1
|
Tahlan S, Singh S, Dey H, Kaira M, Pandey KC. Recent research frontiers of heterocycles as antifungal Agents: Insights from the past five years. Eur J Med Chem 2025; 295:117801. [PMID: 40440790 DOI: 10.1016/j.ejmech.2025.117801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/13/2025] [Accepted: 05/22/2025] [Indexed: 06/11/2025]
Abstract
This review explores the growing global concern of fungal infections, particularly in immunocompromised individuals, and highlights the critical need for improved antifungal therapies. With the rise of multidrug-resistant strains, such as Candida auris and Aspergillus fumigatus, current antifungal treatments face limitations, including toxicity, low bioavailability, and the development of resistance. Heterocyclic compounds, particularly those targeting key fungal enzymes and pathways, are emerging as promising candidates in the fight against these infections. The review focuses on the structural diversity and mechanisms of action of heterocyclic antifungal agents, including azoles, echinocandins, novel dual-target inhibitors, and more. Additionally, it discusses advancements in drug design, delivery systems, and the role of artificial intelligence in identifying new compounds. By addressing gaps in existing therapies and presenting new insights into heterocyclic drug development, this study aims to guide future research towards more effective and safer antifungal treatments.
Collapse
Affiliation(s)
- Sumit Tahlan
- ICMR-National Institute of Malaria Research, New Delhi, 11007, India.
| | - Sucheta Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Hrithik Dey
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India, 201306.
| | - Meenakshi Kaira
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India, 201306.
| | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, New Delhi, 11007, India.
| |
Collapse
|
2
|
Kumar G, Kalita AH, Ahmed J, Saxena S, Sharma S, Mehta A, Sharma A, Das Kurmi B, Das Gupta G, Thakur S. Advancing fungal keratitis treatment: transitioning from conventional amphotericin B therapy to nanocarrier-based delivery systems. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04268-8. [PMID: 40381011 DOI: 10.1007/s00210-025-04268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025]
Abstract
Fungal keratitis (FK) is a serious, vision-threatening ocular infection caused by various fungal species. Poor outcomes often leave patients with corneal opacification and loss of vision, occasionally advancing to enucleation due to the lack of effective treatment options. Several health agencies have outlined topical antifungal medications as first-line approaches in treating FK. Commercially available topical antifungal formulations are natamycin (5%), voriconazole (1%), fluconazole (0.2-0.5%), itraconazole (1%), and amphotericin B (0.15%). Different molecules remain effective against various species of fungus. However, amphotericin B (Am-B) is a broad-spectrum antifungal agent, and when all other medications fail, Am-B is the only drug of choice. However, its clinical application is hindered due to the non-availability of ophthalmic marketed products because of its poor pharmaco-technical factors (low solubility, poor permeation, unstable in solutions of pH 3-10, etc.). Therefore, clinicians are forced to use Am-B injectables off-label by preparing the diluted concentrations of Am-B for ophthalmic use. These solutions have limitations, viz., poor stability, rapid precorneal clearance, and limited drug retention. Thus, it is highly essential for the development of advanced ophthalmic novel drug delivery systems so that the therapeutic and toxic profiles of drugs might improve. Therefore, the present review explores the limitations of conventional Am-B therapy and highlights the transformative potential of nanocarrier-based delivery systems in FK management. It discusses various nanocarrier strategies, their pharmacokinetics, and preclinical and clinical advancements. By bridging the gap between conventional treatments and modern nanotechnology, this review underscores the potential of nanocarriers to revolutionize FK treatment, offering more effective and patient-friendly therapeutic solutions.
Collapse
Affiliation(s)
- Gourav Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Aians H Kalita
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Jabin Ahmed
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shubhi Saxena
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Subhi Sharma
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Astha Mehta
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Amit Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
3
|
Vahedi-Shahandashti R, Lass-Flörl C. In vitro activity of SF001: a next-generation polyene versus amphotericin B. Antimicrob Agents Chemother 2025:e0032225. [PMID: 40261080 DOI: 10.1128/aac.00322-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025] Open
Abstract
SF001, a next-generation polyene drug, offers broad-spectrum fungicidal activity with less potential for toxicity than classic polyene amphotericin B (AmB). This study compared the in vitro activity of SF001 and amphotericin B against Candida and Aspergillus species. SF001 demonstrated activity comparable to AmB against Candida isolates (MIC50/90 of 0.25/1 and 0.5/0.5 mg/L, respectively). However, Aspergillus isolates exhibited higher susceptibility to SF001 than AmB (MIC50/90 of 0.5/1 and 1/4 mg/L, respectively), notably including AmB-resistant species.
Collapse
Affiliation(s)
- Roya Vahedi-Shahandashti
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| |
Collapse
|
4
|
Fasal N, Malleshappa V, Kurien M, Burad DK. Successful Primary Oral Isavuconazole Therapy in Acute Invasive Fungal Sinusitis with Triple Fungal Species and Multiple Comorbidities. Indian J Otolaryngol Head Neck Surg 2025; 77:1033-1036. [PMID: 40070726 PMCID: PMC11890808 DOI: 10.1007/s12070-024-05247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
Reporting the first successful treatment with oral Isavuconazole as primary antifungal agent following debridement, in an immunocompromised adult male with acute invasive fungal sinusitis involving multiple simultaneous fungal species. His comorbidities were retroviral and COVID infections, uncontrolled diabetes, ketoacidosis, and renal failure. A two-year follow-up revealed no recurrence.
