1
|
Xing J, Han R, Zhao J, Zhang Y, Zhang M, Zhang Y, Zhang H, Nang SC, Zhai Y, Yuan L, Wang S, Wu H. Revisiting therapeutic options against resistant klebsiella pneumoniae infection: Phage therapy is key. Microbiol Res 2025; 293:128083. [PMID: 39904002 DOI: 10.1016/j.micres.2025.128083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Multi-drug resistant and carbapenem-resistant hypervirulent Klebsiella pneumoniae strains are spreading globally at an alarming rate, emerging as one of the most serious threats to global public health. The formidable challenges posed by the current arsenal of antimicrobials highlight the urgent need for novel strategies to combat K. pneumoniae infections. This review begins with a comprehensive analysis of the global dissemination of virulence factors and critical resistance profiles in K. pneumoniae, followed by an evaluation of the accessibility of novel therapeutic approaches for treating K. pneumoniae in clinical settings. Among these, phage therapy stands out for its considerable potential in addressing life-threatening K. pneumoniae infections. We critically examine the existing preclinical and clinical evidence supporting phage therapy, identifying key limitations that impede its broader clinical adoption. Additionally, we rigorously explore the role of genetic engineering in expanding the host range of K. pneumoniae phages, and discuss the future trajectory of this technology. In light of the 'Bad Bugs, No Drugs' era, we advocate leveraging artificial intelligence and deep learning to optimize and expand the application of phage therapy, representing a crucial advancement in the fight against the escalating threat of K. pneumoniae infections.
Collapse
Affiliation(s)
- Jiabao Xing
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Rongjia Han
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jinxin Zhao
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yuying Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hang Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Sue C Nang
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shanmei Wang
- Department of Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
T Magalhães B, S Coimbra JT, M Silva R, Ferreira M, S Santos R, Gameiro P, Azevedo NF, Fernandes PA. Crosstalk of Nucleic Acid Mimics with Lipid Membranes: A Multifaceted Computational and Experimental Study. Biochemistry 2024; 63:3381-3394. [PMID: 39571107 DOI: 10.1021/acs.biochem.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nucleic acid mimics (NAMs) have demonstrated high potential as antibacterial drugs. However, very few studies have assessed their possible diffusion across the bacterial envelope. In this work, we studied NAMs' diffusion in lipid bilayer systems that mimic the bacterial outer membrane using molecular dynamics (MD) simulations. Additionally, we examined the interactions of a NAM sequence with lipid membranes and ascertained the partition constants (Kp) through MD and spectroscopic investigations. The NAM sequences were composed of locked nucleic acid (LNA) and 2'-O-methyl (2'-OMe) residues, whereas the membrane models were composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) phospholipids. The parametrization protocol followed was validated against literature data and demonstrated the reliability of our approach for simulating NAM sequences. Investigation into the interaction of the sequences with zwitterionic and anionic membranes revealed a preference for hydrogen bond formation with the anionic model over the zwitterionic one. Additionally, potential of mean force (PMF) calculations unveiled a lower free energy barrier for translocation across the zwitterionic bilayer model. Contrarily, the partition constants derived suggested a slightly higher partitioning within the anionic membrane, emphasizing a nuanced interplay of factors. Finally, spectroscopic partition measurements with liposomes presented challenges in quantifying the partition of NAMs due to minimal signal variations. However, a tendency for quenching in anionic vesicles suggested a potential, albeit small, partitioning effect that warrants further investigation. In summary, our study revealed that NAMs will not, in principle, be able to cross an intact bacterial outer membrane by passive diffusion.
Collapse
Affiliation(s)
- Beatriz T Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - João T S Coimbra
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Raquel M Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Mariana Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Rita S Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Paula Gameiro
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Pals MJ, Lindberg A, Velema WA. Chemical strategies for antisense antibiotics. Chem Soc Rev 2024; 53:11303-11320. [PMID: 39436264 PMCID: PMC11495246 DOI: 10.1039/d4cs00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 10/23/2024]
Abstract
Antibacterial resistance is a severe threat to modern medicine and human health. To stay ahead of constantly-evolving bacteria we need to expand our arsenal of effective antibiotics. As such, antisense therapy is an attractive approach. The programmability allows to in principle target any RNA sequence within bacteria, enabling tremendous selectivity. In this Tutorial Review we provide guidelines for devising effective antibacterial antisense agents and offer a concise perspective for future research. We will review the chemical architectures of antibacterial antisense agents with a special focus on the delivery and target selection for successful antisense design. This Tutorial Review will strive to serve as an essential guide for antibacterial antisense technology development.
Collapse
Affiliation(s)
- Mathijs J Pals
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Alexander Lindberg
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Story S, Bhaduri S, Ganguly S, Dakarapu R, Wicks SL, Bhadra J, Kwange S, Arya DP. Understanding Antisense Oligonucleotide Efficiency in Inhibiting Prokaryotic Gene Expression. ACS Infect Dis 2024; 10:971-987. [PMID: 38385613 DOI: 10.1021/acsinfecdis.3c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Oligonucleotides offer a unique opportunity for sequence specific regulation of gene expression in bacteria. A fundamental question to address is the choice of oligonucleotide, given the large number of options available. Different modifications varying in RNA binding affinities and cellular uptake are available but no comprehensive comparisons have been performed. Herein, the efficiency of blocking expression of β-galactosidase (β-Gal) in E. coli was evaluated utilizing different antisense oligomers (ASOs). Fluorescein (FAM)-labeled oligomers were used to understand their differences in bacterial uptake. Flow cytometry analysis revealed significant differences in uptake, with high fluorescence seen in cells treated with FAM-labeled peptidic nucleic acid (PNA), phosphorodiamidate morpholino oligonucleotide (PMO) and phosphorothioate (PS) oligomers, and low fluorescence observed in cells treated with phosphodiester (PO) oligomers. Thermal denaturation (Tm) of oligomer:RNA duplexes and isothermal titration calorimetry (ITC) studies reveal that ASO binding to target RNA demonstrates a good correlation between Tm and Kd values. There was no correlation between Kd values and reduction of β-Gal activity in bacterial cells. However, cell-free translation assays demonstrated a direct relationship between Kd values and inhibition of gene expression by antisense oligomers, with tight binding oligomers such as LNA being the most efficient. Membrane active compounds such as polymyxin B and A22 further improved the cellular uptake of FAM-PNA and FAM-PS oligomers in wild-type E. coli cells. PNA and PMO were most effective in cellular uptake and reducing β-Gal activity as compared to oligomers with PS or those with PO linkages. Overall, cell uptake of the oligomers is shown as the key determinant in predicting their differences in bacterial antisense inhibition, and the RNA affinity is the key determinant in inhibition of gene expression in cell free systems.
