1
|
Moradi M, Montazeri EA, Rafiei Asl S, Pormohammad A, Farshadzadeh Z, Dayer D, Turner RJ. In Vitro and In Vivo Antibacterial and Antibiofilm Activity of Zinc Sulfate (ZnSO 4) and Carvacrol (CV) Alone and in Combination with Antibiotics Against Pseudomonas aeruginosa. Antibiotics (Basel) 2025; 14:367. [PMID: 40298523 PMCID: PMC12024227 DOI: 10.3390/antibiotics14040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Biofilm-embedded bacteria, such as Pseudomonas aeruginosa (P. aeruginosa), are highly resistant to antibiotics, making their treatment challenging. Plant-based natural compounds (PBCs) and metal(loid)-based antimicrobials (MBAs) are promising alternatives. This study evaluated the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and synergistic effects of zinc sulfate (ZnSO4), carvacrol (CV), and antibiotics (ciprofloxacin [CIP], tobramycin [TOB], and azithromycin [AZM]) against P. aeruginosa PAO1. Methods: The MIC and MBC of ZnSO4, CV, and antibiotics were determined using a 96-well plate method. Cytotoxicity was assessed via MTT assay. Fractional inhibitory concentration (FIC), fractional bactericidal concentration (FBC), minimal biofilm inhibition concentration (MBIC), and minimum biofilm eradication concentration (MBEC) indices were calculated for each combination of agents. Checkerboard assays identified interactions, and the effectiveness of combinations was further evaluated in a mouse chronic lung infection model with treatments delivered intratracheally, intraperitoneally, and orally. Results: TOB had the lowest MIC and MBC values, proving most effective against P. aeruginosa PAO1. Strong synergy was observed with CV + ZnSO4 (CV + Zn) combined with CIP, CV with CIP, and CV + Zn with TOB, as indicated by low FIC indices. CV + Zn with TOB and CV with TOB had low FBC indices, while CV + Zn with AZM showed antagonism. In vivo, intratracheal TOB + CV + Zn reduced lung inflammation and tissue involvement, yielding the best histopathological outcomes. The MIC of CIP and TOB was reduced 5-fold and 4-fold, respectively, when combined with CV + Zn. Conclusions: CV + Zn demonstrated strong synergistic effects with antibiotics and effectively managed P. aeruginosa lung infections in mice. These findings highlight its potential as an innovative therapy for biofilm-associated infections.
Collapse
Affiliation(s)
- Melika Moradi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran; (M.M.); (Z.F.)
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran; (M.M.); (Z.F.)
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Sirous Rafiei Asl
- Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
- Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Zahra Farshadzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran; (M.M.); (Z.F.)
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Dian Dayer
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
2
|
Knap K, Kwiecień K, Ochońska D, Reczyńska-Kolman K, Pamuła E, Brzychczy-Włoch M. Synergistic effect of antibiotics, α-linolenic acid and solvent type against Staphylococcus aureus biofilm formation. Pharmacol Rep 2024; 76:1456-1469. [PMID: 39466341 PMCID: PMC11582300 DOI: 10.1007/s43440-024-00669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND A promising approach to the treatment of bacterial infections involves inhibiting the quorum sensing (QS) mechanism to prevent the formation and growth of bacterial biofilm. While antibiotics are used to kill remaining bacteria, QS inhibitors (QSIs) allow for antibiotic doses to be reduced. This study focuses on evaluating the synergy between gentamicin sulphate (GEN), tobramycin (TOB), or azithromycin (AZM) with linolenic acid (LNA) against the formation of an early Staphylococcus aureus biofilm. METHODS Minimum biofilm inhibitory concentration (MBIC) was determined using the resazurin reduction assay for all antibiotics and LNA. The reduction of biofilm mass was assessed using the crystal violet (CV) assay. We have also evaluated the effect of dimethyl sulfoxide with TWEEN (DMSO_T) on early biofilm formation. Synergy was determined by metabolic activity assay and fractional biofilm inhibitory concentration (FBIC). RESULTS DMSO_T at a concentration of 1% enhanced early biofilm formation, but also decreased the doses of antibiotic needed to reduce the biofilm by up to 8 times. Adding LNA at a concentration of 32 µg/ml or 64 µg/ml allowed up to a 32-fold reduction of antibiotic doses for GEN and TOB and a 4-fold reduction for AZM. CONCLUSIONS LNA's use in combination with various antibiotics could reduce their doses and help fight drug-resistant bacteria in the biofilm.
