic-resistant bacterial pathogens associated with nosocomial infection, with its resistance highly depending on multiple multidrug efflux pumps. Here, we report the cryoelectron microscopy (cryo-EM) structure of Acinetobacter drug efflux G (AdeG), the inner membrane component of one of three important resistance-nodulation-cell division (RND) pump family members in A. baumannii, which is involved in drug resistance to chloramphenicol, trimethoprim, ciprofloxacin, and clindamycin. We systematically compare the structures and substrate binding specificities of AdeG, AdeB, and AdeJ multidrug efflux pumps via molecular docking, revealing potential determinants for drug binding. Knockout experiments demonstrate a functional complementarity between AdeABC, AdeFGH, and AdeIJK. Our study provides a structural understanding of A. baumannii multidrug efflux pump AdeG and reveals complementary drug efflux activity between AdeG and other RND efflux pumps, which may promote further rational drug discovery efforts targeting multidrug efflux pumps.
Collapse
Affiliation(s)
- Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenbo He
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Di Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hao An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lei Duan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min Jiao
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyu He
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinyue Yu
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Qin
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruochen Wang
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Peter M Hwang
- Departments of Medicine and Biochemistry, Faculty of Medicine & Dentistry, Edmonton, AB T6G 2R3, Canada
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, China.
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China; The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
Azab H, Askar AM, El-Fadeal NMA, Othman AAA, Rayan AH, Khattab S. Detection of AdeAB, TetA, and TetB efflux pump genes in clinical isolates of tetracycline-resistant Acinetobacter baumannii from patients of Suez Canal University Hospitals. BMC Microbiol 2025; 25:63. [PMID: 39905304 PMCID: PMC11796054 DOI: 10.1186/s12866-024-03735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Acinetobacter baumannii is an opportunistic bacteria associated primarily with hospital-acquired infections. Its tendency to acquire or donate resistance genes to neighboring bacteria is a major concern. Tetracyclines have shown promise in treating A. baumannii infections, but tetracycline resistance is growing globally in A. baumannii isolates. OBJECTIVES The study aimed to study (1) the prevalence of multidrug-resistant (MDR) A. baumannii infections at Suez Canal University Hospitals, (2) the distribution of efflux pump genes AdeA &B, TetA, and TetB, and (3) the effect of efflux pump inhibitor (CCCP) on tetracycline-resistant isolates. METHODS Clinical samples (457) were collected (blood, urine, sputum, ETA, pus, and pleural fluid), followed by A. baumannii isolation and identification, PCR detection of efflux pump genes, and detection of tetracycline susceptibility and its MIC before and after treatment with the efflux pump inhibitor (CCCP). RESULTS A total of 31 A. baumannii isolates were recovered (6.78%). The highest rate of isolation was from the ICU (48.3%) from the ET aspirate samples (48.3%). The efflux system AdeA and TetB genes were distributed in 100% of isolates, whereas AdeB was found in 93.5% of isolates and the TetA gene in 87.1% of isolates. All A. baumannii isolates were MDR showing resistance to three or more classes of antibiotics. 45% of the isolates showed a 4-fold reduction of MIC and 12.9% showed a 2-fold reduction in the MIC. CONCLUSIONS Efflux pump is an important mechanism for tetracycline resistance among A. baumannii isolates.
Collapse
Affiliation(s)
- Hasnaa Azab
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya Mohamed Askar
- Clinical and Chemical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noha M Abd El-Fadeal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Biochemistry Department, Ibn Sina National College for Medical Studies, Kingdom of Saudi Arabia, Jeddah, 22421, Saudi Arabia
- Oncology Diagnostic Unit, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amira A A Othman
- Internal Medicine Department, Faculty of Medicine, Suez University, Suez, 43511, Egypt.
| | - Amal H Rayan
- Department of Basic Medical Science, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sally Khattab
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Luo R, Ma G, Yu Q, Tian Z, Man Q, Shu X, Liu X, Shi Y, Zhang L, Wang J. Multidrug-resistant ST11-KL64 hypervirulent Klebsiella pneumoniae with multiple bla- genes isolated from children's blood. Front Pediatr 2025; 12:1450201. [PMID: 39834491 PMCID: PMC11743731 DOI: 10.3389/fped.2024.1450201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) poses an increasing public health risk due to its high treatment difficulty and associated mortality, especially in bone marrow transplant (BMT) patients. The emergence of strains with multiple resistance mechanisms further complicates the management of these infections. Methods We isolated and characterized a novel ST11-KL64 hv-CRKP strain from a pediatric bone marrow transplantation patient. Antimicrobial susceptibility testing was performed to determine resistance patterns. Comprehensive genomic analysis was conducted to identify plasmid types, virulence factors, and antimicrobial resistance genes, as well as potential resistance mechanisms associated with mutations and plasmid-mediated variants. Results The isolated hv-CRKP strain exhibited multidrug resistance to carbapenem, tigecycline, and polymyxin. Genomic analysis revealed that the IncHI1B/repB plasmid carried virulence factors (rmpA, ΔrmpA2, iucABCD, iutA), while IncFII/IncR and IncFII plasmids harbored resistance genes [bla C T X - M - 6 5 , bla T E M - 1 B , rmtB, bla S H V - 1 2 , bla K P C - 2 , qnrS1, bla L A P - 2 , sul2, dfrA14, tet(A), tet(R)]. The coexistence of bla C T X - M - 6 5 , bla T E M - 1 B , bla S H V - 1 2 , bla L A P - 2 ,and bla K P C - 2 in one hv-CRKP strain is exceptionally rare. Additionally, the Tet(A)-S251A variant in the conjugative plasmid pTET-4 may confer tigecycline resistance. Mutations in MgrB, PhoPQ, and PmrABCDK were identified as potential contributors to increased polymyxin resistance. Interestingly, plasmid-encoded restriction-modification systems and Retron regions were identified, which could potentially confer phage resistance. Discussion The combination of virulence and antimicrobial resistance factors in the ST11-KL64 hv-CRKP strain represents a significant challenge for treating immunocompromised pediatric patients. Particularly concerning is the resistance to polymyxin and tigecycline, which are often last-resort treatments for multidrug-resistant infections. The findings highlight the urgent need for effective surveillance, infection control measures, and novel therapeutic strategies to manage such hypervirulent and multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Rongmu Luo
- Department of Hematology, Aerospace Center Hospital, Beijing, China
- Department of Hematology, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Guannan Ma
- Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Qian Yu
- Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Zhengqin Tian
- Department of Hematology, Aerospace Center Hospital, Beijing, China
| | - Qihang Man
- Department of Hematology, Aerospace Center Hospital, Beijing, China
| | - Xiangrong Shu
- Department of Hematology, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Xuetong Liu
- Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Yupeng Shi
- Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Lei Zhang
- Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Jingbo Wang
- Department of Hematology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
6
|
Novović K, Radovanović M, Gajić I, Vasiljević Z, Malešević M, Šapić K, Jovčić B. AdeABC, AdeFGH, and AdeIJK efflux pumps as key factors in tigecycline resistance of Acinetobacter baumannii: a study from Western Balkan hospitals. Eur J Clin Microbiol Infect Dis 2025; 44:129-142. [PMID: 39538087 DOI: 10.1007/s10096-024-04974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE The present study investigated the role of resistance-nodulation-cell division (RND) efflux pumps in tigecycline resistance of Acinetobacter baumannii clinical isolates recovered from three Western Balkan countries (Serbia, Bosnia and Herzegovina and Montenegro). METHODS A total of 37 A. baumannii isolates recovered from seven tertiary care hospitals in 2016 and 2022 were tested against tigecycline using broth microdilution method. Then, efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was used to determine the involvement of efflux pumps in tigecycline resistance. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE) and multiplex PCR-based determination of clonal lineage. Regulators of efflux pumps were analyzed for amino acid substitutions, while reverse transcription-quantitative PCR (RT-qPCR) enabled quantification of RND efflux pumps expression. RESULTS All tested isolates were interpreted as resistant to tigecycline and showed reduced tigecycline minimum inhibitory concentration (MIC) values in the presence of CCCP. PFGE analysis showed significant diversity among isolates grouped in cluster I including IC2 (n = 32) and IC3 (n = 1) isolates, while cluster II was comprised of four IC1 isolates. The most prevalent substitutions in AdeR were V120I and A136V and in AdeS G186V and N268H (n = 33). The Q262R substitution was detected in AdeL proteins of IC1 isolates, whereas no alterations were observed within AdeN. The expression of the adeB, adeG, and adeJ genes in selected isolates was upregulated in five (1.16- to 3-fold), sixteen (1.35- to 2.82-fold), and twelve isolates (1.62- to 4-fold) compared to ATCC19606, respectively. CONCLUSION This study revealed that overexpression of RND efflux pumps underlies tigecycline resistance in A. baumannii clinical isolates from the Western Balkans.
Collapse
Affiliation(s)
- Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milica Radovanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ina Gajić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zorica Vasiljević
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Milka Malešević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Katarina Šapić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Wang Z, Li H. The tigecycline resistance mechanisms in Gram-negative bacilli. Front Cell Infect Microbiol 2024; 14:1471469. [PMID: 39635040 PMCID: PMC11615727 DOI: 10.3389/fcimb.2024.1471469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Tigecycline, hailed as a pivotal agent in combating multidrug-resistant bacterial infections, confronts obstacles posed by the emergence of resistance mechanisms in Gram-negative bacilli. This study explores the complex mechanisms of tigecycline resistance in Gram-negative bacilli, with a particular focus on the role of efflux pumps and drug modification in resistance. By summarizing these mechanisms, our objective is to provide a comprehensive understanding of tigecycline resistance in Gram-negative bacilli, thereby illuminating the evolving landscape of antimicrobial resistance. This review contributes to the elucidation of current existing tigecycline resistance mechanisms and provides insights into the development of effective strategies to manage the control of antimicrobial resistance in the clinical setting, as well as potential new targets for the treatment of tigecycline-resistant bacterial infections.