Collapse
Affiliation(s)
- Sandra Story
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | | | - Sudakshina Ganguly
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | | | - Sarah L Wicks
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Jhuma Bhadra
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Simeon Kwange
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| | - Dev P Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- NUBAD, LLC, Greenville, South Carolina 29605, United States
| |
Collapse
|
5
|
Nanayakkara AK, Moustafa DA, Pifer R, Goldberg JB, Greenberg DE. Sequence specificity defines the effectiveness of PPMOs targeting Pseudomonas aeruginosa. Antimicrob Agents Chemother 2023; 67:e0024523. [PMID: 37610213 PMCID: PMC10508178 DOI: 10.1128/aac.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/18/2023] [Indexed: 08/24/2023] Open
Abstract
Development of new therapeutics against antibiotic resistant pathogenic bacteria is recognized as a priority across the globe. We have reported using peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) as species-specific antibiotics. The oligo sequences, 11 bases are designed to be complementary to specific essential genes near the Shine-Dalgarno site and inhibit translation. Here, we analyzed target specificity and the impact of genetic mutations on lead PPMOs targeting the rpsJ or acpP gene of Pseudomonas aeruginosa. Mutants in P. aeruginosa PAO1 were generated with four, two, or one base-pair mutations within the 11-base target sequence of the rpsJ gene. All mutants exhibited increased MICs compared to wild-type PAO1 when treated with the RpsJ PPMO, and the increase in the MICs was proportional to the number of base-pair mutations. Among single base-pair mutants, mutations in the middle of the sequence were more impactful than mutations in 5' or 3' end of the sequence. The increased MICs shown by the rpsJ mutants could be reversed by PPMOs designed to target the mutated rpsJ sequence. BALB/c mice infected intratracheally with mutants demonstrated increased lung burden when treated with RpsJ PPMO compared to wild-type PAO1-infected mice treated with RpsJ PPMO. Treating mice with a PPMOs designed to specifically target the mutant sequence was more effective against these mutant strains. These experiments confirm target specificity of two lead P. aeruginosa PPMOs and illustrate one potential mechanism of resistance that could emerge from an antisense approach.
Collapse
Affiliation(s)
- A. K. Nanayakkara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - D. A. Moustafa
- Department of Pediatrics and Children’s Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Diseases Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - R. Pifer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - J. B. Goldberg
- Department of Pediatrics and Children’s Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Diseases Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - D. E. Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Yamamoto K, Yamamoto N, Ayukawa S, Yasutake Y, Ishiya K, Nakashima N. Scaffold size-dependent effect on the enhanced uptake of antibiotics and other compounds by Escherichia coli and Pseudomonas aeruginosa. Sci Rep 2022; 12:5609. [PMID: 35379875 PMCID: PMC8980104 DOI: 10.1038/s41598-022-09635-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
The outer membrane of Gram-negative bacteria functions as an impermeable barrier to foreign compounds. Thus, modulating membrane transport can contribute to improving susceptibility to antibiotics and efficiency of bioproduction reactions. In this study, the cellular uptake of hydrophobic and large-scaffold antibiotics and other compounds in Gram-negative bacteria was investigated by modulating the homolog expression of bamB encoding an outer membrane lipoprotein and tolC encoding an outer membrane efflux protein via gene deletion and gene silencing. The potential of deletion mutants for biotechnological applications, such as drug screening and bioproduction, was also demonstrated. Instead of being subjected to gene deletion, wild-type bacterial cells were treated with cell-penetrating peptide conjugates of a peptide nucleic acid (CPP-PNA) against bamB and tolC homologs as antisense agents. Results revealed that the single deletion of bamB and tolC in Escherichia coli increased the uptake of large- and small-scaffold hydrophobic compounds, respectively. A bamB-and-tolC double deletion mutant had a higher uptake efficiency for certain antibiotics and other compounds with high hydrophobicity than each single deletion mutant. The CPP-PNA treated E. coli and Pseudomonas aeruginosa cells showed high sensitivity to various antibiotics. Therefore, these gene deletion and silencing approaches can be utilized in therapeutic and biotechnological fields.
Collapse
Affiliation(s)
- Kyosuke Yamamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan
| | - Nao Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-M6-5 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shotaro Ayukawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo, 169-8555, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan
| | - Nobutaka Nakashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, 062-8517, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-M6-5 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
7
|
Goldberg JB, Crisan CV, Luu JM. Pseudomonas aeruginosa Antivirulence Strategies: Targeting the Type III Secretion System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:257-280. [PMID: 36258075 DOI: 10.1007/978-3-031-08491-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The Pseudomonas aeruginosa type III secretion system (T3SS) is a complex molecular machine that delivers toxic proteins from the bacterial cytoplasm directly into host cells. This apparatus spans the inner and outer membrane and employs a needle-like structure that penetrates through the eucaryotic cell membrane into the host cell cytosol. The expression of the P. aeruginosa T3SS is highly regulated by environmental signals including low calcium and host cell contact. P. aeruginosa strains with mutations in T3SS genes are less pathogenic, suggesting that the T3SS is a virulence mechanism. Given that P. aeruginosa is naturally antibiotic resistant and multidrug resistant isolates are rapidly emerging, new antibiotics to target P. aeruginosa are needed. Furthermore, even if new antibiotics were to be developed, the timeline between when an antibiotic is released and resistance development is relatively short. Therefore, the concept of targeting virulence factors has garnered attention. So-called "antivirulence" approaches do not kill the microbe but instead focus on rendering it harmless and therefore unable to cause damage. Since these therapies target a particular system or pathway, the normal microbiome is unlikely to be affected and there is less concern about the spread to other microbes. Finally, and most importantly, since any antivirulence drug does not kill the microbe, there should be less selective pressure to develop resistance to these inhibitors. The P. aeruginosa T3SS has been well studied due to its importance for pathogenesis in numerous human and animal infections. Thus, many P. aeruginosa T3SS inhibitors have been described as potential antivirulence therapeutics, some of which have progressed to clinical trials.
Collapse
Affiliation(s)
- Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA.
| | - Cristian V Crisan
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Justin M Luu
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Sousa SA, Feliciano JR, Pita T, Soeiro CF, Mendes BL, Alves LG, Leitão JH. Bacterial Nosocomial Infections: Multidrug Resistance as a Trigger for the Development of Novel Antimicrobials. Antibiotics (Basel) 2021; 10:antibiotics10080942. [PMID: 34438992 PMCID: PMC8389044 DOI: 10.3390/antibiotics10080942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Nosocomial bacterial infections are associated with high morbidity and mortality, posing a huge burden to healthcare systems worldwide. The ongoing COVID-19 pandemic, with the raised hospitalization of patients and the increased use of antimicrobial agents, boosted the emergence of difficult-to-treat multidrug-resistant (MDR) bacteria in hospital settings. Therefore, current available antibiotic treatments often have limited or no efficacy against nosocomial bacterial infections, and novel therapeutic approaches need to be considered. In this review, we analyze current antibacterial alternatives under investigation, focusing on metal-based complexes, antimicrobial peptides, and antisense antimicrobial therapeutics. The association of new compounds with older, commercially available antibiotics and the repurposing of existing drugs are also revised in this work.