Collapse
Affiliation(s)
- Nadia Fasal
- Department of ENT, Naruvi Hospitals, Vellore, Tamil Nadu 632004 India
| | | | - Mary Kurien
- Department of ENT, Naruvi Hospitals, Vellore, Tamil Nadu 632004 India
| | | |
Collapse
|
5
|
Akbar Z, Aamir M, Saleem Z, Khan MR. Antifungal-drug interactions in oncology: A cross-sectional study highlighting the role of pharmacists. J Oncol Pharm Pract 2025:10781552251316184. [PMID: 39881425 DOI: 10.1177/10781552251316184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
STUDY OBJECTIVE Complex pharmacotherapy in cancer patients increases the likelihood of drug-drug interactions (DDIs). Pharmacists play a critical role in the identification and management of DDIs. The aim of present study was to evaluate the role of pharmacist in identifying antifungal drug interactions in cancer patients and providing relevant recommendations. METHODOLOGY A retrospective, cross-sectional study was conducted to identify antifungal drug interactions over the period of 5 years (2019-2023) among cancer patients. Electronic medical record of 384 hospitalized patients receiving systemic antifungal therapy were reviewed. Severity of interactions and risk classification were made using UptoDate® LexidrugTM software. Pharmacists' recommendations regarding DDIs were also documented. Descriptive statistics and logistic regression were applied to interpret results. RESULTS Antifungals were more frequently prescribed to adult patients (53.9%). Female cancer patients were significantly more likely to encounter DDIs than males (p < 0.003). Type of cancer and fungal infections were significantly associated with incidence of DDIs (p < 0.01; p = 0.000). Pharmacist identified DDIs in 53.9% antifungal prescriptions with 22.2% classified as major interactions. A substantial proportion of these interactions involved voriconazole (40.1%). Majority of pharmacist's recommendations included dose optimization of voriconazole (10.4%), close monitoring of RFTs (8.9%) and withholding amphotericin (5.2%) during chemotherapy. All of the recommendations made by pharmacists were accepted by physicians (100%). CONCLUSION The findings indicate that pharmacists identified DDIs in 53.9% of prescriptions and all of their recommendations were accepted by physicians. This highlights the critical role of pharmacists in detecting potential interactions, ensuring medication safety, and minimizing adverse effects associated with complex pharmacotherapy.
Collapse
Affiliation(s)
- Zunaira Akbar
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
- Riphah Institute of Pharmaceutical sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Aamir
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Rehan Khan
- Department of Pharmacy, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| |
Collapse
|
6
|
Souza CMD, Bezerra BT, Mellon DA, de Oliveira HC. The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100341. [PMID: 39897698 PMCID: PMC11786858 DOI: 10.1016/j.crmicr.2025.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Fungal infections kill more than 3 million people every year. This high number reflects the significant challenges that treating these diseases worldwide presents. The current arsenal of antifungal drugs is limited and often accompanied by high toxicity to patients, elevated treatment costs, increased frequency of resistance rates, and the emergence of naturally resistant species. These treatment challenges highlight the urgency of developing new antifungal therapies, which could positively impact millions of lives each year globally. Our review offers an overview of the antifungal drugs currently available for treatment, presents the status of new antifungal drugs under clinical study, and explores ahead to future candidates that aim to help address this important global health issue.
Collapse
Affiliation(s)
| | | | - Daniel Agreda Mellon
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Haroldo Cesar de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
7
|
Zhang H, Yan R, Liu Y, Yu M, He Z, Xiao J, Li K, Liu G, Ning Q, Li Y. Progress in antileishmanial drugs: Mechanisms, challenges, and prospects. PLoS Negl Trop Dis 2025; 19:e0012735. [PMID: 39752369 PMCID: PMC11698350 DOI: 10.1371/journal.pntd.0012735] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania parasites, continues to pose global health challenges. Current treatments face issues like resistance, safety, efficacy, and cost. This review covers the discovery, mechanisms of action, clinical applications, and limitations of key antileishmanial agents: pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine. Despite toxicity and resistance (antimonials), hospitalization needs and side effects (amphotericin B), regional efficacy variability (miltefosine), inconsistent outcomes (paromomycin), and severe side effects (pentamidine), these drugs are vital. Novel strategies to overcome the deficiencies of current therapies are highlighted, including combination regimens, advanced drug delivery systems, and immunomodulatory approaches. Comprehensive and cooperative efforts are crucial to fully realize the potential of advancements in antileishmanial pharmacotherapy and to reduce the unacceptable worldwide burden imposed by this neglected disease.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Yan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Mengtao Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Xiao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Kaijie Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Gang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Omelchuk O, Bychkova E, Efimova S, Grammatikova N, Zatonsky G, Dezhenkova L, Solovieva S, Ostroumova O, Tevyashova A, Shchekotikhin A. Mono- N-alkylation of Amphotericin B and Nystatin A 1 and Its Amides: Effect on the In Vitro Activity, Cytotoxicity and Permeabilization of Model Membranes. Antibiotics (Basel) 2024; 13:1177. [PMID: 39766567 PMCID: PMC11672593 DOI: 10.3390/antibiotics13121177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: In 2022, the World Health Organization highlighted the necessity for the development of new antifungal agents. Polyene antibiotics are characterized by a low risk of drug resistance; however, their use is limited by low solubility and severe side effects. Methods: A series of N-alkylated derivatives of amphotericin B and nystatin A1 as well as their N-(2-hydroxyethyl)amides were synthesized. Their antifungal activity was evaluated against various Candida strains and Aspergillus fumigatus using the broth microdilution method. Cytotoxicity was assessed using an MTT assay on human embryonic kidney cells HEK293 and human skin fibroblast cells hFB-hTERT6, as well as a hemolysis assay on erythrocytes. Membrane activity was analyzed by fluorimetric measurement of calcein leakage from model liposomes. Results: Derivatives containing the N-(hydroxyethyl)amino)ethyl fragment (compounds 3 and 4) exhibited relatively high antifungal activity, as did N-(2-hydroxyethyl)amides 5 and 9. Bis-modified compounds 6 and 10 did not outperform their mono-modified analogues in terms of activity or cytotoxicity. The mono-N-alkylated compound 3 showed the highest activity/toxicity ratio, which correlated well with its selectivity for ergosterol-containing model membranes. Discussion: Combining two successful modifications does not necessarily improve the activity/toxicity ratio of polyenes. Further studies can be performed for the optimization of carboxyl group of 3.