Collapse
Affiliation(s)
- Zhiren Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
8
|
Xia Z, Zhou J, Gao N, Li G, Liu R, Lu G, Shen J. AcrAB-TolC efflux pump overexpression and tet(A) gene mutation increase tigecycline resistance in Klebsiella pneumoniae. World J Microbiol Biotechnol 2024; 40:233. [PMID: 38842631 DOI: 10.1007/s11274-024-04039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) is increasing and has emerged as a global public health issue. However, the mechanism of tigecycline resistance remains unclear. The objective of this study was to investigate the potential role of efflux pump system in tigecycline resistance. 29 tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) strains were collected and their minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The ramR, acrR, rpsJ, tet(A), and tet(X) were amplified by polymerase chain reaction (PCR). The mRNA expression of different efflux pump genes and regulator genes were analyzed by real-time PCR. Additionally, KP14 was selected for genome sequencing. KP14 genes without acrB, oqxB, and TetA were modified using suicide plasmids and MIC of tigecycline of KP14 with target genes knocked out was investigated. It was found that MIC of tigecycline of 20 out of the 29 TNSKP strains decreased by over four folds once combined with phenyl-arginine-β-naphthylamide dihydrochloride (PaβN). Most strains exhibited upregulation of AcrAB and oqxAB efflux pumps. The strains with acrB, oqxB, and tetA genes knocked out were constructed, wherein the MIC of tigecycline of KP14∆acrB and KP14∆tetA was observed to be 2 µg/mL (decreased by 16 folds), the MIC of tigecycline of KP14ΔacrBΔTetA was 0.25 µg/mL (decreased by 128 folds), but the MIC of tigecycline of KP14∆oqxB remained unchanged at 32 µg/mL. The majority of TNSKP strains demonstrated increased expression of AcrAB-TolC and oqxAB, while certain strains showed mutations in other genes associated with tigecycline resistance. In KP14, both overexpression of AcrAB-TolC and tet(A) gene mutation contributed to the mechanism of tigecycline resistance.
Collapse
Affiliation(s)
- Zhaoxin Xia
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Jing Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Nana Gao
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Ge Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Runde Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Guoping Lu
- Anhui Medical University Affiliated Fuyang Hospital, Fuyang, 236000, Anhui, China
| | - Jilu Shen
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China.
| |
Collapse
|
9
|
Zack KM, Sorenson T, Joshi SG. Types and Mechanisms of Efflux Pump Systems and the Potential of Efflux Pump Inhibitors in the Restoration of Antimicrobial Susceptibility, with a Special Reference to Acinetobacter baumannii. Pathogens 2024; 13:197. [PMID: 38535540 PMCID: PMC10974122 DOI: 10.3390/pathogens13030197] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/11/2025] Open
Abstract
Bacteria express a plethora of efflux pumps that can transport structurally varied molecules, including antimicrobial agents and antibiotics, out of cells. Thus, efflux pump systems participate in lowering intracellular concentrations of antibiotics, which allows phenotypic multidrug-resistant (MDR) bacteria to survive effectively amid higher concentrations of antibiotics. Acinetobacter baumannii is one of the classic examples of pathogens that can carry multiple efflux pump systems, which allows these bacteria to be MDR-to-pan-drug resistant and is now considered a public health threat. Therefore, efflux pumps in A. baumannii have gained major attention worldwide, and there has been increased interest in studying their mechanism of action, substrates, and potential efflux pump inhibitors (EPIs). Efflux pump inhibitors are molecules that can inhibit efflux pumps, rendering pathogens susceptible to antimicrobial agents, and are thus considered potential therapeutic agents for use in conjunction with antibiotics. This review focuses on the types of various efflux pumps detected in A. baumannii, their molecular mechanisms of action, the substrates they transport, and the challenges in developing EPIs that can be clinically useful in reference to A. baumannii.
Collapse
Affiliation(s)
- Kira M. Zack
- Center for Surgical Infections and Biofilms, Department of Surgery, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
| | - Trent Sorenson
- Center for Surgical Infections and Biofilms, Drexel School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA;
| | - Suresh G. Joshi
- Center for Surgical Infections and Biofilms, Department of Surgery, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
- Center for Surgical Infections and Biofilms, Drexel School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA;
| |
Collapse
|
10
|
Wang W, Ma Y, Ma Y, Zheng X, Yu J, Li L, Liu X, Gao H, Xu H, Wang M. Significant Impact of AcrB Amino Acid Polymorphism at Residue 716 on Susceptibility to Tigecycline and Other Antibiotics in Klebsiella pneumoniae. ACS Infect Dis 2024; 10:541-552. [PMID: 38181222 DOI: 10.1021/acsinfecdis.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
AcrAB-TolC is a multidrug RND-type efflux pump that is widespread in Gram-negative bacteria. As the substrate-binding subunit, AcrB was shown to modulate antimicrobial resistance in Escherichia coli, but the influence of AcrB mutation on Klebsiella pneumoniae, a major clinical pathogen, has not been well-studied. The finding of an R716L mutation in AcrB in a clinical tigecycline-nonsusceptible K. pneumoniae S1 strain inspired us to probe the role of AcrB residue 716 in antimicrobial resistance. This residue was subsequently subjected to saturation mutagenesis, followed by antibiotic susceptibility tests, survival assays, and antibiotic accumulation assays, showing strong influences of AcrB mutation on antimicrobial resistance. In particular, resistance levels to azithromycin, tetracycline, tigecycline, and cefoxitin were significantly changed by AcrB mutation at residue 716. Mutations to charged residues, polar residues, and residues that disrupt secondary structures have particularly reduced the antimicrobial susceptibility of bacteria, except for azithromycin, and the impact is not due to the abolishment of the efflux function of the pump. Therefore, it is concluded that residue 716 is an important residue that significantly influences antimicrobial resistance in K. pneumoniae, adding to our understanding of antimicrobial resistance mechanisms in this key clinical pathogen.
Collapse
Affiliation(s)
- Wenjia Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yanan Ma
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yueyi Ma
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Xinrou Zheng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Jianghao Yu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Xuedong Liu
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong 266011, China
| | - Haidong Gao
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266035, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
11
|
Wilhelm J, Pos KM. Molecular insights into the determinants of substrate specificity and efflux inhibition of the RND efflux pumps AcrB and AdeB. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001438. [PMID: 38358391 PMCID: PMC10924465 DOI: 10.1099/mic.0.001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Gram-negative bacterial members of the Resistance Nodulation and cell Division (RND) superfamily form tripartite efflux pump systems that span the cell envelope. One of the intriguing features of the multiple drug efflux members of this superfamily is their ability to recognize different classes of antibiotics, dyes, solvents, bile salts, and detergents. This review provides an overview of the molecular mechanisms of multiple drug efflux catalysed by the tripartite RND efflux system AcrAB-TolC from Eschericha coli. The determinants for sequential or simultaneous multiple substrate binding and efflux pump inhibitor binding are discussed. A comparison is made with the determinants for substrate binding of AdeB from Acinetobacter baumannii, which acts within the AdeABC multidrug efflux system. There is an apparent general similarity between the structures of AcrB and AdeB and their substrate specificity. However, the presence of distinct conformational states and different drug efflux capacities as revealed by single-particle cryo-EM and mutational analysis suggest that the drug binding and transport features exhibited by AcrB may not be directly extrapolated to the homolog AdeB efflux pump.
Collapse
Affiliation(s)
- Julia Wilhelm
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Xu Q, Zheng B, Li K, Shen P, Xiao Y. A preliminary exploration on the mechanism of the carbapenem-resistance transformation of Serratia marcescens in vivo. BMC Genomics 2024; 25:2. [PMID: 38166565 PMCID: PMC10759614 DOI: 10.1186/s12864-023-09904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/14/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND The infection of carbapenem-resistant organisms was a huge threat to human health due to their global spread. Dealing with a carbapenem-resistant Serratia marcescens (CRSM) infection poses a significant challenge in clinical settings. This study aims to provide insights into strategies for controlling CRSM infection by exploring the transformation mechanism of carbapenem-resistance. METHODS We used whole genome sequencing (WGS) to investigate the mechanism of carbapenem resistance in 14 S. marcescens isolates in vivo. The expression level of related genes and the minimum inhibitory concentration of meropenem (MICMEM) were also evaluated to confirm the mechanism of carbapenem resistance. RESULTS Seven groups of S. marcescens, each consisting of two strains, were collected from a hospital and displayed a shift in MICMEM from low to high levels. Homology analysis revealed that the isolates in five groups were significantly different from the remaining two. WGS and experimental evidence indicated that four groups of strains developed carbapenem resistance by acquiring the blaKPC (obtaining group), while two groups (persisting group) increased the expression level of the blaKPC. In contrast, isolates in the last group (missing group) did not carry the blaKPC. All strains possessed multiple β-lactamase genes, including blaCTX-M-14, blaSRT-1, and blaSRT-2. However, only in the missing group, the carbapenem-resistant strain lost an outer membrane protein-encoding gene, leading to increased blaCTX-M-14 expression compared to the carbapenem-susceptible strain. CONCLUSION The study findings suggest that S. marcescens strains developed diverse carbapenem resistance in vivo through the evolution of drug resistance, rather than through clone replacement. We hypothesize that carbapenem resistance in S. marcescens was due to certain clonal types with a distinct mechanism.