Collapse
Affiliation(s)
- Sílvia A. Sousa
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| | - Joana R. Feliciano
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tiago Pita
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Catarina F. Soeiro
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
| | - Beatriz L. Mendes
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Luis G. Alves
- Centro de Química Estrutural, Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, 1049-003 Lisboa, Portugal;
| | - Jorge H. Leitão
- Department of Bioengineering, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (J.R.F.); (T.P.); (C.F.S.); (B.L.M.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (S.A.S.); (J.H.L.); Tel.: +351-218417688 (J.H.L.)
| |
Collapse
|
9
|
Schafer ME, Browne H, Goldberg JB, Greenberg DE. Peptides and Antibiotic Therapy: Advances in Design and Delivery. Acc Chem Res 2021; 54:2377-2385. [PMID: 33881843 DOI: 10.1021/acs.accounts.1c00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibiotic resistance (AMR) is an increasing public health crisis worldwide. This threatens our ability to adequately care for patients with infections due to multi-drug-resistant (MDR) pathogens. As such, there is an urgent need to develop new classes of antimicrobials that are not based on currently utilized antibiotic scaffolds. One promising avenue of antimicrobial research that deserves renewed examination involves the use of peptides. Although antimicrobial peptides (AMPs) have been studied for a number of years, innovations in peptide design and their applications are increasingly making this approach a viable alternative to traditional small-molecule antibiotics. This review will provide updates on two ways in which peptides are being explored as antibiotics. The first topic will focus on novel types of peptides and conjugation methods that are being exploited to act as antibiotics themselves. These direct-acting modified peptides could serve as potentially useful drugs while mitigating many of the known liabilities of AMPs. The second topic relates to the use of peptides as delivery vehicles for other active compounds with antimicrobial activity. Cell-penetrating peptides (CPPs) are peptides designed to carry compounds across cell membranes and are a promising method for delivering a variety of antimicrobial compounds. When conjugated to other compounds, CPPs have been shown to be effective at increasing the uptake of both small- and large-molecular-weight compounds. This includes conjugation to antisense molecules and traditional antibiotics, resulting in increased effectiveness of these antimicrobials. One particular approach utilizes CPPs conjugated to phosphorodiamidate morpholino oligomers (PMOs). PMOs are designed to target particular pathogens in a gene-specific way. They target mRNA and block protein translation. Peptide-conjugated PMOs (PPMOs) allow for efficient delivery into the Gram-negative cytoplasm, and recent updates to their in vitro and in vivo activity are reviewed. This includes recent data to suggest that PPMOs maintain activity in the setting of multi-drug-resistant (MDR) strains, an important finding as it relates to the further development of this therapeutic approach. Other topics include the ability to have activity in the biofilm setting, a finding that likely relates to the peptide portion of the conjugate. Finally, what is known and anticipated related to the development of resistance to these peptides will be discussed.
Collapse
Affiliation(s)
- Morgan E. Schafer
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics and Center for Cystic Fibrosis and Airway Diseases Research, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1510 Clifton Road NE, Suite 3009, Atlanta, Georgia 30322, United States
| | | | - Joanna B. Goldberg
- Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics and Center for Cystic Fibrosis and Airway Diseases Research, Children’s Healthcare of Atlanta, Emory University School of Medicine, 1510 Clifton Road NE, Suite 3009, Atlanta, Georgia 30322, United States
| | | |
Collapse
|
10
|
Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers Retain Activity against Multidrug-Resistant Pseudomonas aeruginosa In Vitro and In Vivo. mBio 2021; 12:mBio.02411-20. [PMID: 33436433 PMCID: PMC7844538 DOI: 10.1128/mbio.02411-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous Gram-negative bacteria are becoming increasingly resistant to multiple, if not all, classes of existing antibiotics. Multidrug-resistant Pseudomonas aeruginosa bacteria are a major cause of health care-associated infections in a variety of clinical settings, endangering patients who are immunocompromised or those who suffer from chronic infections, such as people with cystic fibrosis (CF). Most antimicrobials currently in the clinical pipeline are modifications of existing classes of antibiotics and are considered short-term solutions due to the emergence of resistance. Pseudomonas aeruginosa represents a major challenge for new antimicrobial drug discovery due to its versatile lifestyle, ability to develop resistance to most antibiotic classes, and capacity to form robust biofilms on surfaces and in certain hosts such as those living with cystic fibrosis (CF). A precision antibiotic approach to treating Pseudomonas could be achieved with an antisense method, specifically by using peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs). Here, we demonstrate that PPMOs targeting acpP (acyl carrier protein), lpxC (UDP-(3-O-acyl)-N-acetylglucosamine deacetylase), and rpsJ (30S ribosomal protein S10) inhibited the in vitro growth of several multidrug-resistant clinical P. aeruginosa isolates at levels equivalent to those that were effective against sensitive strains. Lead PPMOs reduced established pseudomonal biofilms alone or in combination with tobramycin or piperacillin-tazobactam. Lead PPMO dosing alone or combined with tobramycin in an acute pneumonia model reduced lung bacterial burden in treated mice at 24 h and reduced morbidity up to 5 days postinfection. PPMOs reduced bacterial burden of extensively drug-resistant P. aeruginosa in the same model and resulted in superior survival compared to conventional antibiotics. These data suggest that lead PPMOs alone or in combination with clinically relevant antibiotics represent a promising therapeutic approach for combating P. aeruginosa infections.
Collapse
|
11
|
Sturge CR, Felder-Scott CF, Pifer R, Pybus C, Jain R, Geller BL, Greenberg DE. AcrAB-TolC Inhibition by Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers Restores Antibiotic Activity in Vitro and in Vivo. ACS Infect Dis 2019; 5:1446-1455. [PMID: 31119935 DOI: 10.1021/acsinfecdis.9b00123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpression of bacterial efflux pumps is a driver of increasing antibiotic resistance in Gram-negative pathogens. The AcrAB-TolC efflux pump has been implicated in resistance to a number of important antibiotic classes including fluoroquinolones, macrolides, and β-lactams. Antisense technology, such as peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), can be utilized to inhibit expression of efflux pumps and restore susceptibility to antibiotics. Targeting of the AcrAB-TolC components with PPMOs revealed a sequence for acrA, which was the most effective at reducing antibiotic efflux. This acrA-PPMO enhances the antimicrobial effects of the levofloxacin and azithromycin in a panel of clinical Enterobacteriaceae strains. Additionally, acrA-PPMO enhanced azithromycin in vivo in a K. pneumoniae septicemia model. PPMOs targeting the homologous resistance-nodulation-division (RND)-efflux system in P. aeruginosa, MexAB-OprM, also enhanced potency to several classes of antibiotics in a panel of strains and in a cell culture infection model. These data suggest that PPMOs can be used as an adjuvant in antibiotic therapy to increase the efficacy or extend the spectrum of useful antibiotics against a variety of Gram-negative infections.