Collapse
Affiliation(s)
- Olga Omelchuk
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia
| | - Elena Bychkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia
| | - Svetlana Efimova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia
| | | | - George Zatonsky
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia
| | - Lyubov Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia
| | - Svetlana Solovieva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia
| | - Olga Ostroumova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia
| | - Anna Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, Moscow 119021, Russia
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | | |
Collapse
|
9
|
Zhang X, Yang Y, Wang M, Qi H, Li C, Zhao L. Application of Physiologically Based Pharmacokinetic Model to Compare the Biodistribution of Liposomal Amphotericin B With Conventional Amphotericin B Deoxycholate in Humans. Biopharm Drug Dispos 2024; 45:208-219. [PMID: 39722430 DOI: 10.1002/bdd.2406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Amphotericin B (AmB) has been a cornerstone in the treatment of invasive fungal infections for over 6 decades. Compared with conventional amphotericin B deoxycholate (AmB-DOC), liposomal amphotericin B has comparable efficacy but less nephrotoxicity. The main purpose of this study was to investigate the reason why liposomal amphotericin B has similar therapeutic effects but lower toxicity and the differences of distribution in humans between liposomal amphotericin B and AmB-DOC. To compare the distribution of liposomal amphotericin B and AmB-DOC in humans, the physiologically based pharmacokinetic (PBPK) model was established by bottom-up stepwise method. A rat PBPK model was established firstly, then verified in mouse level in consideration of interspecies differences in physiological- and drug-specific parameters, and finally the PBPK model was extrapolated to humans. Based on preclinical and clinical pharmacokinetic (PK) studies, the AmB-DOC and liposomal amphotericin B PBPK model were established, respectively. The simulated results of human PBPK model showed that the liposomal formulation changed the pharmacokinetic characteristics of AmB. Compared with AmB-DOC, the plasma exposure of liposomal formulation was higher, but the renal exposure was significantly reduced.
Collapse
Affiliation(s)
- Xueyuan Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Pharmacology, CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang, China
| | - Yingying Yang
- Department of Clinical Pharmacology, CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang, China
| | - Manman Wang
- Department of Clinical Pharmacology, CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang, China
| | - Huanhuan Qi
- Department of Clinical Pharmacology, CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang, China
| | - Chunlei Li
- Department of Clinical Pharmacology, CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Nguyen HD, Vo LYN, Ho ATN. Complete central airway obstruction from aggressive mucormycosis in a patient with acute myeloid leukaemia. BMJ Case Rep 2024; 17:e263366. [PMID: 39608827 DOI: 10.1136/bcr-2024-263366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
A woman in her 30s with type 2 diabetes and morbid obesity presented with flu-like symptoms, persistent cough and mild dyspnoea, unresponsive to pneumonia treatment. Diagnosed with acute myeloid leukaemia, she was started on induction chemotherapy. Despite prophylactic antifungal and antibacterial therapy, she developed a fever, a right upper lobe opacity and a complete airway obstruction by a large endobronchial mass in the right main stem. Bronchoscopy with biopsy and PCR confirmed mucormycosis. Although a combined antifungal regimen was started promptly, her condition worsened, leading to acute respiratory distress syndrome, tracheo-pleural fistulas and extensive necrotic mucosa in the airways. Surgical intervention was not feasible, and she was transitioned to hospice. Complete central airway obstruction and trachea-pleural fistula are rare manifestations of pulmonary mucormycosis. We conduct a literature review of endobronchial mucormycosis to highlight the importance of early recognition and a multimodal treatment approach to improve outcomes.