Collapse
Affiliation(s)
- Qian Xu
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, NO.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Kaixuan Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, NO.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, NO.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
13
|
Wang JL, Lai CC, Ko WC, Hsueh PR. Geographical patterns of in vitro susceptibilities to tigecycline and colistin among worldwide isolates of Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae: Data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme, 2016-2021. Int J Antimicrob Agents 2023; 62:106930. [PMID: 37490959 DOI: 10.1016/j.ijantimicag.2023.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/16/2023] [Accepted: 07/15/2023] [Indexed: 07/27/2023]
Abstract
This study aimed to investigate the geographical trends of minimum inhibitory concentrations (MICs) for tigecycline and colistin in Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae isolates which were collected for the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme from 2016-2021. MICs of the isolates were determined using the broth microdilution method. In the study period, there was an increase in MIC50 and MIC90 values in Asia for tigecycline MICs in A. baumannii isolates, and the geometric mean of MICs increased significantly from 0.51-0.96 (R2 value of 0.912). The isolates in Europe and Latin America also showed an increase in the geometric mean, but the percentage of MIC values ≤ 2 mg/L decreased from 99.7% to 86.7% in Asia. Among the Asian countries studied, China (90.9%), Thailand (94.3%), and Malaysia (95.5%) showed the lower percentages of tigecycline MIC values ≤0.5 mg/L for E. coli isolates. In terms of colistin susceptibility among A. baumannii isolates, there was no increase in MIC50/ MIC90 or the geometric mean from 2016-2021. Compared to other continents, A. baumannii isolates in Europe had the highest MIC50 (0.5 mg/L), MIC90 (2 mg/L), and geometric mean (0.55 mg/L). For E. coli, the percentage of colistin MIC values ≤2 mg/L was consistently >98% in the study areas from 2016-2021. Among K. pneumoniae isolates, Europe and Latin America had higher geometric means of MICs (0.41 and 0.4 mg/L, respectively) and lower percentages of colistin MICs ≤2 mg/L than those in the other continents.
Collapse
Affiliation(s)
- Jiun-Ling Wang
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; PhD Program for Ageing, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Hu J, Li J, Huang X, Xia J, Cui M, Huang Y, Wen Y, Xie Y, Zhao Q, Cao S, Zou L, Han X. Genomic traits of multidrug resistant enterotoxigenic Escherichia coli isolates from diarrheic pigs. Front Microbiol 2023; 14:1244026. [PMID: 37601351 PMCID: PMC10434507 DOI: 10.3389/fmicb.2023.1244026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) infections poses a significant challenge in global pig farming. To address this issue, the study was conducted to identify and characterize 19 ETEC isolates from fecal samples of diarrheic pigs sourced from large-scale farms in Sichuan Province, China. Whole-genome sequencing and bioinformatic analysis were utilized for identification and characterization. The isolates exhibited substantial resistance to cefotaxime, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, ampicillin, tetracycline, florfenicol, and sulfadiazine, but were highly susceptible to amikacin, imipenem, and cefoxitin. Genetic diversity among the isolates was observed, with serotypes O22:H10, O163orOX21:H4, and O105:H8 being dominant. Further analysis revealed 53 resistance genes and 13 categories of 195 virulence factors. Of concern was the presence of tet(X4) in some isolates, indicating potential public health risks. The ETEC isolates demonstrated the ability to produce either heat-stable enterotoxin (ST) alone or both heat-labile enterotoxin (LT) and ST simultaneously, involving various virulence genes. Notably, STa were linked to human disease. Additionally, the presence of 4 hybrid ETEC/STEC isolates harboring Shiga-like toxin-related virulence factors, namely stx2a, stx2b, and stx2e-ONT-2771, was identified. IncF plasmids carrying multiple antimicrobial resistance genes were prevalent, and a hybrid ETEC/STEC plasmid was detected, highlighting the role of plasmids in hybrid pathotype emergence. These findings emphasized the multidrug resistance and pathogenicity of porcine-origin ETEC strains and the potential risk of epidemics through horizontal transmission of drug resistance, which is crucial for effective control strategies and interventions to mitigate the impact on animal and human health.
Collapse
Affiliation(s)
- Jiameng Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junlin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yiping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
15
|
Hamed SM, Elkhatib WF, Brangsch H, Gesraha AS, Moustafa S, Khater DF, Pletz MW, Sprague LD, Neubauer H, Wareth G. Acinetobacter baumannii Global Clone-Specific Resistomes Explored in Clinical Isolates Recovered from Egypt. Antibiotics (Basel) 2023; 12:1149. [PMID: 37508245 PMCID: PMC10376554 DOI: 10.3390/antibiotics12071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a highly problematic pathogen with an enormous capacity to acquire or upregulate antibiotic drug resistance determinants. The genomic epidemiology and resistome structure of 46 A. baumannii clinical isolates were studied using whole-genome sequencing. The isolates were chosen based on reduced susceptibility to at least three classes of antimicrobial compounds and were initially identified using MALDI-TOF/MS, followed by polymerase chain reaction amplification of blaOXA-51-like genes. The susceptibility profiles were determined using a broth microdilution assay. Multi-, extensive-, and pan-drug resistance was shown by 34.8%, 63.0%, and 2.2% of the isolates, respectively. These were most susceptible to colistin (95.7%), amikacin, and trimethoprim/sulfamethoxazole (32.6% each), while only 26.1% of isolates were susceptible to tigecycline. In silico multi-locus sequence typing revealed 8 Pasteur and 22 Oxford sequence types (STs) including four novel STs (STOxf 2805, 2806, 2807, and 2808). The majority of the isolates belonged to Global Clone (GC) 2 (76.4%), GC5 (19.6%), GC4 (6.5%), GC9 (4.3%), and GC7 (2.2%) lineages. An extensive resistome potentially conferring resistance to the majority of the tested antimicrobials was identified in silico. Of all known carbapenem resistance genes, blaOXA-23 was carried by most of the isolates (69.6%), followed by ISAba1-amplified blaADC (56.5%), blaNDM-1 and blaGES-11 (21.7% each), and blaGES-35 (2.2%) genes. A significant correlation was found between carbapenem resistance and carO mutations, which were evident in 35 (76.0%) isolates. A lower proportion of carbapenem resistance was noted for strains possessing both blaOXA-23- and blaGES-11. Amikacin resistance was most probably mediated by armA, aac(6')-Ib9, and aph(3')-VI, most commonly coexisting in GC2 isolates. No mutations were found in pmrABC or lpxACD operons in the colistin-resistant isolates. Tigecycline resistance was associated with adeS (N268Y) and baeS (A436T) mutations. While the lineage-specific distribution of some genes (e.g., blaADC and blaOXA-51-like alleles) was evident, some resistance genes, such as blaOXA-23 and sul1, were found in all GCs. The data generated here highlight the contribution of five GCs in A. baumannii infections in Egypt and enable the comprehensive analysis of GC-specific resistomes, thus revealing the dissemination of the carbapenem resistance gene blaOXA-23 in isolates encompassing all GCs.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Cairo 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez 43727, Egypt
| | - Hanka Brangsch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
| | - Ahmed S Gesraha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt
| | - Shawky Moustafa
- Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Dalia F Khater
- Tanta Laboratory, Animal Health Research Institute, Agricultural Research Center, Tanta 31511, Egypt
| | - Mathias W Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Lisa D Sprague
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
| | - Gamal Wareth
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler Institut, 07743 Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
16
|
Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT. CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:920. [PMID: 37513832 PMCID: PMC10384873 DOI: 10.3390/ph16070920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to the health, social, environment, and economic sectors on a global scale and requires serious attention to addressing this issue. Acinetobacter baumannii was given top priority among infectious bacteria because of its extensive resistance to nearly all antibiotic classes and treatment options. Carbapenem-resistant A. baumannii is classified as one of the critical-priority pathogens on the World Health Organization (WHO) priority list of antibiotic-resistant bacteria for effective drug development. Although available genetic manipulation approaches are successful in A. baumannii laboratory strains, they are limited when employed on newly acquired clinical strains since such strains have higher levels of AMR than those used to select them for genetic manipulation. Recently, the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system has emerged as one of the most effective, efficient, and precise methods of genome editing and offers target-specific gene editing of AMR genes in a specific bacterial strain. CRISPR-based genome editing has been successfully applied in various bacterial strains to combat AMR; however, this strategy has not yet been extensively explored in A. baumannii. This review provides detailed insight into the progress, current scenario, and future potential of CRISPR-Cas usage for AMR-related gene manipulation in A. baumannii.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
17
|
Sun C, Yu Y, Hua X. Resistance mechanisms of tigecycline in Acinetobacter baumannii. Front Cell Infect Microbiol 2023; 13:1141490. [PMID: 37228666 PMCID: PMC10203620 DOI: 10.3389/fcimb.2023.1141490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Acinetobacter baumannii is widely distributed in nature and in hospital settings and is a common pathogen causing various infectious diseases. Currently, the drug resistance rate of A. baumannii has been persistently high, showing a worryingly high resistance rate to various antibiotics commonly used in clinical practice, which greatly limits antibiotic treatment options. Tigecycline and polymyxins show rapid and effective bactericidal activity against CRAB, and they are both widely considered to be the last clinical line of defense against multidrug resistant A. baumannii. This review focuses with interest on the mechanisms of tigecycline resistance in A. baumannii. With the explosive increase in the incidence of tigecycline-resistant A. baumannii, controlling and treating such resistance events has been considered a global challenge. Accordingly, there is a need to systematically investigate the mechanisms of tigecycline resistance in A. baumannii. Currently, the resistance mechanism of A. baumannii to tigecycline is complex and not completely clear. This article reviews the proposed resistance mechanisms of A. baumannii to tigecycline, with a view to providing references for the rational clinical application of tigecycline and the development of new candidate antibiotics.
Collapse
Affiliation(s)
- Chunli Sun
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, Zhejiang University, Haining, Zhejiang, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Wu HJ, Xiao ZG, Lv XJ, Huang HT, Liao C, Hui CY, Xu Y, Li HF. Drug‑resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp Ther Med 2023; 25:209. [PMID: 37090073 PMCID: PMC10119666 DOI: 10.3892/etm.2023.11908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/24/2023] [Indexed: 04/25/2023] Open
Abstract
Bacterial drug resistance is increasingly becoming an important problem that needs to be solved urgently in modern clinical practices. Infection caused by Acinetobacter baumannii is a serious threat to the life and health of patients. The drug resistance rate of Acinetobacter baumannii strains is increasing, thus research on the drug resistance of Acinetobacter baumannii has also seen an increase. When patients are infected with drug-resistant Acinetobacter baumannii, the availability of suitable antibiotics commonly used in clinical practices is becoming increasingly limited and the prognosis of patients is worsening. Studying the molecular mechanism of the drug resistance of Acinetobacter baumannii is fundamental to solving the problem of drug-resistant Acinetobacter baumannii and potentially other 'super bacteria'. Drug resistance mechanisms primarily include enzymes, membrane proteins, efflux pumps and beneficial mutations. Research on the underlying mechanisms provides a theoretical basis for the use and development of antibiotics and the development of novel treatment methods.