Collapse
Affiliation(s)
- Carolyn R. Sturge
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Christina F. Felder-Scott
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Reed Pifer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Christine Pybus
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Raksha Jain
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce L. Geller
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, United States
| | - David E. Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
12
|
Perche F, Le Gall T, Montier T, Pichon C, Malinge JM. Cardiolipin-Based Lipopolyplex Platform for the Delivery of Diverse Nucleic Acids into Gram-Negative Bacteria. Pharmaceuticals (Basel) 2019; 12:ph12020081. [PMID: 31141930 PMCID: PMC6630428 DOI: 10.3390/ph12020081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Antibiotic resistance is a growing public health concern. Because only a few novel classes of antibiotics have been developed in the last 40 years, such as the class of oxazolidinones, new antibacterial strategies are urgently needed [1]. Nucleic acid-based antibiotics are a new type of antimicrobials. However, free nucleic acids cannot spontaneously cross the bacterial cell wall and membrane;consequently, their intracellular delivery into bacteria needs to be assisted. Here, we introduce an original lipopolyplex system named liposome polymer nucleic acid (LPN), capable of versatile nucleic acid delivery into bacteria. We characterized LPN formed with significant therapeutic nucleic acids: 11 nt antisense single-stranded (ss) DNA and double-stranded (ds) DNA of 15 and 95 base pairs (bp), 9 kbp plasmid DNA (pDNA), and 1,000 nt ssRNA. All these complexes were efficiently internalized by two different bacterial species, i.e., Escherichia coli and Pseudomonas aeruginosa, as shown by flow cytometry. Consistent with intracellular delivery, LPN prepared with an antisense oligonucleotide and directed against an essential gene, induced specific and important bacterial growth inhibition likely leading to a bactericidal effect. Our findings indicate that LPN is a versatile platform for efficient delivery of diverse nucleic acids into Gram-negative bacteria.
Collapse
Affiliation(s)
- Federico Perche
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron Orléans CEDEX 02, France.
| | - Tony Le Gall
- Unité INSERM 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238 Brest CEDEX 3, France.
| | - Tristan Montier
- Unité INSERM 1078, Faculté de Médecine, Université de Bretagne Occidentale, Université Européenne de Bretagne, 22 avenue Camille Desmoulins, 29238 Brest CEDEX 3, France.
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron Orléans CEDEX 02, France.
| | - Jean-Marc Malinge
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron Orléans CEDEX 02, France.
| |
Collapse
|
13
|
Santos RS, Figueiredo C, Azevedo NF, Braeckmans K, De Smedt SC. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv Drug Deliv Rev 2018; 136-137:28-48. [PMID: 29248479 DOI: 10.1016/j.addr.2017.12.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023]
Abstract
With the dramatic consequences of bacterial resistance to antibiotics, nanomaterials and molecular transporters have started to be investigated as alternative antibacterials or anti-infective carrier systems to improve the internalization of bactericidal drugs. However, the capability of nanomaterials/molecular transporters to overcome the bacterial cell envelope is poorly understood. It is critical to consider the sophisticated architecture of bacterial envelopes and reflect how nanomaterials/molecular transporters can interact with these envelopes, being the major aim of this review. The first part of this manuscript overviews the permeability of bacterial envelopes and how it limits the internalization of common antibiotic and novel oligonucleotide drugs. Subsequently we critically discuss the mechanisms that allow nanomaterials/molecular transporters to overcome the bacterial envelopes, focusing on the most promising ones to this end - siderophores, cyclodextrins, metal nanoparticles, antimicrobial/cell-penetrating peptides and fusogenic liposomes. This review may stimulate drug delivery and microbiology scientists in designing effective nanomaterials/molecular transporters against bacterial infections.
Collapse
|
14
|
Stewart DB. Anti-Sense Antibiotic Agents as Treatment for Bacterial Infections. Surg Infect (Larchmt) 2018; 19:831-835. [PMID: 30256744 DOI: 10.1089/sur.2018.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Conventional antibiotic agents are overused, leading to decreased efficacy because of a rising incidence in antimicrobial resistance. Further, conventional antibiotic agents result in widespread effects to human microbiota, which can lead directly to adverse events such as Clostridium difficile infection. Methods: This review provides a narrative summary of anti-sense therapies, an approach to managing bacterial infections by pursuing specific molecular targets that disrupt the flow of information from deoxyribonucleic acid to ribonucleic acid to protein, leading to the loss of bacterial functions. Included in this article is the rationale for this approach, the current data supporting its further investigation, and the challenges and future directions in this area of research. Results: There is a compelling proof-of-concept against both gram-positive and gram-negative organisms to commend the use of modified anti-sense oligonucleotides as antimicrobial therapy. There are data demonstrating that anti-sense therapies are capable of killing bacteria, silencing antimicrobial resistance mechanisms to restore sensitivity to conventional antibiotic agents, and to target virulence pathways such as biofilm production. Further, these drugs have a significantly greater degree of organismal specificity, limiting antibiotic-associated diarrhea and lowering the risk of antibiotic-related infections such as C. difficile infection. Conclusions: Anti-sense therapies show promise as a new class of antibiotic agents, providing molecular precision that leads to specific targeting of bacterial species and bacterial functions, including virulence mechanisms beyond the reach of current antibiotic agents. Further, changing the sequence of an anti-sense oligonucleotide provides a method of dealing with antimicrobial resistance that is more time- and cost-flexible than the available options with current conventional antibiotic agents.
Collapse
Affiliation(s)
- David B Stewart
- Department of Surgery, Section of Colorectal Surgery, University of Arizona , Tucson, Arizona
| |
Collapse
|
15
|
Xue XY, Mao XG, Zhou Y, Chen Z, Hu Y, Hou Z, Li MK, Meng JR, Luo XX. Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:745-758. [PMID: 29341934 DOI: 10.1016/j.nano.2017.12.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/12/2017] [Accepted: 12/31/2017] [Indexed: 12/22/2022]
Abstract
Discovery and development of new antibacterial drugs against multidrug resistant bacterial strains have become more and more urgent. Antisense oligonucleotides (ASOs) show immense potential to control the spread of resistant microbes due to its high specificity of action, little risk to human gene expression, and easy design and synthesis to target any possible gene. However, efficient delivery of ASOs to their action sites with enough concentration remains a major obstacle, which greatly hampers their clinical application. In this study, we reviewed current progress on delivery strategies of ASOs into bacteria, focused on various non-virus gene vectors, including cell penetrating peptides, lipid nanoparticles, bolaamphiphile-based nanoparticles, DNA nanostructures and Vitamin B12. The current review provided comprehensive understanding and novel perspective for the future application of ASOs in combating bacterial infections.
Collapse
Affiliation(s)
- Xiao-Yan Xue
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| | - Xing-Gang Mao
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ying Zhou
- Department of Pharmacology, Xi'an Medical University, Xi'an, China
| | - Zhou Chen
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yue Hu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Ming-Kai Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jing-Ru Meng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Xing Luo
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Fang PY, Bowman JC, Gómez Ramos L, Hsiao C, Williams LD. RNA: packaged and protected by VLPs. RSC Adv 2018; 8:21399-21406. [PMID: 35539947 PMCID: PMC9080931 DOI: 10.1039/c8ra02084a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/04/2018] [Indexed: 01/16/2023] Open
Abstract
VLP packaging is most efficient for compact RNA, and protects RNA against assault by small diffusible damaging agents.