Collapse
Affiliation(s)
- Karolina Knap
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | - Konrad Kwiecień
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | - Dorota Ochońska
- Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, Jagiellonian University Medical College, ul. Św. Anny 12, Kraków, 31-121, Poland
| | - Katarzyna Reczyńska-Kolman
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | - Elżbieta Pamuła
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, Al. Mickiewicza 30, Kraków, 30-059, Poland.
| | - Monika Brzychczy-Włoch
- Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, Jagiellonian University Medical College, ul. Św. Anny 12, Kraków, 31-121, Poland.
| |
Collapse
|
3
|
d’Agostino S, Macchietti L, Turner RJ, Grepioni F. From 0D-complex to 3D-MOF: changing the antimicrobial activity of zinc(II) via reaction with aminocinnamic acids. Front Chem 2024; 12:1430457. [PMID: 39040090 PMCID: PMC11260639 DOI: 10.3389/fchem.2024.1430457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Combining zinc nitrate with 3- and/or 4- aminocinnamic acid (3-ACA and 4-ACA, respectively) leads to the formation of the 0D complex [Zn(4-AC)2(H2O)2], the 1D coordination polymer [Zn(3-AC)(4-AC)], and the 2D and 3D MOFs [Zn(3-AC)2]∙2H2O and [Zn(4-AC)2]∙H2O, respectively. These compounds result from the deprotonation of the acid molecules, with the resulting 3- and 4-aminocinnamate anions serving as bidentate terminal or bridging ligands. All solids were fully characterized via single crystal and powder X-ray diffraction and thermal techniques. Given the mild antimicrobial properties of cinnamic acid derivatives and the antibacterial nature of the metal cation, these compounds were assessed and demonstrated very good planktonic cell killing as well as inhibition of biofilm growth against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Simone d’Agostino
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| | - Laura Macchietti
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Fabrizia Grepioni
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Turner RJ. The good, the bad, and the ugly of metals as antimicrobials. Biometals 2024; 37:545-559. [PMID: 38112899 PMCID: PMC11101337 DOI: 10.1007/s10534-023-00565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
We are now moving into the antimicrobial resistance (AMR) era where more antibiotic resistant bacteria are now the majority, a problem brought on by both misuse and over use of antibiotics. Unfortunately, the antibiotic development pipeline dwindled away over the past decades as they are not very profitable compounds for companies to develop. Regardless researchers over the past decade have made strides to explore alternative options and out of this we see revisiting historical infection control agents such as toxic metals. From this we now see a field of research exploring the efficacy of metal ions and metal complexes as antimicrobials. Such antimicrobials are delivered in a variety of forms from metal salts, alloys, metal complexes, organometallic compounds, and metal based nanomaterials and gives us the broad term metalloantimicrobials. We now see many effective formulations applied for various applications using metals as antimicrobials that are effective against drug resistant strains. The purpose of the document here is to step aside and begin a conversation on the issues of use of such toxic metal compounds against microbes. This critical opinion mini-review in no way aims to be comprehensive. The goal here is to understand the benefits of metalloantimicrobials, but also to consider strongly the disadvantages of using metals, and what are the potential consequences of misuse and overuse. We need to be conscious of the issues, to see the entire system and affect through a OneHealth vision.
Collapse
Affiliation(s)
- Raymond J Turner
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada.
| |
Collapse
|
5
|
Pormohammad A, Firrincieli A, Salazar-Alemán DA, Mohammadi M, Hansen D, Cappelletti M, Zannoni D, Zarei M, Turner RJ. Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0062823. [PMID: 37409940 PMCID: PMC10433965 DOI: 10.1128/spectrum.00628-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The constant, ever-increasing antibiotic resistance crisis leads to the announcement of "urgent, novel antibiotics needed" by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- CCrest Laboratories, Inc., Montreal, Quebec, Canada
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo, Italy
| | - Daniel A. Salazar-Alemán
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|