Collapse
Affiliation(s)
- Hao-Jia Wu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhi-Gang Xiao
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Xiao-Juan Lv
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Hai-Tang Huang
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chu Liao
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Chen-Yang Hui
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Yue Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Heng-Fei Li
- Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
- Department of Infection, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
- Correspondence to: Professor Heng-Fei Li, Department of Hepatology, Hubei Key Laboratory of The Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Room 4, Garden Hill, Wuchang, Wuhan, Hubei 430061, P.R. China
| |
Collapse
|
19
|
Castanheira M, Mendes RE, Gales AC. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin Infect Dis 2023; 76:S166-S178. [PMID: 37125466 PMCID: PMC10150277 DOI: 10.1093/cid/ciad109] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Acinetobacter baumannii-calcoaceticus complex is the most commonly identified species in the genus Acinetobacter and it accounts for a large percentage of nosocomial infections, including bacteremia, pneumonia, and infections of the skin and urinary tract. A few key clones of A. baumannii-calcoaceticus are currently responsible for the dissemination of these organisms worldwide. Unfortunately, multidrug resistance is a common trait among these clones due to their unrivalled adaptive nature. A. baumannii-calcoaceticus isolates can accumulate resistance traits by a plethora of mechanisms, including horizontal gene transfer, natural transformation, acquisition of mutations, and mobilization of genetic elements that modulate expression of intrinsic and acquired genes.
Collapse
Affiliation(s)
| | | | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
20
|
Rahman A, Styczynski A, Khaleque A, Hossain SA, Sadique A, Hossain A, Jain M, Tabassum SN, Khan F, Bhuiyan MSS, Alam J, Khandakar A, Kamruzzaman M, Ahsan CR, Kashem SBA, Chowdhury MEH, Hossain M. Genomic landscape of prominent XDR Acinetobacter clonal complexes from Dhaka, Bangladesh. BMC Genomics 2022; 23:802. [PMID: 36471260 PMCID: PMC9721023 DOI: 10.1186/s12864-022-08991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acinetobacter calcoaceticus-A. baumannii (ACB) complex pathogens are known for their prevalence in nosocomial infections and extensive antimicrobial resistance (AMR) capabilities. While genomic studies worldwide have elucidated the genetic context of antibiotic resistance in major international clones (ICs) of clinical Acinetobacter spp., not much information is available from Bangladesh. In this study, we analysed the AMR profiles of 63 ACB complex strains collected from Dhaka, Bangladesh. Following this, we generated draft genomes of 15 of these strains to understand the prevalence and genomic environments of AMR, virulence and mobilization associated genes in different Acinetobacter clones. RESULTS Around 84% (n = 53) of the strains were extensively drug resistant (XDR) with two showing pan-drug resistance. Draft genomes generated for 15 strains confirmed 14 to be A. baumannii while one was A. nosocomialis. Most A. baumannii genomes fell under three clonal complexes (CCs): the globally dominant CC1 and CC2, and CC10; one strain had a novel sequence type (ST). AMR phenotype-genotype agreement was observed and the genomes contained various beta-lactamase genes including blaOXA-23 (n = 12), blaOXA-66 (n = 6), and blaNDM-1 (n = 3). All genomes displayed roughly similar virulomes, however some virulence genes such as the Acinetobactin bauA and the type IV pilus gene pilA displayed high genetic variability. CC2 strains carried highest levels of plasmidic gene content and possessed conjugative elements carrying AMR genes, virulence factors and insertion sequences. CONCLUSION This study presents the first comparative genomic analysis of XDR clinical Acinetobacter spp. from Bangladesh. It highlights the prevalence of different classes of beta-lactamases, mobilome-derived heterogeneity in genetic architecture and virulence gene variability in prominent Acinetobacter clonal complexes in the country. The findings of this study would be valuable in understanding the genomic epidemiology of A. baumannii clones and their association with closely related pathogenic species like A. nosocomialis in Bangladesh.
Collapse
Affiliation(s)
- Aura Rahman
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
| | - Ashley Styczynski
- Division of Infectious Diseases and Geographic Medicine, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Abdul Khaleque
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | | | - Abdus Sadique
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
| | - Arman Hossain
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Mukesh Jain
- The Hormone Lab & Infertility Centre, Dhaka, Bangladesh
| | | | - Fahad Khan
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Mohammad Sami Salman Bhuiyan
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Jahidul Alam
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
| | | | | | - Saad Bin Abul Kashem
- Department of Computer Sciences, AFG College with the University of Aberdeen, Doha, Qatar.
| | | | - Maqsud Hossain
- NSU Genome Research Institute, North South University, Dhaka, Bangladesh.
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh.
| |
Collapse
|
21
|
Dehbanipour R, Ghalavand Z. Acinetobacter baumannii: Pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline. J Clin Pharm Ther 2022; 47:1875-1884. [PMID: 36200470 DOI: 10.1111/jcpt.13787] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Acinetobacter baumannii is one of the most important nosocomial pathogens with the ability to cause infections such as meningitis, pneumonia, urinary tract, septicaemia and wound infections. A wide range of virulence factors are responsible for pathogenesis and high mortality of A. baumannii including outer membrane proteins, lipopolysaccharide, capsule, phospholipase, nutrient- acquisition systems, efflux pumps, protein secretion systems, quarom sensing and biofilm production. These virulence factors contribute in pathogen survival in stressful conditions and antimicrobial resistance. COMMENT According to the World Health Organization (WHO), A. baumannii is one of the most resistant pathogens of ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa and Enterobacter spp.). In recent years, resistance to a wide range of antibiotics in A. baumannii has significantly increased and the high emergence of extensively drug resistant (XDR) isolates is challenging. Among therapeutic antibiotics, resistance to tigecycline as a last resort antibiotic has become a global concern. Several mechanisms are involved in tigecycline resistance, the most important of which is RND (Resistance-Nodulation-Division) family efflux pumps overexpression. The development of new therapeutic strategies to confront A. baumannii infections has been very promising in recent years. WHAT IS NEW AND CONCLUSION In the present review we highlight microbiological and virulence traits in A. baumannii and peruse the tigecycline resistance mechanisms and novel therapeutic options. Among the novel therapeutic strategies we focus on combination therapy, drug repurposing, novel antibiotics, bacteriophage therapy, antimicrobial peptides (AMPs), human monoclonal antibodies (Hu-mAbs), nanoparticles and gene editing.
Collapse
Affiliation(s)
- Razieh Dehbanipour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Xiong L, Yi F, Yu Q, Huang X, Ao K, Wang Y, Xie Y. Transcriptomic analysis reveals the regulatory role of quorum sensing in the Acinetobacter baumannii ATCC 19606 via RNA-seq. BMC Microbiol 2022; 22:198. [PMID: 35971084 PMCID: PMC9380347 DOI: 10.1186/s12866-022-02612-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acinetobacter baumannii has emerged as the major opportunistic pathogen in healthcare-associated infections with high-level antibiotic resistance and high mortality. Quorum sensing (QS) system is a cell-to-cell bacterial communication mediated by the synthesis, secretion, and binding of auto-inducer signals. It is a global regulatory system to coordinate the behavior of individual bacteria in a population. The present study focused on the QS system, aiming to investigate the regulatory role of QS in bacterial virulence and antibiotic resistance. Method The auto-inducer synthase gene abaI was deleted using the A. baumannii ATCC 19606 strain to interrupt the QS process. The RNA-seq was performed to identify the differentially expressed genes (DEGs) and pathways in the mutant (△abaI) strain compared with the wild-type (WT) strain. Results A total of 380 DEGs [the adjusted P value < 0.05 and the absolute value of log2(fold change) > log21.5] were identified, including 256 upregulated genes and 124 downregulated genes in the △abaI strain. The enrichment analysis indicated that the DEGs involved in arginine biosynthesis, purine metabolism, biofilm formation, and type VI secretion system (T6SS) were downregulated, while the DEGs involved in pathways related to fatty acid metabolism and amino acid metabolism were upregulated. Consistent with the expression change of the DEGs, a decrease in biofilm formation was observed in the △abaI strain compared with the WT strain. On the contrary, no obvious changes were found in antimicrobial resistance following the deletion of abaI. Conclusions The present study demonstrated the transcriptomic profile of A. baumannii after the deletion of abaI, revealing an important regulatory role of the QS system in bacterial virulence. The deletion of abaI suppressed the biofilm formation in A. baumannii ATCC 19606, leading to decreased pathogenicity. Further studies on the role of abaR, encoding the receptor of auto-inducer in the QS circuit, are required for a better understanding of the regulation of bacterial virulence and pathogenicity in the QS network. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02612-z.
Collapse
Affiliation(s)
- Li Xiong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fanli Yi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuju Yu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiyue Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanfang Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Sato Y, Hatayama N, Ubagai T, Tansho-Nagakawa S, Ono Y, Yoshino Y. Tigecycline Suppresses the Virulence Factors of Multidrug-Resistant Acinetobacter baumannii Allowing Human Neutrophils to Act. Infect Drug Resist 2022; 15:3357-3368. [PMID: 35789794 PMCID: PMC9250330 DOI: 10.2147/idr.s368890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the ability of human neutrophils to kill multidrug-resistant Acinetobacter baumannii (MDRAB) in the presence of tigecycline (TGC). Methods Clinical isolates of MDRAB were cultured with human neutrophils and H2O2 in the presence of TGC. The numbers of viable bacteria, catalase activity, gene expression at the K locus of the MDRAB, reactive oxygen species (ROS) production, and granule exocytosis in human neutrophils were determined. Results There was a time-dependent increase in the numbers of MDRAB after co-culturing with human neutrophils, whereas there was a significant decrease in the MDRAB numbers when co-cultured with both, human neutrophils and TGC for 6 h. The presence or absence of TGC did not affect total ROS production or the expression of CD11b, CD15, and CD63 on human neutrophils occurred when co-cultured with MDRAB. TGC significantly suppressed catalase activity and gene expression at the K locus of MDRAB, and significantly reduced the thickness of the capsule. Additionally, the bacterial viability of TGC-treated MDRAB cultured with H2O2 was lower than that without H2O2 after 6 h of culture. Conclusion TGC significantly suppressed the expression of catalase and the capsule in MDRAB without adverse effects on neutrophil function, allowing human neutrophils to kill MDRAB. TGC is an effective antibiotic for treating MDRAB infections.