Collapse
Affiliation(s)
- Po-Yu Fang
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Jessica C. Bowman
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Lizzette M. Gómez Ramos
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
- School of Chemical and Biomolecular Engineering
| | - Chiaolong Hsiao
- Institute of Biochemical Sciences
- National Taiwan University
- Taipei 10617
- Republic of China
| | - Loren Dean Williams
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
17
|
Macromolecular Conjugate and Biological Carrier Approaches for the Targeted Delivery of Antibiotics. Antibiotics (Basel) 2017; 6:antibiotics6030014. [PMID: 28677631 PMCID: PMC5617978 DOI: 10.3390/antibiotics6030014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 01/21/2023] Open
Abstract
For the past few decades, the rapid rise of antibiotic multidrug-resistance has presented a palpable threat to human health worldwide. Meanwhile, the number of novel antibiotics released to the market has been steadily declining. Therefore, it is imperative that we utilize innovative approaches for the development of antimicrobial therapies. This article will explore alternative strategies, namely drug conjugates and biological carriers for the targeted delivery of antibiotics, which are often eclipsed by their nanomedicine-based counterparts. A variety of macromolecules have been investigated as conjugate carriers, but only those most widely studied in the field of infectious diseases (e.g., proteins, peptides, antibodies) will be discussed in detail. For the latter group, blood cells, especially erythrocytes, have been successfully tested as homing carriers of antimicrobial agents. Bacteriophages have also been studied as a candidate for similar functions. Once these alternative strategies receive the amount of research interest and resources that would more accurately reflect their latent applicability, they will inevitably prove valuable in the perennial fight against antibiotic resistance.
Collapse
|
18
|
Cansizoglu MF, Toprak E. Fighting against evolution of antibiotic resistance by utilizing evolvable antimicrobial drugs. Curr Genet 2017; 63:973-976. [PMID: 28497241 DOI: 10.1007/s00294-017-0703-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/24/2022]
Abstract
Antibiotic resistance is a worldwide public health problem (Bush et al. in Nat Rev Microbiol 9:894-896, 2011). The lack of effective therapies against resistant bacteria globally leads to prolonged treatments, increased mortality, and inflating health care costs (Oz et al. in Mol Biol Evol 31:2387-2401, 2014; Martinez in Science 321:365-367, 2008; Lipsitch et al. in Proc Natl Acad Sci USA 97:1938-1943, 2000; Taubes in Science 321:356-361, 2008; Laxminarayan et al. in Lancet, 2016; Laxminarayan et al. in Lancet Infect Dis 13:1057-1098, 2013). Current efforts towards a solution of this problem can be boiled down to two main strategies: (1) developing of new antimicrobial agents and (2) searching for smart strategies that can restore or preserve the efficacy of existing antimicrobial agents. In this short review article, we discuss the need for evolvable antimicrobial agents, focusing on a new antimicrobial technology that utilizes peptide-conjugated phosphorodiamidate morpholino oligomers to inhibit the growth of pathogenic bacteria by targeting bacterial genes.
Collapse
Affiliation(s)
- Mehmet Fatih Cansizoglu
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Erdal Toprak
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Moulton JD. Using Morpholinos to Control Gene Expression. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2017; 68:4.30.1-4.30.29. [PMID: 28252184 PMCID: PMC7162182 DOI: 10.1002/cpnc.21] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Morpholino oligonucleotides are stable, uncharged, water-soluble molecules used to block complementary sequences of RNA, preventing processing, read-through, or protein binding at those sites. Morpholinos are typically used to block translation of mRNA and to block splicing of pre-mRNA, though they can block other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA, but must be delivered into the nuclear/cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by any proteins and do not undergo protein-mediated catalysis-nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos. © 2017 by John Wiley & Sons, Inc.
Collapse
|
20
|
Otsuka T, Brauer AL, Kirkham C, Sully EK, Pettigrew MM, Kong Y, Geller BL, Murphy TF. Antimicrobial activity of antisense peptide-peptide nucleic acid conjugates against non-typeable Haemophilus influenzae in planktonic and biofilm forms. J Antimicrob Chemother 2016; 72:137-144. [PMID: 27986898 DOI: 10.1093/jac/dkw384] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antisense peptide nucleic acids (PNAs) are synthetic polymers that mimic DNA/RNA and inhibit bacterial gene expression in a sequence-specific manner. METHODS To assess activity against non-typeable Haemophilus influenzae (NTHi), we designed six PNA-peptides that target acpP, encoding an acyl carrier protein. MICs and minimum biofilm eradication concentrations (MBECs) were determined. Resistant strains were selected by serial passages on media with a sub-MIC concentration of acpP-PNA. RESULTS The MICs of six acpP-PNA-peptides were 2.9-11 mg/L (0.63-2.5 μmol/L) for 20 clinical isolates, indicating susceptibility of planktonic NTHi. By contrast, MBECs were up to 179 mg/L (40 μmol/L). Compared with one original PNA-peptide (acpP-PNA1-3'N), an optimized PNA-peptide (acpP-PNA14-5'L) differs in PNA sequence and has a 5' membrane-penetrating peptide with a linker between the PNA and peptide. The optimized PNA-peptide had an MBEC ranging from 11 to 23 mg/L (2.5-5 μmol/L), indicating susceptibility. A resistant strain that was selected by the original acpP-PNA1-3'N had an SNP that introduced a stop codon in NTHI0044, which is predicted to encode an ATP-binding protein of a conserved ABC transporter. Deletion of NTHI0044 caused resistance to the original acpP-PNA1-3'N, but showed no effect on susceptibility to the optimized acpP-PNA14-5'L. The WT strain remained susceptible to the optimized PNA-peptide after 30 serial passages on media containing the optimized PNA-peptide. CONCLUSIONS A PNA-peptide that targets acpP, has a 5' membrane-penetrating peptide and has a linker shows excellent activity against planktonic and biofilm NTHi and is associated with a low risk for induction of resistance.
Collapse
Affiliation(s)
- Taketo Otsuka
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Aimee L Brauer
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Erin K Sully
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
| | - Bruce L Geller
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA .,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA.,Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
21
|
Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy. PLoS Biol 2016; 14:e1002552. [PMID: 27631336 PMCID: PMC5025249 DOI: 10.1371/journal.pbio.1002552] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022] Open
Abstract
The lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene's sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities.
Collapse
|
22
|
Sully EK, Geller BL. Antisense antimicrobial therapeutics. Curr Opin Microbiol 2016; 33:47-55. [PMID: 27375107 PMCID: PMC5069135 DOI: 10.1016/j.mib.2016.05.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/31/2016] [Indexed: 01/17/2023]
Abstract
Antisense antimicrobial therapeutics are synthetic oligomers that silence expression of specific genes. This specificity confers an advantage over broad-spectrum antibiotics by avoiding unintended effects on commensal bacteria. The sequence-specificity and short length of antisense antimicrobials also pose little risk to human gene expression. Because antisense antimicrobials are a platform technology, they can be rapidly designed and synthesized to target almost any microbe. This reduces drug discovery time, and provides flexibility and a rational approach to drug development. Recent work has shown that antisense technology has the potential to address the antibiotic-resistance crisis, since resistance mechanisms for standard antibiotics apparently have no effect on antisense antimicrobials. Here, we describe current reports of antisense antimicrobials targeted against viruses, parasites, and bacteria.