Collapse
Affiliation(s)
- Hieu Duong Nguyen
- Cardiovascular Research Laboratories, Methodist Hospitals Inc, Merrillville, Indiana, USA
- Pham Ngoc Thach University of Medicine, Ho Chi Minh, Viet Nam
| | - Le Y Nhi Vo
- Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - An Thi Nhat Ho
- Interventional Pulmonology, Oncomedicine division, Banner MD Anderson Cancer Center, Gilbert, Arizona, USA
| |
Collapse
|
11
|
Marena GD, Ruiz-Gaitán A, Bauab TM, Chorilli M. Improving antifungal lipid-based drug delivery against Candida: a review. Expert Opin Drug Deliv 2024:1-15. [PMID: 39470039 DOI: 10.1080/17425247.2024.2421402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Fungal infections, particularly those caused by Candida spp. have increased in recent years. A primary contributor to this surge was the COVID-19 pandemic, where many hospitalized patients had secondary fungal infections. Additionally, the emergence of resistant and multi-resistant fungal strains has become increasingly problematic due to the limited therapeutic options available in antifungal treatments. AREAS COVERED This review presents a comprehensive analysis of recent studies focused on the development and characterization of lipid-based nanosystems as an emerging and promising therapeutic alternative. These systems have been evaluated for their potential to deliver antifungal agents specifically targeting resistant Candida spp. strains, offering a controlled and sustained release of drugs. EXPERT OPINION Lipid-based nanomaterials are promising tools for the controlled and sustained release of drugs, particularly in treating Candida spp. infections. Although substantial research has been dedicated to development of these nanomaterials, only a few have reached clinical application, such as liposomal amphotericin B, for example. Therefore, it is critical to push forward with advancements to bring these nanomedicines into clinical practice, where they can contribute meaningfully to mitigating the challenge of resistant and lethal fungal strains.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Alba Ruiz-Gaitán
- Department of Medical Microbiology, University and Polytechnic La Fe Hospital, Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
12
|
Solanki R, Makwana N, Kumar R, Joshi M, Patel A, Bhatia D, Sahoo DK. Nanomedicines as a cutting-edge solution to combat antimicrobial resistance. RSC Adv 2024; 14:33568-33586. [PMID: 39439838 PMCID: PMC11495475 DOI: 10.1039/d4ra06117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a critical threat to global public health, necessitating the development of novel strategies. AMR occurs when bacteria, viruses, fungi, and parasites evolve to resist antimicrobial drugs, making infections difficult to treat and increasing the risk of disease spread, severe illness, and death. Over 70% of infection-causing microorganisms are estimated to be resistant to one or several antimicrobial drugs. AMR mechanisms include efflux pumps, target modifications (e.g., mutations in penicillin-binding proteins (PBPs), ribosomal subunits, or DNA gyrase), drug hydrolysis by enzymes (e.g., β-lactamase), and membrane alterations that reduce the antibiotic's binding affinity and entry. Microbes also resist antimicrobials through peptidoglycan precursor modification, ribosomal subunit methylation, and alterations in metabolic enzymes. Rapid development of new strategies is essential to curb the spread of AMR and microbial infections. Nanomedicines, with their small size and unique physicochemical properties, offer a promising solution by overcoming drug resistance mechanisms such as reduced drug uptake, increased efflux, biofilm formation, and intracellular bacterial persistence. They enhance the therapeutic efficacy of antimicrobial agents, reduce toxicity, and tackle microbial resistance effectively. Various nanomaterials, including polymeric-based, lipid-based, metal nanoparticles, carbohydrate-derived, nucleic acid-based, and hydrogels, provide efficient solutions for AMR. This review addresses the epidemiology of microbial resistance, outlines key resistance mechanisms, and explores how nanomedicines overcome these barriers. In conclusion, nanomaterials represent a versatile and powerful approach to combating the current antimicrobial crisis.
Collapse
Affiliation(s)
- Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Nilesh Makwana
- School of Life Sciences, Jawaharlal Nehru University New Delhi India
| | - Rahul Kumar
- Dr B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences New Delhi India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC) Gandhinagar Gujarat India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University Patan 384265 Gujarat India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University Ames IA USA
| |
Collapse
|
13
|
Luong JHT. Functional Biomaterials and Biomaterial Composites with Antimicrobial Properties. J Funct Biomater 2024; 15:267. [PMID: 39330242 PMCID: PMC11433040 DOI: 10.3390/jfb15090267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
AMR occurs when bacteria, viruses, fungi, and parasites no longer respond to antimicrobial medicines, including antibiotics, antivirals, antifungals, and antiparasitics [...].
Collapse
Affiliation(s)
- John H T Luong
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
| |
Collapse
|
14
|
Lee JSF, Cohen RM, Khan RA, Burry J, Casas EC, Chung HY, Costa LH, Ford N, Galvao DLN, Giron N, Jarvis JN, Mondal M, Odionyi JJ, Casas CP, Rangaraj A, Rode J, Ruffell C, Sued O, Ribeiro I. Paving the way for affordable and equitable liposomal amphotericin B access worldwide. Lancet Glob Health 2024; 12:e1552-e1559. [PMID: 39151989 PMCID: PMC11345448 DOI: 10.1016/s2214-109x(24)00225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 08/19/2024]
Abstract
Amphotericin B has long been crucial for treating many serious infectious diseases, such as invasive fungal infections and visceral leishmaniasis, particularly for patients who are immunocompromised, including those with advanced HIV infection. The conventional amphotericin B deoxycholate formulation has largely been replaced in high-income countries with liposomal amphotericin B (LAmB), which has many advantages, including lower rates of adverse events, such as nephrotoxicity and anaemia. Despite an evident need for LAmB in low-income and middle-income countries, where mortality from invasive fungal infections is still substantial, many low-income and middle-income countries still often use the amphotericin B deoxycholate formulation because of a small number of generic formulations and the high price of the originator LAmB. The pricing of LAmB is also highly variable between countries. Overcoming supply barriers through the availability of additional quality-assured, generic formulations of LAmB at accessible prices would substantially facilitate equitable access and have a substantial effect on mortality attributable to deadly fungal infections.