Collapse
Affiliation(s)
- Yoshinori Sato
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Nami Hatayama
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan.,Teikyo Heisei University, Faculty of Health and Medical Science, Toshima-ku, Tokyo, 170-8445, Japan
| | - Yusuke Yoshino
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
24
|
Havenga B, Reyneke B, Waso-Reyneke M, Ndlovu T, Khan S, Khan W. Biological Control of Acinetobacter baumannii: In Vitro and In Vivo Activity, Limitations, and Combination Therapies. Microorganisms 2022; 10:microorganisms10051052. [PMID: 35630494 PMCID: PMC9147981 DOI: 10.3390/microorganisms10051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The survival, proliferation, and epidemic spread of Acinetobacter baumannii (A. baumannii) in hospital settings is associated with several characteristics, including resistance to many commercially available antibiotics as well as the expression of multiple virulence mechanisms. This severely limits therapeutic options, with increased mortality and morbidity rates recorded worldwide. The World Health Organisation, thus, recognises A. baumannii as one of the critical pathogens that need to be prioritised for the development of new antibiotics or treatment. The current review will thus provide a brief overview of the antibiotic resistance and virulence mechanisms associated with A. baumannii’s “persist and resist strategy”. Thereafter, the potential of biological control agents including secondary metabolites such as biosurfactants [lipopeptides (surfactin and serrawettin) and glycolipids (rhamnolipid)] as well as predatory bacteria (Bdellovibrio bacteriovorus) and bacteriophages to directly target A. baumannii, will be discussed in terms of their in vitro and in vivo activity. In addition, limitations and corresponding mitigations strategies will be outlined, including curtailing resistance development using combination therapies, product stabilisation, and large-scale (up-scaling) production.
Collapse
Affiliation(s)
- Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
| | - Monique Waso-Reyneke
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa; (M.W.-R.); (S.K.)
| | - Thando Ndlovu
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB, Gaborone 0022, Botswana;
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa; (M.W.-R.); (S.K.)
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa; (B.H.); (B.R.)
- Correspondence: ; Tel.: +27-21-808-5804
| |
Collapse
|
25
|
Altayb HN, Elbadawi HS, Baothman O, Kazmi I, Alzahrani FA, Nadeem MS, Hosawi S, Chaieb K. Genomic Analysis of Multidrug-Resistant Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae Strain Lacking the Hypermucoviscous Regulators (rmpA/rmpA2). Antibiotics (Basel) 2022; 11:antibiotics11050596. [PMID: 35625240 PMCID: PMC9137517 DOI: 10.3390/antibiotics11050596] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/28/2022] Open
Abstract
Hypervirulent K. pneumoniae (hvKP) strains possess distinct characteristics such as hypermucoviscosity, unique serotypes, and virulence factors associated with high pathogenicity. To better understand the genomic characteristics and virulence profile of the isolated hvKP strain, genomic data were compared to the genomes of the hypervirulent and typical K. pneumoniae strains. The K. pneumoniae strain was isolated from a patient with a recurrent urinary tract infection, and then the string test was used for the detection of the hypermucoviscosity phenotype. Whole-genome sequencing was conducted using Illumina, and bioinformatics analysis was performed for the prediction of the isolate resistome, virulome, and phylogenetic analysis. The isolate was identified as hypermucoviscous, type 2 (K2) capsular polysaccharide, ST14, and multidrug-resistant (MDR), showing resistance to ciprofloxacin, ceftazidime, cefotaxime, trimethoprim-sulfamethoxazole, cephalexin, and nitrofurantoin. The isolate possessed four antimicrobial resistance plasmids (pKPN3-307_type B, pECW602, pMDR, and p3K157) that carried antimicrobial resistance genes (ARGs) (blaOXA-1,blaCTX-M-15, sul2, APH(3″)-Ib, APH(6)-Id, and AAC(6′)-Ib-cr6). Moreover, two chromosomally mediated ARGs (fosA6 and SHV-28) were identified. Virulome prediction revealed the presence of 19 fimbrial proteins, one aerobactin (iutA) and two salmochelin (iroE and iroN). Four secretion systems (T6SS-I (13), T6SS-II (9), T6SS-III (12), and Sci-I T6SS (1)) were identified. Interestingly, the isolate lacked the known hypermucoviscous regulators (rmpA/rmpA2) but showed the presence of other RcsAB capsule regulators (rcsA and rcsB). This study documented the presence of a rare MDR hvKP with hypermucoviscous regulators and lacking the common capsule regulators, which needs more focus to highlight their epidemiological role.
Collapse
Affiliation(s)
- Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +0096-6549087515
| | - Hana S. Elbadawi
- Microbiology and Parasitology Department, Soba University Hospital, University of Khartoum, Khartoum 11115, Sudan;
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Faisal A. Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamel Chaieb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (O.B.); (I.K.); (F.A.A.); (M.S.N.); (S.H.); (K.C.)
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environmental and Products, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
26
|
Peng Z, Hu Z, Li Z, Zhang X, Jia C, Li T, Dai M, Tan C, Xu Z, Wu B, Chen H, Wang X. Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nat Commun 2022; 13:1116. [PMID: 35236849 PMCID: PMC8891348 DOI: 10.1038/s41467-022-28750-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
The expanding use of antimicrobials in livestock is an important contributor to the worldwide rapid increase in antimicrobial resistance (AMR). However, large-scale studies on AMR in livestock remain scarce. Here, we report findings from surveillance of E. coli AMR in pig farms in China in 2018-2019. We isolated E. coli in 1,871 samples from pigs and their breeding environments, and found AMR in E. coli in all provinces in mainland China. We detected multidrug-resistance in 91% isolates and found resistance to last-resort drugs including colistin, carbapenems and tigecycline. We also identified a heterogeneous group of O-serogroups and sequence types among the multidrug-resistant isolates. These isolates harbored multiple resistance genes, virulence factor-encoding genes, and putative plasmids. Our data will help to understand the current AMR profiles of pigs and provide a reference for AMR control policy formulation for livestock in China.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Zizhe Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Zugang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Xiaoxue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Chaoying Jia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Tianzhi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Menghong Dai
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, 430070, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Zhuofei Xu
- Shanghai MasScience Biotechnology Institute, Shanghai, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China.
| |
Collapse
|
27
|
Zhou Y, Ai W, Cao Y, Guo Y, Wu X, Wang B, Rao L, Xu Y, Zhao H, Wang X, Yu F. The Co-occurrence of NDM-5, MCR-1, and FosA3-Encoding Plasmids Contributed to the Generation of Extensively Drug-Resistant Klebsiella pneumoniae. Front Microbiol 2022; 12:811263. [PMID: 35046925 PMCID: PMC8762306 DOI: 10.3389/fmicb.2021.811263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/05/2022] Open
Abstract
The rise and global dissemination of extensively drug-resistant (XDR) bacteria are often related to plasmid-borne mobile antimicrobial resistance genes. Notably, isolates having multiple plasmids are often highly resistant to almost all the antibiotics available. In this study, we characterized an extensively drug-resistant Klebsiella pneumoniae 1678, which exhibited high-level resistance to almost all the available antibiotics. Through whole-genome sequencing (WGS), more than 20 resistant elements and 5 resistant plasmids were observed. Notably, the tigecycline resistance of K. pneumoniae 1678 was not related to the plasmid-borne tetA gene but associated with the overexpression of AcrAB and OqxAB efflux pumps, according to the susceptibility results of tetA-transformant and the related mRNA quantification of RND efflux pumps. Except for tigecycline resistance, three plasmids, mediating resistance to colistin, Fosfomycin, and ceftazidime–avibactam, respectively, were focused. Detailed comparative genetic analysis showed that all these plasmids belonged to dominated epidemic plasmids, and harbored completed conjugation systems. Results of conjugation assay indicated that these three plasmids not only could transfer to E. coli J53 with high conjugation frequencies, respectively, but also could co-transfer to E. coli J53 effectively, which was additionally confirmed by the S1-PFGE plasmids profile. Moreover, multiple insertion sequences (IS) and transposons (Tn) were also found surrounding the vital resistant genes, which may form several novel mechanisms involved in the resistant determinants’ mobilization. Overall, we characterized and reported the uncommon co-existence and co-transferring of FosA3-, NDM-5, and MCR-1-encoding plasmids in a K. pneumoniae isolate, which may increase the risk of spread of these resistant phenotypes and needing great concern.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxiu Ai
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanhua Cao
- Department of Respiratory Intensive Care Unit, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaocui Wu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lulin Rao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Wang Z, Li H, Zhang J, Wang X, Zhang Y, Wang H. Identification of a novel plasmid-mediated tigecycline resistance-related gene, tet(Y), in Acinetobacter baumannii. J Antimicrob Chemother 2021; 77:58-68. [PMID: 34634801 DOI: 10.1093/jac/dkab375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To characterize a novel plasmid-mediated tigecycline resistance-related gene, tet(Y), in a clinical Acinetobacter baumannii isolate from China. METHODS The tet(Y)-encoded tigecycline-resistant A. baumannii 2016GDAB1 was screened through antimicrobial susceptibility testing and WGS. The function of tet(Y) was verified by complementation of tet(Y). The plasmid transferability and stability were detected via plasmid conjugation and in vitro bacterial passaging. The 3D structure of Tet(Y) was predicted and docked using tFold and AutoDock Vina. RESULTS The tigecycline-resistant A. baumannii 2016GDAB1 was isolated from bronchoalveolar lavage fluid of a patient with hospital-acquired pneumonia. However, this strain did not harbour any common tigecycline resistance genes, determinants or mutations. 2016GDAB1 belongs to the non-epidemic clone ST355 (Oxford scheme), which has been mainly reported in animals. The tet(Y) gene was located on a 72 156 bp plasmid and genomic environment analysis revealed that Tn5393 may play a role in tet(Y) transmission, whereas phylogenetic analysis indicated the origin of tet(Y) as from Aeromonas. Overexpression of tet(Y) resulted in a 2- to 4-fold increase in tigecycline MIC. Introduction of the tet(Y)-harbouring plasmid p2016GDAB1 via electroporation resulted in a 16-fold increase in tigecycline MIC but failed to transfer into the tigecycline-susceptible A. baumannii recipient via conjugation. Isolates carrying the tet(Y) gene were vulnerable to tigecycline pressure and exhibited decreased susceptibility to tigecycline. A tet(Y)-carrying plasmid was stably maintained in the host strains. CONCLUSIONS This study identified the tigecycline resistance-related gene tet(Y) in A. baumannii. This gene conferred an increased tigecycline MIC and the transposable element Tn5393 may play a role in its transmission across isolates.