Collapse
Affiliation(s)
- Erin K Sully
- Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR 97331-3804, USA
| | - Bruce L Geller
- Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR 97331-3804, USA.
| |
Collapse
|
23
|
Readman JB, Dickson G, Coldham NG. Translational Inhibition of CTX-M Extended Spectrum β-Lactamase in Clinical Strains of Escherichia coli by Synthetic Antisense Oligonucleotides Partially Restores Sensitivity to Cefotaxime. Front Microbiol 2016; 7:373. [PMID: 27047482 PMCID: PMC4805641 DOI: 10.3389/fmicb.2016.00373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
Synthetic antisense oligomers are DNA mimics that can specifically inhibit gene expression at the translational level by ribosomal steric hindrance. They bind to their mRNA targets by Watson-Crick base pairing and are resistant to degradation by both nucleases and proteases. A 25-mer phosphorodiamidate morpholino oligomer (PMO) and a 13-mer polyamide (peptide) nucleic acid (PNA) were designed to target mRNA (positions -4 to +21, and -17 to -5, respectively) close to the translational initiation site of the extended-spectrum β-lactamase resistance genes of CTX-M group 1. These antisense oligonucleotides were found to inhibit β-lactamase activity by up to 96% in a cell-free translation-transcription coupled system using an expression vector carrying a bla CTX-M-15 gene cloned from a clinical isolate. Despite evidence for up-regulation of CTX-M gene expression, they were both found to significantly restore sensitivity to cefotaxime (CTX) in E. coli AS19, an atypical cell wall permeable mutant, in a dose dependant manner (0-40 nM). The PMO and PNA were covalently bound to the cell penetrating peptide (CPP; (KFF)3K) and both significantly (P < 0.05) increased sensitivity to CTX in a dose dependent manner (0-40 nM) in field and clinical isolates harboring CTX-M group 1 β-lactamases. Antisense oligonucleotides targeted to the translational initiation site and Shine-Dalgarno region of bla CTX-M-15 inhibited gene expression, and when conjugated to a cell penetrating delivery vehicle, partially restored antibiotic sensitivity to both field and clinical isolates.
Collapse
Affiliation(s)
- John B Readman
- Bacteriology Department, Animal and Plant Health AgencySurrey, UK; Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of LondonSurrey, UK
| | - George Dickson
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London Surrey, UK
| | - Nick G Coldham
- Bacteriology Department, Animal and Plant Health Agency Surrey, UK
| |
Collapse
|
24
|
Chen L, Wang Y, Cheng D, Liu X, Dou S, Liu G, Hnatowich DJ, Rusckowski M. (99m)Tc-MORF oligomers specific for bacterial ribosomal RNA as potential specific infection imaging agents. Bioorg Med Chem 2013; 21:6523-30. [PMID: 24054488 DOI: 10.1016/j.bmc.2013.08.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE Radiolabeled oligomers complementary to the 16S rRNA in bacteria were investigated as bacterial infection imaging agents. METHODS AND RESULTS Identical sequences with backbones phosphorodiamidate morpholino (MORF), peptide nucleic acid (PNA), and phosphorothioate DNA (PS-DNA) were (99m)Tc-labeled and evaluated for binding to bacterial RNA. MORF binding to RNA from Escherichia coli strains SM101 and K12 was 4- and 150-fold higher compared to PNA and PS-DNA, respectively. Subsequently MORF oligomer in fluorescence in situ hybridization showed a stronger signal with study MORF compared to control in fixed preparations of two E. coli strains and Klebsiella pneumoniae. Flow cytometry analysis showed study MORF accumulation to be 8- and 80-fold higher compared to the control in live K. pneumoniae and Staphylococcus aureus, respectively. Further, fluorescence microscopy showed increased accumulation of study MORF over control in live E. coli and K. pneumonia. Binding of (99m)Tc-study MORF to RNA from E. coli SM101 and K12 was 30.4 and 117.8pmol, respectively, per 10(10) cells. Mice with K. pneumoniae live or heat-killed (sterile inflammation) in one thigh at 90min for both (99m)Tc-study MORF and control showed higher accumulation in target thighs than in blood and all other organs expect for kidneys and small intestine. Accumulation of (99m)Tc-study MORF was significantly higher (p=0.009) than that of the control in the thigh with sterile inflammation. CONCLUSION A (99m)Tc-MORF oligomer complimentary to the bacterial 16S rRNA demonstrated binding to bacterial RNA in vitro with specific accumulation into live bacteria. Radiolabeled MORF oligomers antisense to the bacterial rRNA may be useful to image bacterial infection.
Collapse
Affiliation(s)
- Ling Chen
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Trylska J, Thoduka SG, Dąbrowska Z. Using sequence-specific oligonucleotides to inhibit bacterial rRNA. ACS Chem Biol 2013; 8:1101-9. [PMID: 23631412 DOI: 10.1021/cb400163t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The majority of antibiotics used in the clinic target bacterial protein synthesis. However, the widespread emergence of bacterial resistance to existing drugs creates a need to discover or develop new therapeutic agents. Ribosomal RNA (rRNA) has been a target for numerous antibiotics that bind to functional rRNA regions such as the peptidyl transferase center, polypeptide exit tunnel, and tRNA binding sites. Even though the atomic resolution structures of many ribosome-antibiotic complexes have been solved, improving the ribosome-acting drugs is difficult because the large rRNA has a complicated 3D architecture and is surrounded by numerous proteins. Computational approaches, such as structure-based design, often fail when applied to rRNA binders because electrostatics dominate the interactions and the effect of ions and bridging waters is difficult to account for in the scoring functions. Improving the classical anti-ribosomal agents has not proven particularly successful and has not kept pace with acquired resistance. So one needs to look for other ways to combat the ribosomes, finding either new rRNA targets or totally different compounds. There have been some efforts to design translation inhibitors that act on the basis of the sequence-specific hybridization properties of nucleic acid bases. Indeed oligonucleotides hybridizing with functional regions of rRNA have been shown to inhibit translation. Also, some peptides have been shown to be reasonable inhibitors. In this review we describe these nonconventional approaches to screening for ribosome inhibition and function of particular rRNA regions. We discuss inhibitors against rRNA that may be designed according to nucleotide sequence and higher order structure.