Collapse
Affiliation(s)
| | - Rachel M Cohen
- Drugs for Neglected Diseases initiative, New York, NY, USA
| | | | - Jessica Burry
- Médecins Sans Frontières Access Campaign, Geneva, Switzerland
| | | | - Han Yang Chung
- Drugs for Neglected Diseases Initiative, Kuala Lumpur, Malaysia
| | | | - Nathan Ford
- World Health Organization, Geneva, Switzerland
| | | | - Nora Giron
- Pan American Health Organization Strategic Fund, Washington, DC, USA
| | - Joseph N Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; UK & Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mousumi Mondal
- Drugs for Neglected Diseases Initiative, New Delhi, India
| | | | | | - Ajay Rangaraj
- Department of HIV, Hepatitis and STIs, World Health Organization, Geneva, Switzerland
| | - Joelle Rode
- Drugs for Neglected Diseases Initiative, Rio de Janeiro, Brazil
| | - Carol Ruffell
- Drugs for Neglected Diseases Initiative Global Antibiotic R&D Partnership, Cape Town, South Africa
| | - Omar Sued
- Pan American Health Organization, Washington, DC, USA
| | - Isabela Ribeiro
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| |
Collapse
|
15
|
Gandhewar AM, Hande A, Akolkar S. Mucormycosis, the Black Fungus in the Post-COVID-19 Pandemic: A Case Report with Review of Literature. Cureus 2024; 16:e61473. [PMID: 38952606 PMCID: PMC11216117 DOI: 10.7759/cureus.61473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024] Open
Abstract
Mucormycosis, a concerning and often fatal fungal infection, has shown a significant rise in cases following the COVID-19 pandemic in India, particularly affecting patients with uncontrolled comorbidities such as diabetes mellitus and other immunocompromised individuals. Our case series examines five instances of mucormycosis, supported by appropriate radiographic and histopathological evidence correlating with clinical observations. Our review indicated that patients were experiencing ailments or undergoing treatments that compromised their immune systems. We analyzed additional epidemiological data, including common infection sites, gender predispositions, and mortality rates. Treatments were tailored based on symptom severity, encompassing both surgical and medical approaches. The primary reason for the rise in cases was linked to elevated glycaemic levels and weakened immunity among post-COVID-19 patients. The report provides a detailed explanation of the factors contributing to this correlation. Our findings underscore the critical importance of timely surgical intervention and advocate for further investigation into treatment efficacy and symptom monitoring specific to mucormycosis in post-COVID-19 patients in India.
Collapse
Affiliation(s)
- Aditi M Gandhewar
- Department of Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Alka Hande
- Department of Oral Pathology and Microbiology, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sakshi Akolkar
- Department of Oral Pathology and Microbiology, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
16
|
Akinosoglou K, Rigopoulos EA, Papageorgiou D, Schinas G, Polyzou E, Dimopoulou E, Gogos C, Dimopoulos G. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J Fungi (Basel) 2024; 10:278. [PMID: 38667949 PMCID: PMC11051097 DOI: 10.3390/jof10040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Amphotericin B (AmB) has long stood as a cornerstone in the treatment of invasive fungal infections (IFIs), especially among immunocompromised patients. However, the landscape of antifungal therapy is evolving. New antifungal agents, boasting novel mechanisms of action and better safety profiles, are entering the scene, presenting alternatives to AmB's traditional dominance. This shift, prompted by an increase in the incidence of IFIs, the growing demographic of immunocompromised individuals, and changing patterns of fungal resistance, underscores the continuous need for effective treatments. Despite these challenges, AmB's broad efficacy and low resistance rates maintain its essential status in antifungal therapy. Innovations in AmB formulations, such as lipid complexes and liposomal delivery systems, have significantly mitigated its notorious nephrotoxicity and infusion-related reactions, thereby enhancing its clinical utility. Moreover, AmB's efficacy in treating severe and rare fungal infections and its pivotal role as prophylaxis in high-risk settings highlight its value and ongoing relevance. This review examines AmB's standing amidst the ever-changing antifungal landscape, focusing on its enduring significance in current clinical practice and exploring its potential future therapeutic adaptations.
Collapse
Affiliation(s)
- Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Rio, Greece
| | | | - Despoina Papageorgiou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Georgios Schinas
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - Eleni Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | | | - Charalambos Gogos
- School of Medicine, University of Patras, 26504 Patras, Greece; (E.A.R.); (D.P.); (G.S.); (E.P.); (C.G.)
| | - George Dimopoulos
- 3rd Department of Critical Care, Evgenidio Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| |
Collapse
|
17
|
Zuccari G, Villa C, Iurilli V, Barabino P, Zorzoli A, Marimpietri D, Caviglia D, Russo E. AmBisome ® Formulations for Pediatrics: Stability, Cytotoxicity, and Cost-Effectiveness Studies. Pharmaceutics 2024; 16:466. [PMID: 38675127 PMCID: PMC11054559 DOI: 10.3390/pharmaceutics16040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Liposomal amphotericin B (Ambisome®) is the gold standard for the treatment and prevention of fungal infections both in the adult and pediatric populations. The lyophilized dosage form has to be reconstituted and diluted by hospital staff, but its management can be challenging due to the spontaneous tendency of amphotericin B to form aggregates with different biological activity. In this study, the colloidal stability of the liposomes and the chemical stability of amphotericin B were investigated over time at storage conditions. Three liposomal formulations of amphotericin B at 4.0 mg/mL, 2.0 mg/mL, and 0.2 mg/mL were prepared and assayed for changes regarding the dimensional distribution, zeta potential, drug aggregation state, and onset of by-products. Our analyses highlighted that the most diluted formulation, kept at room temperature, showed the greatest changes in the aggregation state of the drug and accordingly the highest cytotoxicity. These findings are clinically relevant since the lower dosages are addressed to the more vulnerable patients. Therefore, the centralization of the dilution of AmBisome® at the pharmacy is of fundamental importance for assuring patient safety, and at the same time for reducing medication waste, as we demonstrated using the cost-saving analysis of drug expense per therapy carried out at the G. Gaslini children hospital.