Collapse
Affiliation(s)
- Zhiren Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Henan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Jiangang Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
29
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
30
|
Zhang Q, Lin L, Pan Y, Chen J. Characterization of Tigecycline-Heteroresistant Klebsiella pneumoniae Clinical Isolates From a Chinese Tertiary Care Teaching Hospital. Front Microbiol 2021; 12:671153. [PMID: 34413834 PMCID: PMC8369762 DOI: 10.3389/fmicb.2021.671153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
Tigecycline has been used as one of the therapeutic choices for the treatment of infections caused by multidrug-resistant Klebsiella pneumoniae. However, the emergence of tigecycline heteroresistance has led to great challenges in treating these infections. The purpose of this study was to investigate whether tigecycline-heteroresistant K. pneumoniae (TGCHR-Kp) exists in clinical isolates, and to further characterize the underlying molecular mechanisms involved in the development of tigecycline-resistant subpopulations. Of the 268 tigecycline-susceptible clinical K. pneumoniae isolates, 69 isolates were selected as tigecycline-heteroresistant candidates in the preliminary heteroresistant phenotypic selection by a modified disk diffusion method, and only 21 strains were confirmed as TGCHR-Kp by the population analysis profile (PAP). Pulsed-field gel electrophoresis (PFGE) analysis demonstrated that all the parental TGCHR-Kp isolates were clonally unrelated, and colonies confirmed as the heteroresistant subpopulation showed no significant differences from their respective parental TGCHR-Kp isolates. Efflux pump inhibitors reversed the tigecycline susceptibility in heteroresistant subpopulations. Mutations in the ramR and soxR genes lead to upregulation of the ramA and soxS transcriptional regulators, which in turn induced overexpression of the AcrAB-TolC efflux pump genes in TGCHR-Kps-resistant subpopulations. Moreover, mutations of rpsJ were also found in resistant subpopulations, which suggested that the rpsJ mutation may also lead to tigecycline resistance. Time-kill assays showed that the efficacy of tigecycline against TGCHR-Kps was weakened, whereas the number of resistant subpopulations was enriched by the presence of tigecycline. Our findings imply that the presence of TGCHR-Kps in clinical strains causes severe challenges for tigecycline therapy in clinical practice.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- Department of Nosocomial Infection Control, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liping Lin
- Department of Laboratory Medicine, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Yuhong Pan
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiansen Chen
- Department of Nosocomial Infection Control, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
31
|
Sumyk M, Himpich S, Foong WE, Herrmann A, Pos KM, Tam HK. Binding of Tetracyclines to Acinetobacter baumannii TetR Involves Two Arginines as Specificity Determinants. Front Microbiol 2021; 12:711158. [PMID: 34349752 PMCID: PMC8326586 DOI: 10.3389/fmicb.2021.711158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen that requires thoughtful consideration in the antibiotic prescription strategy due to its multidrug resistant phenotype. Tetracycline antibiotics have recently been re-administered as part of the combination antimicrobial regimens to treat infections caused by A. baumannii. We show that the TetA(G) efflux pump of A. baumannii AYE confers resistance to a variety of tetracyclines including the clinically important antibiotics doxycycline and minocycline, but not to tigecycline. Expression of tetA(G) gene is regulated by the TetR repressor of A. baumannii AYE (AbTetR). Thermal shift binding experiments revealed that AbTetR preferentially binds tetracyclines which carry a O-5H moiety in ring B, whereas tetracyclines with a 7-dimethylamino moiety in ring D are less well-recognized by AbTetR. Confoundingly, tigecycline binds to AbTetR even though it is not transported by TetA(G) efflux pump. Structural analysis of the minocycline-bound AbTetR-Gln116Ala variant suggested that the non-conserved Arg135 interacts with the ring D of minocycline by cation-π interaction, while the invariant Arg104 engages in H-bonding with the O-11H of minocycline. Interestingly, the Arg135Ala variant exhibited a binding preference for tetracyclines with an unmodified ring D. In contrast, the Arg104Ala variant preferred to bind tetracyclines which carry a O-6H moiety in ring C except for tigecycline. We propose that Arg104 and Arg135, which are embedded at the entrance of the AbTetR binding pocket, play important roles in the recognition of tetracyclines, and act as a barrier to prevent the release of tetracycline from its binding pocket upon AbTetR activation. The binding data and crystal structures obtained in this study might provide further insight for the development of new tetracycline antibiotics to evade the specific efflux resistance mechanism deployed by A. baumannii.
Collapse
Affiliation(s)
- Manuela Sumyk
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Stephanie Himpich
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Wuen Ee Foong
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andrea Herrmann
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Klaas M Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Heng-Keat Tam
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
32
|
Wareth G, Brandt C, Sprague LD, Neubauer H, Pletz MW. WGS based analysis of acquired antimicrobial resistance in human and non-human Acinetobacter baumannii isolates from a German perspective. BMC Microbiol 2021; 21:210. [PMID: 34243717 PMCID: PMC8272256 DOI: 10.1186/s12866-021-02270-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Acinetobacter baumannii ability to develop and acquire resistance makes it one of the most critical nosocomial pathogens globally. Whole-genome sequencing (WGS) was applied to identify the acquired or mutational variants of antimicrobial resistance (AMR) genes in 85 German A. baumannii strains utilizing Illumina technology. Additionally, the whole genome of 104 German isolates deposited in the NCBI database was investigated. Results In-silico analysis of WGS data revealed wide varieties of acquired AMR genes mediating resistance mostly to aminoglycosides, cephalosporins, carbapenems, sulfonamides, tetracyclines and macrolides. In the 189 analyzed genomes, the ant (3″)-IIa conferring resistance to aminoglycosides was the most frequent (55%), followed by blaADC.25 (38.6%) conferring resistance to cephalosporin, blaOXA-23 (29%) and the blaOXA-66 variant of the intrinsic blaOXA-51-likes (26.5%) conferring resistance to carbapenems, the sul2 (26%) conferring resistance to sulfonamides, the tet. B (19.5%) conferring resistance to tetracycline, and mph. E and msr. E (19%) conferring resistance to macrolides. blaTEM variants conferring resistance to cephalosporins were found in 12% of genomes. Thirteen variants of the intrinsic blaOXA-51 carbapenemase gene, blaOXA-510 and blaADC-25 genes were found in isolates obtained from dried milk samples. Conclusion The presence of strains harboring acquired AMR genes in dried milk raises safety concerns and highlights the need for changes in producing dried milk. Acquired resistance genes and chromosomal gene mutation are successful routes for disseminating AMR determinants among A. baumannii. Identification of chromosomal and plasmid-encoded AMR in the genome of A. baumannii may help understand the mechanism behind the genetic mobilization and spread of AMR genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02270-7.