Collapse
Affiliation(s)
- Joanna Trylska
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Sapna G. Thoduka
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Zofia Dąbrowska
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
26
|
Puckett SE, Reese KA, Mitev GM, Mullen V, Johnson RC, Pomraning KR, Mellbye BL, Tilley LD, Iversen PL, Freitag M, Geller BL. Bacterial resistance to antisense peptide phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother 2012; 56:6147-53. [PMID: 22985881 PMCID: PMC3497173 DOI: 10.1128/aac.00850-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/25/2012] [Indexed: 12/16/2022] Open
Abstract
Peptide phosphorodiamidate morpholino oligomers (PPMOs) are synthetic DNA mimics that bind cRNA and inhibit bacterial gene expression. The PPMO (RFF)(3)RXB-AcpP (where R is arginine, F, phenylalanine, X is 6-aminohexanoic acid, B is β-alanine, and AcpP is acyl carrier protein) is complementary to 11 bases of the essential gene acpP (which encodes acyl carrier protein). The MIC of (RFF)(3)RXB-AcpP was 2.5 μM (14 μg/ml) in Escherichia coli W3110. The rate of spontaneous resistance of E. coli to (RFF)(3)RXB-AcpP was 4 × 10(-7) mutations/cell division. A spontaneous (RFF)(3)RXB-AcpP-resistant mutant (PR200.1) was isolated. The MIC of (RFF)(3)RXB-AcpP was 40 μM (224 μg/ml) for PR200.1. The MICs of standard antibiotics for PR200.1 and W3110 were identical. The sequence of acpP was identical in PR200.1 and W3110. PR200.1 was also resistant to other PPMOs conjugated to (RFF)(3)RXB or peptides with a similar composition or pattern of cationic and nonpolar residues. Genomic sequencing of PR200.1 identified a mutation in sbmA, which encodes an active transport protein. In separate experiments, a (RFF)(3)RXB-AcpP-resistant isolate (RR3) was selected from a transposome library, and the insertion was mapped to sbmA. Genetic complementation of PR200.1 or RR3 with sbmA restored susceptibility to (RFF)(3)RXB-AcpP. Deletion of sbmA caused resistance to (RFF)(3)RXB-AcpP. We conclude that resistance to (RFF)(3)RXB-AcpP was linked to the peptide and not the phosphorodiamidate morpholino oligomer, dependent on the composition or repeating pattern of amino acids, and caused by mutations in sbmA. The data further suggest that (RFF)(3)R-XB PPMOs may be transported across the plasma membrane by SbmA.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyle R. Pomraning
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | | | | | | | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Bruce L. Geller
- Department of Microbiology
- AVI BioPharma, Inc., Corvallis, Oregon, USA
| |
Collapse
|
27
|
Iversen PL, Warren TK, Wells JB, Garza NL, Mourich DV, Welch LS, Panchal RG, Bavari S. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections. Viruses 2012; 4:2806-30. [PMID: 23202506 PMCID: PMC3509674 DOI: 10.3390/v4112806] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 11/28/2022] Open
Abstract
There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs) AVI-6002 (composed of AVI-7357 and AVI-7539) and AVI-6003 (composed of AVI-7287 and AVI-7288) targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO) transitioning to cell penetrating peptide conjugated PMOs (PPMO) and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates.
Collapse
MESH Headings
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/chemistry
- Base Sequence
- Ebolavirus/genetics
- Ebolavirus/metabolism
- Genes, Viral
- Guinea Pigs
- Hemorrhagic Fever, Ebola/mortality
- Hemorrhagic Fever, Ebola/therapy
- Hemorrhagic Fever, Ebola/virology
- Marburg Virus Disease/mortality
- Marburg Virus Disease/therapy
- Marburg Virus Disease/virology
- Marburgvirus/genetics
- Marburgvirus/metabolism
- Mice
- Morpholinos/administration & dosage
- Morpholinos/chemistry
- Oligodeoxyribonucleotides, Antisense/administration & dosage
- Oligodeoxyribonucleotides, Antisense/chemistry
- Primates
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
Collapse
Affiliation(s)
| | - Travis K. Warren
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Jay B. Wells
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Nicole L. Garza
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Dan V. Mourich
- Sarepta Therapeutics, Bothell, Washington 98021, USA; (P.L.I.); (D.V.M)
| | - Lisa S. Welch
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Rekha G. Panchal
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| |
Collapse
|
28
|
Panchal RG, Geller BL, Mellbye B, Lane D, Iversen PL, Bavari S. Peptide conjugated phosphorodiamidate morpholino oligomers increase survival of mice challenged with Ames Bacillus anthracis. Nucleic Acid Ther 2012; 22:316-22. [PMID: 22978365 DOI: 10.1089/nat.2012.0362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Targeting bacterial essential genes using antisense phosphorodiamidate morpholino oligomers (PMOs) represents an important strategy in the development of novel antibacterial therapeutics. PMOs are neutral DNA analogues that inhibit gene expression in a sequence-specific manner. In this study, several cationic, membrane-penetrating peptides were conjugated to PMOs (PPMOs) that target 2 bacterial essential genes: acyl carrier protein (acpP) and gyrase A (gyrA). These were tested for their ability to inhibit growth of Bacillus anthracis, a gram-positive spore-forming bacterium and causative agent of anthrax. PPMOs targeted upstream of both target gene start codons and conjugated with the bacterium-permeating peptide (RFF)(3)R were found to be most effective in inhibiting bacterial growth in vitro. Both of the gene-targeted PPMOs protected macrophages from B. anthracis induced cell death. Subsequent, in vivo testing of the PPMOs resulted in increased survival of mice challenged with the virulent Ames strain of B. anthracis. Together, these studies suggest that PPMOs targeting essential genes have the potential of being used as antisense antibiotics to treat B. anthracis infections.
Collapse
Affiliation(s)
- Rekha G Panchal
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Zhou Y, Hou Z, Fang C, Xue X, Da F, Wang Y, Bai H, Luo X. Comparison of microplate and macrodilution methods in time–kill study of new antimicrobial drugs. Folia Microbiol (Praha) 2012; 58:9-16. [DOI: 10.1007/s12223-012-0168-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
|
30
|
Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012; 11:125-40. [PMID: 22262036 PMCID: PMC4743652 DOI: 10.1038/nrd3625] [Citation(s) in RCA: 892] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we discuss three RNA-based therapeutic technologies exploiting various oligonucleotides that bind to RNA by base pairing in a sequence-specific manner yet have different mechanisms of action and effects. RNA interference and antisense oligonucleotides downregulate gene expression by inducing enzyme-dependent degradation of targeted mRNA. Steric-blocking oligonucleotides block the access of cellular machinery to pre-mRNA and mRNA without degrading the RNA. Through this mechanism, steric-blocking oligonucleotides can redirect alternative splicing, repair defective RNA, restore protein production or downregulate gene expression. Moreover, they can be extensively chemically modified to acquire more drug-like properties. The ability of RNA-blocking oligonucleotides to restore gene function makes them best suited for the treatment of genetic disorders. Positive results from clinical trials for the treatment of Duchenne muscular dystrophy show that this technology is close to achieving its clinical potential.
Collapse
Affiliation(s)
- Ryszard Kole
- AVI BioPharma, 3450 Monte Villa Parkway, Bothell, Washington 98021, USA.
| | | | | |
Collapse
|
31
|
Franzini RM, Kool ET. Improved templated fluorogenic probes enhance the analysis of closely related pathogenic bacteria by microscopy and flow cytometry. Bioconjug Chem 2011; 22:1869-77. [PMID: 21870777 DOI: 10.1021/bc2003567] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Templated fluorescence activation has recently emerged as a promising molecular approach to detect and differentiate nucleic acid sequences in vitro and in cells. Here, we describe the application of a reductive quencher release strategy to the taxonomic analysis of Gram-negative bacteria by targeting a single nucleotide difference in their 16S rRNA in a two-color assay. For this purpose, it was necessary to develop a release linker containing a quencher suitable for red and near-infrared fluorophores, and to improve methods for the delivery of probes into cells. A cyanine-dye labeled oligonucleotide probe containing the new quencher-release linker showed unprecedentedly low background signal and high fluorescence turn-on ratios. The combination of a fluorescein-containing and a near-IR emitting probe discriminated E. coli from S. enterica despite nearly identical ribosomal target sequences. Two-color analysis by microscopy and the first successful discrimination of bacteria by two-color flow cytometry with templated reactive probes are described.