Collapse
Affiliation(s)
- Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy; (C.V.); (D.C.)
| | - Carla Villa
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy; (C.V.); (D.C.)
| | - Valentina Iurilli
- UOC—Unità Operativa Complessa, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (V.I.); (P.B.)
| | - Paola Barabino
- UOC—Unità Operativa Complessa, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (V.I.); (P.B.)
| | - Alessia Zorzoli
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, via Gerolamo Gaslini 5, 16147 Genoa, Italy; (A.Z.); (D.M.)
| | - Debora Caviglia
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy; (C.V.); (D.C.)
| | - Eleonora Russo
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy; (C.V.); (D.C.)
| |
Collapse
|
18
|
Anand N. Antiparasitic activity of the iron-containing milk protein lactoferrin and its potential derivatives against human intestinal and blood parasites. FRONTIERS IN PARASITOLOGY 2024; 2:1330398. [PMID: 39816822 PMCID: PMC11731944 DOI: 10.3389/fpara.2023.1330398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2025]
Abstract
An iron-containing milk protein named lactoferrin (Lf) has demonstrated antiparasitic and immunomodulatory properties against a variety of human parasites. This protein has shown its capability to bind and transport iron molecules in the vicinity of the host-pathogen environment. The ability of parasites to sequester the iron molecule and to increase their pathogenicity and survival depends on the availability of iron sources. Lf protein has suggested a iron chelating effect on parasites iron and, hence, has shown its antiparasitic effect. Since the parasites have a complex life cycle and have developed drug resistance, vaccines and other treatments are a handful. Therefore, therapeutic research focusing on natural treatment regimens that target the parasite and are non-toxic to host cells is urgently needed. The antiparasitic efficacy of Lf protein has been extensively studied over the past 40 years using both in vitro and in vivo studies. This review article highlighted past important studies on Lf protein that revealed its potential antiparasitic activity against various intracellular and extracellular intestinal or blood-borne human parasites. This review article structures the role of Lf protein in its various forms, such as native, peptide, and nanoformulation, laying the groundwork for its function as an antiparasitic agent and its possible known mechanisms of action.
Collapse
Affiliation(s)
- Namrata Anand
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
19
|
Zhong X, Yang J, Liu H, Yang Z, Luo P. Potential lipid-based strategies of amphotericin B designed for oral administration in clinical application. Drug Deliv 2023; 30:2161671. [PMID: 36601799 PMCID: PMC9828648 DOI: 10.1080/10717544.2022.2161671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Amphotericin B (AmB) is regarded as a first-line therapy against life-threatening invasive fungal infections. Due to its poor oral bioavailability, AmB is restricted to intravenous administration in clinical practice. As science continues to move forward, two lipid-based formulations are successfully developed for oral AmB administration, currently undergoing phase I clinical trials. Encouragingly, lipid-AmB conjugates with emulsions also exhibit a better bioavailability, which may be another strategy to design oral AmB formulation in clinical practice. Thus, this review mainly focused on the two lipid-based formulations in clinical trials, and discussed the potential perspectives of AmB-lipid conjugation-loaded nanocochleates and emulsions.
Collapse
Affiliation(s)
- Xiaoming Zhong
- Department of Oncology Radiotherapy, Jiangxi Cancer Hospital, Nanchang, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China;
| | - Hongyan Liu
- Department of Pharmacy, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Zhiwen Yang
- Department of Pharmacy, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Ping Luo
- Department of Breast surgery, Nanchang Third Hospital, Nanchang, China,CONTACT Ping Luo Department of Breast surgery, Nanchang Third Hospital, Nanchang, China
| |
Collapse
|
20
|
Karimzadeh I, Strader M, Kane-Gill SL, Murray PT. Prevention and management of antibiotic associated acute kidney injury in critically ill patients: new insights. Curr Opin Crit Care 2023; 29:595-606. [PMID: 37861206 DOI: 10.1097/mcc.0000000000001099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW Drug associated kidney injury (D-AKI) occurs in 19-26% of hospitalized patients and ranks as the third to fifth leading cause of acute kidney injury (AKI) in the intensive care unit (ICU). Given the high use of antimicrobials in the ICU and the emergence of new resistant organisms, the implementation of preventive measures to reduce the incidence of D-AKI has become increasingly important. RECENT FINDINGS Artificial intelligence is showcasing its capabilities in early recognition of at-risk patients for acquiring AKI. Furthermore, novel synthetic medications and formulations have demonstrated reduced nephrotoxicity compared to their traditional counterparts in animal models and/or limited clinical evaluations, offering promise in the prevention of D-AKI. Nephroprotective antioxidant agents have had limited translation from animal studies to clinical practice. The control of modifiable risk factors remains pivotal in avoiding D-AKI. SUMMARY The use of both old and new antimicrobials is increasingly important in combating the rise of resistant organisms. Advances in technology, such as artificial intelligence, and alternative formulations of traditional antimicrobials offer promise in reducing the incidence of D-AKI, while antioxidant medications may aid in minimizing nephrotoxicity. However, maintaining haemodynamic stability using isotonic fluids, drug monitoring, and reducing nephrotoxic burden combined with vigilant antimicrobial stewardship remain the core preventive measures for mitigating D-AKI while optimizing effective antimicrobial therapy.