Collapse
Affiliation(s)
- Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743, Jena, Germany. .,Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany. .,Department of Bacteriology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Lisa D Sprague
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743, Jena, Germany
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743, Jena, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Research Campus Infectognostics, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
33
|
Hua X, He J, Wang J, Zhang L, Zhang L, Xu Q, Shi K, Leptihn S, Shi Y, Fu X, Zhu P, Higgins PG, Yu Y. Novel tigecycline resistance mechanisms in Acinetobacter baumannii mediated by mutations in adeS, rpoB and rrf. Emerg Microbes Infect 2021; 10:1404-1417. [PMID: 34170209 PMCID: PMC8274536 DOI: 10.1080/22221751.2021.1948804] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acinetobacter baumannii is an important pathogen in hospital acquired infections. Although tigecycline currently remains a potent antibiotic for treating infections caused by multidrug resistant A. baumannii (MDRAB) strains, reports of tigecycline resistant isolates have substantially increased. The resistance mechanisms to tigecycline in A. baumannii are far more complicated and diverse than what has been described in the literature so far. Here, we characterize in vitro-selected MDRAB strains obtained by increasing concentrations of tigecycline. We have identified mutations in adeS, rrf and rpoB that result in reduced susceptibility to tigecycline. Using in situ complementation experiments, we confirm that mutations in rrf, rpoB, and two types of mutations in adeS correlate with tigecycline resistance. By Western blot and polysome profile analysis, we demonstrate that the rrf mutation results in decreased expression of RRF, which affects the process of ribosome recycling ultimately leading to increased tigecycline tolerance. A transcriptional analysis shows that the mutated rpoB gene plays a role in regulating the expression of the SAM-dependent methyltransferase (trm) and transcriptional regulators, to confer moderate tigecycline resistance. This study provides direct in vitro evidence that mutations in the adeS, rpoB and rrf are associated with tigecycline resistance in A. baumannii.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jingfen Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Sebastian Leptihn
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, People's Republic of China
| | - Yue Shi
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaoting Fu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China.,Single-cell Center, Shandong Energy Institute, Qingdao, People's Republic of China
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
34
|
Lucaßen K, Müller C, Wille J, Xanthopoulou K, Hackel M, Seifert H, Higgins PG. Prevalence of RND efflux pump regulator variants associated with tigecycline resistance in carbapenem-resistant Acinetobacter baumannii from a worldwide survey. J Antimicrob Chemother 2021; 76:1724-1730. [PMID: 33760099 DOI: 10.1093/jac/dkab079] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/18/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To determine the most common tigecycline resistance mechanisms in carbapenem-resistant Acinetobacter baumannii isolates obtained during the global Tigecycline Evaluation Surveillance Trial (TEST). METHODS Tigecycline MICs were determined by broth microdilution. WGS was used to screen for the previously identified tigecycline resistance mechanisms, as well as mutations in resistance-nodulation-cell division (RND)-type efflux pump regulators. RESULTS From a total 313 isolates, 113 genetically unique tigecycline-resistant isolates were analysed. The most frequent and worldwide distributed mechanism associated with tigecycline resistance was disruption of adeN, which encodes the repressor of the RND efflux pump AdeIJK, either by IS elements or nucleotide deletions causing premature stop codons. However, mutations leading to amino acid substitutions and disruption by IS elements within the two-component regulatory system adeRS, which regulates expression of the AdeABC efflux pump, correlate with higher tigecycline MICs, but these were found less frequently and were mainly restricted to Southern European countries. Furthermore, an altered version of tviB was identified in several tigecycline-resistant isolates that did not have putative resistance mutations within RND-type regulators. The resistance determinants tet(A) and tet(X), as well as resistance mutations in putative resistance determinants trm, plsC, rrf, msbA and genes encoding 30S ribosomal proteins, were not identified in any isolate. CONCLUSIONS The most prevalent tigecycline resistance mechanisms were caused by alterations in the regulators of RND-type efflux pumps. These data provide the basis for further characterization of regulator alterations and their contribution to increased efflux and tigecycline resistance, and also should be taken into account in drug discovery programmes to overcome the contribution of efflux pumps.
Collapse
Affiliation(s)
- Kai Lucaßen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Cologne, Germany
| | - Carina Müller
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Meredith Hackel
- International Health Management Associates, 2122 Palmer Drive, Schaumburg, IL 60173, USA
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
35
|
O'Donnell JN, Putra V, Lodise TP. Treatment of patients with serious infections due to carbapenem-resistant Acinetobacter baumannii: How viable are the current options? Pharmacotherapy 2021; 41:762-780. [PMID: 34170571 DOI: 10.1002/phar.2607] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
This review critically appraises the published microbiologic and clinical data on the treatment of patients with carbapenem-resistant Acinetobacter baumannii infections. Despite being recognized as an urgent threat pathogen by the CDC and WHO, optimal treatment of patients with serious CRAB infections remains ill-defined. Few commercially available agents exhibit reliable in vitro activity against CRAB. Historically, polymyxins have been the most active agents in vitro, though interpretations of susceptibility data are difficult given issues surrounding MIC testing methodologies and lack of correlation between MICs and clinical outcomes. Most available preclinical and clinical data involve use of polymyxins, tetracyclines, and sulbactam, alone and in combination. As the number of viable treatment options is limited, combination therapy with a polymyxin is often used for patients with CRAB infections, despite the significant risk of nephrotoxicity. However, no treatment regimen has been found to reduce mortality, which exceeds 40% across most studies, or substantially improve clinical response. While some newer agents, such as eravacycline and cefiderocol, have demonstrated in vitro activity, clinical efficacy has not been fully established. New agents with clinically relevant activity against CRAB isolates and favorable toxicity profiles are sorely needed.
Collapse
Affiliation(s)
- J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Vibert Putra
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
36
|
Abstract
Acinetobacter spp. have become of increased clinical importance as studies have shown the antimicrobial resistant potential of these species. Efflux pumps can lead to reduced susceptibility to a variety of antibiotics and are present in large number across Acinetobacter spp. There are six families of efflux pumps that have been shown to be of clinical relevance: the major facilitator superfamily (MFS), small multidrug resistance (SMR) family, ATP-binding cassette (ABC) family, multidrug and toxic compound extrusion (MATE) family, proteobacterial antimicrobial compound efflux (PACE) family, and the resistance-nodulation-division (RND) family. Much work has been done for understanding and characterizing the roles these efflux pumps play in relation to antimicrobial resistance and the physiology of these bacteria. RND efflux pumps, with their expansive substrate profiles, are a major component of Acinetobacter spp. antimicrobial resistance. New discoveries over the last decade have shed light on the complex regulation of these efflux pumps, leading to greater understanding and the potential of slowing the reduced susceptibility seen in these bacterial species.
Collapse
|
37
|
Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021; 10:pathogens10030373. [PMID: 33808905 PMCID: PMC8003822 DOI: 10.3390/pathogens10030373] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative ESKAPE microorganism that poses a threat to public health by causing severe and invasive (mostly nosocomial) infections linked with high mortality rates. During the last years, this pathogen displayed multidrug resistance (MDR), mainly due to extensive antibiotic abuse and poor stewardship. MDR isolates are associated with medical history of long hospitalization stays, presence of catheters, and mechanical ventilation, while immunocompromised and severely ill hosts predispose to invasive infections. Next-generation sequencing techniques have revolutionized diagnosis of severe A. baumannii infections, contributing to timely diagnosis and personalized therapeutic regimens according to the identification of the respective resistance genes. The aim of this review is to describe in detail all current knowledge on the genetic background of A. baumannii resistance mechanisms in humans as regards beta-lactams (penicillins, cephalosporins, carbapenems, monobactams, and beta-lactamase inhibitors), aminoglycosides, tetracyclines, fluoroquinolones, macrolides, lincosamides, streptogramin antibiotics, polymyxins, and others (amphenicols, oxazolidinones, rifamycins, fosfomycin, diaminopyrimidines, sulfonamides, glycopeptide, and lipopeptide antibiotics). Mechanisms of antimicrobial resistance refer mainly to regulation of antibiotic transportation through bacterial membranes, alteration of the antibiotic target site, and enzymatic modifications resulting in antibiotic neutralization. Virulence factors that may affect antibiotic susceptibility profiles and confer drug resistance are also being discussed. Reports from cases of A. baumannii coinfection with SARS-CoV-2 during the COVID-19 pandemic in terms of resistance profiles and MDR genes have been investigated.
Collapse
|
38
|
Xu J, Zhu Z, Chen Y, Wang W, He F. The Plasmid-Borne tet(A) Gene Is an Important Factor Causing Tigecycline Resistance in ST11 Carbapenem-Resistant Klebsiella pneumoniae Under Selective Pressure. Front Microbiol 2021; 12:644949. [PMID: 33717043 PMCID: PMC7943888 DOI: 10.3389/fmicb.2021.644949] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence and prevalence of tigecycline-resistant Klebsiella pneumoniae have seriously compromised the effectiveness of antimicrobial agents in the treatment of infections. To explore the role of the plasmid-borne tet(A) gene in tigecycline resistance in carbapenem-resistant K. pneumoniae (CRKP), a total of 63 CRKP isolates were collected from a tertiary hospital in Hangzhou, China. The minimum inhibitory concentration (MIC) of tigecycline, mutation rate of tet(A) gene, genetic surroundings of tet(A)-carrying transmissible plasmid and the contribution of tet(A) mutation to tigecycline resistance were analyzed using antimicrobial susceptibility test, whole-genome sequencing, tigecycline resistance evolution experiment, and plasmid conjugation experiment. Our results showed that 52.4% (33 isolates) of the test isolates carried the tet(A) gene; among them, 75.8% (25 isolates) exhibited a tigecycline non-susceptible phenotype (MIC = 4 mg/L). Three clonal groups (cluster I, cluster II, and cluster III) were identified in these tet(A)-bearing isolates. All 17 isolates belonged to serotype KL21 (cluster I), which differed by only 13 SNPs, suggesting a clonal spread of tet(A)-positive ST11 K. pneumoniae with serotype KL21 occurred in the sampling hospital. The induction of tigecycline resistance experiments showed that 71.4% of strains evolved tet(A) mutations and developed a high-level tigecycline resistance. Eight amino acid substitutions were identified in these mutants. The most common amino acid substitution was A370V, followed by S251A and G300E. Twelve isolates carrying tet(A) mutants succeeded in the filter mating experiment with a conjugation efficiency of 10-3-10-8. Tigecycline MICs in E. coli EC600 transconjugants with a mutated tet(A) were 2 to 8-fold higher than those in E. coli EC600 transconjugants with a wild-type tet(A). One ColRNAI/IncFII type and two IncFII type tet(A)-bearing conjugative plasmids were identified in this study, including a class 1 integron containing multiple antibiotic resistance genes, i.e., tet(A), qnrS1, bla LAP- 2, catA2, sul2, and dfrA14. Our study revealed the wide-spread situation of plasmid-borne tet(A) gene in clinical CRKP, and mutation of tet(A) is a potential driven force that lead to tigecycline resistance.
Collapse
Affiliation(s)
- Juan Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Zhongliang Zhu
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yanmin Chen
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weizhong Wang
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Fang He
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
39
|
Verma P, Tiwari M, Tiwari V. Efflux pumps in multidrug-resistant Acinetobacter baumannii: Current status and challenges in the discovery of efflux pumps inhibitors. Microb Pathog 2021; 152:104766. [PMID: 33545327 DOI: 10.1016/j.micpath.2021.104766] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Acinetobacter baumannii is an ESKAPE pathogen known to cause fatal nosocomial infections. With the surge of multidrug resistance (MDR) in the bacterial system, effective treatment measures have become very limited. The MDR in A. baumannii is contributed by various factors out of which efflux pumps have gained major attention due to their broad substrate specificity and wide distribution among bacterial species. The efflux pumps are involved in the MDR as well as contribute to other physiological processes in bacteria, therefore, it is critically important to inhibit efflux pumps in order to combat emerging resistance. The present review provides insight about the different efflux pump systems in A. baumannii and their role in multidrug resistance. A major focus has been put on the different strategies and alternate therapeutics to inhibit the efflux system. This includes use of different efflux pump inhibitors-natural, synthetic or combinatorial therapy. The use of phage therapy and nanoparticles for inhibiting efflux pumps have also been discussed here. Moreover, the present review provides the knowledge of barriers in development of efflux pump inhibitors (EPIs) and their approval for commercialization. Here, different prospectives have been discussed to improve the therapeutic development process and make it more compatible for clinical use.