Collapse
Affiliation(s)
- Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael Strader
- Department of Medicine, School of Medicine, University College Dublin, Dublin, Ireland
| | - Sandra L Kane-Gill
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh
- Department of Pharmacy, UPMC, Pittsburgh, Pennsylvania, USA
| | - Patrick T Murray
- Department of Medicine, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Novy E, Roger C, Roberts JA, Cotta MO. Pharmacokinetic and pharmacodynamic considerations for antifungal therapy optimisation in the treatment of intra-abdominal candidiasis. Crit Care 2023; 27:449. [PMID: 37981676 PMCID: PMC10659066 DOI: 10.1186/s13054-023-04742-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Intra-abdominal candidiasis (IAC) is one of the most common of invasive candidiasis observed in critically ill patients. It is associated with high mortality, with up to 50% of deaths attributable to delays in source control and/or the introduction of antifungal therapy. Currently, there is no comprehensive guidance on optimising antifungal dosing in the treatment of IAC among the critically ill. However, this form of abdominal sepsis presents specific pharmacokinetic (PK) alterations and pharmacodynamic (PD) challenges that risk suboptimal antifungal exposure at the site of infection in critically ill patients. This review aims to describe the peculiarities of IAC from both PK and PD perspectives, advocating an individualized approach to antifungal dosing. Additionally, all current PK/PD studies relating to IAC are reviewed in terms of strength and limitations, so that core elements for the basis of future research can be provided.
Collapse
Affiliation(s)
- Emmanuel Novy
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
- Department of Anaesthesiology, Critical Care and Peri-Operative Medicine, University Hospital of Nancy, Nancy, France
- Université de Lorraine, SIMPA, 54500, Nancy, France
| | - Claire Roger
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France
- UR UM103 IMAGINE, Univ Montpellier, Montpellier, France
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia.
- Department of Anesthesiology, Critical Care, Pain and Emergency Medicine, Nimes University Hospital, Place du Professeur Robert Debré, 30029, Nîmes Cedex 9, France.
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.
| | - Menino Osbert Cotta
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Royal Brisbane & Women's Hospital Campus Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
22
|
Maseda E, Martín-Loeches I, Zaragoza R, Pemán J, Fortún J, Grau S, Aguilar G, Varela M, Borges M, Giménez MJ, Rodríguez A. Critical appraisal beyond clinical guidelines for intraabdominal candidiasis. Crit Care 2023; 27:382. [PMID: 37789338 PMCID: PMC10546659 DOI: 10.1186/s13054-023-04673-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Regardless of the available antifungals, intraabdominal candidiasis (IAC) mortality continues to be high and represents a challenge for clinicians. MAIN BODY This opinion paper discusses alternative antifungal options for treating IAC. This clinical entity should be addressed separately from candidemia due to the peculiarity of the required penetration of antifungals into the peritoneal cavity. Intraabdominal concentrations may be further restricted in critically ill patients where pathophysiological facts alter normal drug distribution. Echinocandins are recommended as first-line treatment in guidelines for invasive candidiasis. However, considering published data, our pharmacodynamic analysis suggests the required increase of doses, postulated by some authors, to attain adequate pharmacokinetic (PK) levels in peritoneal fluid. Given the limited evidence in the literature on PK/PD-based treatments of IAC, an algorithm is proposed to guide antifungal treatment. Liposomal amphotericin B is advocated as first-line therapy in patients with sepsis/septic shock presenting candidemia or endophthalmitis, or with prior exposure to echinocandins and/or fluconazole, or with infections by Candida glabrata. Other situations and alternatives, such as new compounds or combination therapy, are also analysed. CONCLUSION There is a critical need for more robust clinical trials, studies examining patient heterogeneity and surveillance of antifungal resistance to enhance patient care and optimise treatment outcomes. Such evidence will help refine the existing guidelines and contribute to a more personalised and effective approach to treating this serious medical condition. Meanwhile, it is suggested to broaden the consideration of other options, such as liposomal amphotericin B, as first-line treatment until the results of the fungogram are available and antifungal stewardship could be implemented to prevent the development of resistance.
Collapse
Affiliation(s)
- Emilio Maseda
- Service of Anesthesia, Hospital Quirónsalud Valle del Henares, Av. de La Constitución, 249, 28850, Torrejón de Ardoz, Madrid, Spain.
| | - Ignacio Martín-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, James Street, Leinster, Dublin 8, D08 NHY1, Ireland.