Collapse
Affiliation(s)
- Privita Verma
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
40
|
Li J, Xu Q, Ogurek S, Li Z, Wang P, Xie Q, Sheng Z, Wang M. Efflux Pump AcrAB Confers Decreased Susceptibility to Piperacillin-Tazobactam and Ceftolozane-Tazobactam in Tigecycline-Non-Susceptible Klebsiella pneumoniae. Infect Drug Resist 2020; 13:4309-4319. [PMID: 33273833 PMCID: PMC7705282 DOI: 10.2147/idr.s279020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction Drug efflux pumps are critical for resistance in Gram-negative organisms, but there are limited data on the role they play in decreased susceptibility to β-lactam/β-lactamase inhibitor combinations. In this study, we aimed to investigate the impact of efflux pump AcrAB on piperacillin–tazobactam (TZP) and ceftolozane–tazobactam (C/T) susceptibility in tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) strains. Methods A tigecycline gradient was used to obtain various TNSKP strains, and in conjunction with the gradient derived strains, a TNSKP clinical strain (TNSKP24) was also included. Minimum inhibitory concentrations (MICs) of antibiotics were determined by the broth microdilution method, and whole-genome sequencing (WGS) was carried out to analyze genomic changes. PCR and sequencing were performed to confirm mutations in ramR, acrR, and the intergenic region of ramR-romA, and qRT-PCR was applied to evaluate levels of gene expression. In-frame acrB knockout and complementation were performed in 3 TNSKP strains. Results Two derivatives of K. pneumoniae K2606 (K2606-4 and K2606-16) and TNSKP24 overexpressed efflux pump AcrAB were obtained for further study. The MICs of TZP and C/T exhibited a 4- to 8-fold increase in K2606-4 and K2606-16, respectively, when compared with K2606 (TZP, 2/4 μg/mL; C/T, 0.25/4 μg/mL). Deletion of acrB decreased the MICs of TZP and C/T by 4- to 16-fold in TNSKP24, K2606-4, and K2606-16, respectively, and complementation of acrB increased the MICs of these agents. MICs of clavulanate, sulbactam, and avibactam in the presence of β-lactam compounds did not change after acrB deletion and subsequent introduction of complementation mutants. Conclusion This study highlights that decreased susceptibility to TZP and C/T could be caused by the multidrug efflux pump AcrAB in TNSKP strains.
Collapse
Affiliation(s)
- Junjie Li
- Department of Respiratory and Critical Care Medicine, Shanghai Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qingqing Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Peiyun Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zike Sheng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Beheshti M, Ardebili A, Beheshti F, Lari AR, Siyadatpanah A, Pournajaf A, Gautam D, Dolma KG, Nissapatorn V. Tetracycline resistance mediated by tet efflux pumps in clinical isolates of Acinetobacter baumannii. Rev Inst Med Trop Sao Paulo 2020; 62:e88. [PMID: 33206862 PMCID: PMC7669276 DOI: 10.1590/s1678-9946202062088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/18/2020] [Indexed: 01/30/2023] Open
Abstract
Acinetobacter baumannii is one of the most frequent nosocomial pathogen capable of acquiring resistance to different antimicrobials. The aim of this study was to investigate the activity of tetracycline, doxycycline and minocycline, the prevalence of tet(A) and tet(B) determinants, and the role of efflux pump in tetracycline resistance among the A. baumannii clinical isolates. Susceptibility of 98 A. baumannii isolates to tetracyclines was evaluated by disk diffusion method. The presence of active efflux pump was investigated by determination of the minimum inhibitory concentration (MIC) of tetracycline using the carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Polymerase chain reaction (PCR) was performed to investigate the presence of tet(A) and tet(B) determinants in tetracycline-resistant isolates. The rate of resistance to tetracycline, doxycycline and minocycline was 47.95%, 0%, and 30.61%, respectively. Among the 47 tetracycline-resistant isolates, 29.79% were originated from burned patients and showed MIC ranging from 128-256 μg/mL with both MIC 50 and MIC90 values of 256 μg/mL, while 70.21% were from ventilator-associated pneumonia (VAP) patients and had MIC values ranging from 32-1024 μg/mL, with MIC50 and MIC90 of 512 μg/mL and 1024 μg/mL, respectively. The tet(B) gene was found in 61.7% of tetracycline-resistant isolates, while none of the isolates carried the tet(A) gene. CCCP led to 2-128-fold reduction in tetracycline MIC of the tested isolates. The results showed that doxycycline and minocycline are promising agents for the treatment of A. baumannii infections. This study has also revealed the role of efflux activity in the resistance to tetracycline of A. baumannii isolates. The emergence of resistance to these agents is likely due to the spread of clones presenting with a higher prevalence of resistance determinants.
Collapse
Affiliation(s)
- Maryam Beheshti
- Tehran University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Tehran, Iran
| | - Abdollah Ardebili
- Golestan University of Medical Sciences, Laboratory Sciences Research Center, Gorgan, Iran.,Golestan University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Gorgan, Iran
| | - Fatemeh Beheshti
- Semnan University of Medical Sciences, Research Center of Biotechnology, Semnan, Iran.,Semnan University of Medical Sciences, School of Medicine, Department of Biotechnology, Semnan, Iran.,Semnan University of Medical Sciences, Student Research Committee, Semnan, Iran
| | - Abdolaziz Rastegar Lari
- Iran University of Medical Sciences, Faculty of Medicine, Department of Microbiology, Tehran, Iran
| | - Abolghasem Siyadatpanah
- Birjand University of Medical Sciences, Ferdows School of Paramedical and Health, Birjand, Iran
| | - Abazar Pournajaf
- Babol University of Medical Sciences, Infectious Diseases and Tropical Medicine Research Center, Babol, Iran
| | - Deepan Gautam
- Walailak University, School of Allied Health Science, Research Excellence Center for Innovation and Health Products, Nakhon Si Thammarat, Thailand.,Sikkim Manipal Institute of Medical Sciences, Department of Microbiology, Sikkim, India
| | - Karma Gyurmey Dolma
- Sikkim Manipal Institute of Medical Sciences, Department of Microbiology, Sikkim, India
| | - Veeranoot Nissapatorn
- Walailak University, School of Allied Health Science, Research Excellence Center for Innovation and Health Products, Nakhon Si Thammarat, Thailand
| |
Collapse
|
42
|
Xia K, Han C, Xu J, Liang X. Transcriptome response of Acetobacter pasteurianus Ab3 to high acetic acid stress during vinegar production. Appl Microbiol Biotechnol 2020; 104:10585-10599. [PMID: 33156446 DOI: 10.1007/s00253-020-10995-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/01/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Acetic acid accumulation is a universal limiting factor to the vinegar manufacture because of the toxic effect of acetic acid on the acid producing strain, such as Acetobacter pasteurianus. In this study, we aimed to investigate the genome-wide transcriptional response of A. pasteurianus Ab3 to high acid stress during vinegar production. By comparing the transcriptional landscape of cells harvested from a long-term cultivation with high acidity (70 ± 3 g/L) to that of low acidity (10 ± 2 g/L), we demonstrated that 1005 genes were differentially expressed. By functional enrichment analysis, we found that the expression of genes related to the two-component systems (TCS) and toxin-antitoxin systems (TAS) was significantly regulated under high acid stress. Cells increased the genome stability to withstand the intracellular toxicity caused by the acetic acid accumulation by repressing the expression of transposases and integrases. Moreover, high acid stress induced the expression of genes involved in the pathways of peptidoglycan, ceramide, and phosphatidylcholine biosynthesis as well as the Tol-Pal and TonB-ExbB systems. In addition, we observed that cells increased and diversified the ATP production to resist high acid stress. Transcriptional upregulation in the pathways of pyrroloquinoline quinone (PQQ) synthesis and thiamine metabolism suggested that cells may increase the production of prosthetic groups to ensure the enzyme activity upon high acid stress. Collectively, the results of this study increase our current understanding of the acetic acid resistance (AAR) mechanisms in A. pasteurianus and provide opportunities for strain improvement and scaled-up vinegar production.Key Points• TCS and TAS are responsive to the acid stress and constitute the regulating networks.• Adaptive expression changes of cell envelope elements help cell resist acid stress.• Cells promote genome stability and diversify ATP production to withstand acid stress.
Collapse
Affiliation(s)
- Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chengcheng Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jun Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
- Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
43
|
Antibiotic Resistance Profiles, Molecular Mechanisms and Innovative Treatment Strategies of Acinetobacter baumannii. Microorganisms 2020; 8:microorganisms8060935. [PMID: 32575913 PMCID: PMC7355832 DOI: 10.3390/microorganisms8060935] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest challenges for the clinical sector and industry, environment and societal development. One of the most important pathogens responsible for severe nosocomial infections is Acinetobacter baumannii, a Gram-negative bacterium from the Moraxellaceae family, due to its various resistance mechanisms, such as the β-lactamases production, efflux pumps, decreased membrane permeability and altered target site of the antibiotic. The enormous adaptive capacity of A. baumannii and the acquisition and transfer of antibiotic resistance determinants contribute to the ineffectiveness of most current therapeutic strategies, including last-line or combined antibiotic therapy. In this review, we will present an update of the antibiotic resistance profiles and underlying mechanisms in A. baumannii and the current progress in developing innovative strategies for combating multidrug-resistant A. baumannii (MDRAB) infections.
Collapse
|