- Pulmonary Intensive Care Unit, Respiratory Institute, Hospital Clinic of Barcelona, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi I Sunyer), University of Barcelona, CIBERes, Barcelona, Spain.
| | | | - Javier Pemán
- Microbiology Department, Hospital Universitari I Politecnic La Fe, Valencia, Spain
- Fundación Micellium, La Eliana, Valencia, Spain
| | - Jesús Fortún
- Infectious Diseases Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Barcelona, Spain
| | - Gerardo Aguilar
- Service of Anesthesia, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Marina Varela
- Service of Anesthesia, Área Sanitaria de Pontevedra, Pontevedra, Spain
| | - Marcio Borges
- ICU, Hospital Universitario Son Llátzer, Palma, Spain
| | - María-José Giménez
- Faculty of Sports Sciences and Physiotherapy, Universidad Europea de Madrid, Madrid, Spain
| | | |
Collapse
|
23
|
Vallejo C, Jarque I, Fortun J, Casado A, Peman J. IFISTRATEGY: Spanish National Survey of Invasive Fungal Infection in Hemato-Oncologic Patients. J Fungi (Basel) 2023; 9:628. [PMID: 37367564 DOI: 10.3390/jof9060628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Recent advances in the treatment of hematologic malignancies have improved the overall survival rate, but the number of patients at risk of developing an invasive fungal infection (IFI) has increased. Invasive infections caused by non-Candida albicans species, non-Aspergillus molds, and azole-resistant Aspergillus fumigatus have been increasingly reported in recent years. We developed a cross-sectional multicenter survey which involved a total of 55 hematologists and infectious disease specialists from a total of 31 Spanish hospitals, to determine the most frequent strategies used for the management of IFIs. Data collection was undertaken through an online survey which took place in 2022. Regarding key strategies, experts usually prefer early treatment for persistent febrile neutropenia, switching to another broad-spectrum antifungal family if azole-resistant Aspergillus is suspected, broad-spectrum azoles and echinocandins as prophylactic treatment in patients receiving midostaurin or venetoclax, and liposomal amphotericin B for breakthrough IFIs after prophylaxis with echinocandins in patients receiving new targeted therapies. For antifungals failing to reach adequate levels during the first days and suspected invasive aspergillosis, the most appropriate strategy would be to associate an antifungal from another family.
Collapse
Affiliation(s)
- Carlos Vallejo
- Hematology Department, Clinic University Hospital of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Isidro Jarque
- Hematology Department, Hospital La Fe, 46026 Valencia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Jesus Fortun
- Infectious Diseases Department, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, 28034 Madrid, Spain
- Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28805 Madrid, Spain
| | - Araceli Casado
- Pharmacoeconomics and Outcomes Research Iberia (PORIB), 28224 Madrid, Spain
| | - Javier Peman
- Microbiology Department, Hospital La Fe de Valencia, 46026 Valencia, Spain
- Grupo de Investigación Infección Grave, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| |
Collapse
|
24
|
Zhu P, Li Y, Guo T, Liu S, Tancer RJ, Hu C, Zhao C, Xue C, Liao G. New antifungal strategies: drug combination and co-delivery. Adv Drug Deliv Rev 2023; 198:114874. [PMID: 37211279 DOI: 10.1016/j.addr.2023.114874] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
The growing occurrence of invasive fungal infections and the mounting rates of drug resistance constitute a significant menace to human health. Antifungal drug combinations have garnered substantial interest for their potential to improve therapeutic efficacy, reduce drug doses, reverse, or ameliorate drug resistance. A thorough understanding of the molecular mechanisms underlying antifungal drug resistance and drug combination is key to developing new drug combinations. Here we discuss the mechanisms of antifungal drug resistance and elucidate how to discover potent drug combinations to surmount resistance. We also examine the challenges encountered in developing such combinations and discuss prospects, including advanced drug delivery strategies.
Collapse
Affiliation(s)
- Ping Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Yan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ting Guo
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Simei Liu
- Department of Traditional Chinese Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, China; Institute of Pharmacology and Toxicology, Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Robert J Tancer
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Changhua Hu
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China
| | - Chengzhi Zhao
- Chongqing Health Center for Women and Children, Chongqing, 400700, PR China.
| | - Chaoyang Xue
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Guojian Liao
- State Key Laboratory of Silkworm Genome Biology, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
25
|
Yao J, Zou P, Cui Y, Quan L, Gao C, Li Z, Gong W, Yang M. Recent Advances in Strategies to Combat Bacterial Drug Resistance: Antimicrobial Materials and Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041188. [PMID: 37111673 PMCID: PMC10141387 DOI: 10.3390/pharmaceutics15041188] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial infection is a common clinical disease. Antibiotics have saved countless lives since their discovery and are a powerful weapon in the fight against bacteria. However, with the widespread use of antibiotics, the problem of drug resistance now poses a great threat to human health. In recent years, studies have investigated approaches to combat bacterial resistance. Several antimicrobial materials and drug delivery systems have emerged as promising strategies. Nano-drug delivery systems for antibiotics can reduce the resistance to antibiotics and extend the lifespan of novel antibiotics, and they allow targeting drug delivery compared to conventional antibiotics. This review highlights the mechanistic insights of using different strategies to combat drug-resistant bacteria and summarizes the recent advancements in antimicrobial materials and drug delivery systems for different carriers. Furthermore, the fundamental properties of combating antimicrobial resistance are discussed, and the current challenges and future perspectives in this field are proposed.
Collapse
Affiliation(s)
- Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Pengfei Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liangzhu Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
26
|
Pagliuca A, Akova M. Foreword. J Antimicrob Chemother 2022; 77:ii1-ii2. [DOI: 10.1093/jac/dkac350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- A Pagliuca
- Department of Haematological Medicine, King’s College Hospital NHS Foundation Trust , London , UK
| | - M Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine , Ankara , Turkey
| |
Collapse
|