Collapse
Affiliation(s)
- Raphael M Franzini
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, United States
| | | |
Collapse
|
32
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
33
|
Greenberg DE, Marshall-Batty KR, Brinster LR, Zarember KA, Shaw PA, Mellbye BL, Iversen PL, Holland SM, Geller BL. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J Infect Dis 2010; 201:1822-30. [PMID: 20438352 PMCID: PMC2872041 DOI: 10.1086/652807] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Members of the Burkholderia cepacia complex (Bcc) cause considerable morbidity and mortality in patients with chronic granulomatous disease and cystic fibrosis. Many Bcc strains are antibiotic resistant, which requires the exploration of novel antimicrobial approaches, including antisense technologies such as phosphorodiamidate morpholino oligomers (PMOs). METHODS Peptide-conjugated PMOs (PPMOs) were developed to target acpP, which encodes an acyl carrier protein (AcpP) that is thought to be essential for growth. Their antimicrobial activities were tested against different strains of Bcc in vitro and in infection models. RESULTS PPMOs targeting acpP were bactericidal against clinical isolates of Bcc (>4 log reduction), whereas a PPMO with a scrambled base sequence (scrambled PPMO) had no effect on growth. Human neutrophils were infected with Burkholderia multivorans and treated with AcpP PPMO. AcpP PPMO augmented killing, compared with neutrophils alone and compared with neutrophils alone plus scrambled PPMO. Mice with chronic granulomatous disease that were infected with B. multivorans were treated with AcpP PPMO, scrambled PPMO, or water at 0, 3, and 6 h after infection. Compared with water-treated control mice, the AcpP PPMO-treated mice showed an approximately 80% reduction in the risk of dying by day 30 of the experiment and relatively little pathology. CONCLUSION AcpP PPMO is active against Bcc infections in vitro and in vivo.
Collapse
Affiliation(s)
- David E Greenberg
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mellbye BL, Weller DD, Hassinger JN, Reeves MD, Lovejoy CE, Iversen PL, Geller BL. Cationic phosphorodiamidate morpholino oligomers efficiently prevent growth of Escherichia coli in vitro and in vivo. J Antimicrob Chemother 2010; 65:98-106. [PMID: 19884121 DOI: 10.1093/jac/dkp392] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Phosphorodiamidate morpholino oligomers (PMOs) are uncharged DNA analogues that can inhibit bacterial growth by a gene-specific, antisense mechanism. Attaching cationic peptides to PMOs enables efficient penetration through the Gram-negative outer membrane. We hypothesized that cationic groups attached directly to the PMO would obviate the need to attach peptides. METHODS PMOs with identical 11-base sequence (AcpP) targeted to acpP (an essential gene) of Escherichia coli were synthesized with various numbers of either piperazine (Pip) or N-(6-guanidinohexanoyl)piperazine (Gux) coupled to the phosphorodiamidate linker. Peptide-PMO conjugates were made using the membrane-penetrating peptide (RXR)(4)XB (X is 6-aminohexanoic acid; B is beta-alanine). RESULTS MICs (microM/mg/L) were measured using E. coli: 3 + Pip-AcpP, 160/653; 6 + Pip-AcpP, 160/673; 2 + Gux-AcpP, 20/88; 5 + Gux-AcpP, 10/49; 8 + Gux-AcpP, 10/56; 3 + Pip-AcpP-(RXR)(4)XB, 0.3/2; and 5 + Gux-AcpP-(RXR)(4)XB, 0.6/4. In cell-free protein synthesis reactions, all PMOs inhibited gene expression approximately the same. These results suggested that Pip-PMOs inefficiently penetrated the outer membrane. Indeed, the MICs of 3 + Pip-AcpP and 6 + Pip-AcpP were reduced to 0.6 and 2.5 microM (1.2 and 10.5 mg/L), respectively, using as indicator a strain with a 'leaky' outer membrane. In vivo, mice were infected intraperitoneally with E. coli. Intraperitoneal treatment with 50 mg/kg 3 + Pip-AcpP, 15 mg/kg 5 + Gux-AcpP or 0.5 mg/kg 3 + Pip-AcpP-(RXR)(4)XB, or subcutaneous treatment with 15 mg/kg 5 + Gux-AcpP or (RXR)(4)XB-AcpP reduced bacteria in blood and increased survival. CONCLUSIONS Cationic PMOs inhibited bacterial growth in vitro and in vivo, and Gux-PMOs were more effective than Pip-PMOs. However, neither was as effective as the equivalent PMO-peptide conjugates. Subcutaneous treatment showed that 5 + Gux-AcpP or (RXR)(4)XB-AcpP entered the circulatory system, reduced infection and increased survival.
Collapse
|
35
|
Inhibition of intracellular growth of Salmonella enterica serovar Typhimurium in tissue culture by antisense peptide-phosphorodiamidate morpholino oligomer. Antimicrob Agents Chemother 2009; 53:3700-4. [PMID: 19581453 DOI: 10.1128/aac.00099-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two types of phosphorodiamidate morpholino oligomers (PMOs) were tested for inhibition of growth of Salmonella enterica serovar Typhimurium. Both PMOs have the same 11-base sequence that is antisense to the region near the start codon of acpP, which is essential for lipid biosynthesis and viability. To the 3' end of each is attached the membrane-penetrating peptide (RXR)4XB (R, X, and B indicate arginine, 6-aminohexanoic acid, and beta-alanine, respectively). One peptide-PMO (AcpP PPMO) has no charge on the PMO moiety. The second PPMO has three cations (piperazine) attached to the phosphorodiamidate linkages (3+Pip-AcpP PPMO). A scrambled-sequence PPMO (Scr PPMO) was synthesized for each type of PMO. The MICs of AcpP PPMO, 3+Pip-AcpP PPMO, and either one of the Scr PPMOs were 1.25 microM (7 microg/ml), 0.156 microM (0.94 microg/ml), and >160 microM (>900 microg/ml), respectively. 3+Pip-AcpP PPMO at 1.25 or 2.5 microM significantly reduced the growth rates of pure cultures, whereas AcpP PPMO or either Scr PPMO had no effect. However, the viable cell count was significantly reduced at either concentration of 3+Pip-AcpP PPMO or AcpP PPMO, but not with either Scr PPMO. In other experiments, macrophages were infected intracellularly with S. enterica and treated with 3 microM 3+Pip-AcpP PPMO. Intracellular bacteria were reduced >99% with 3+Pip-AcpP PPMO, whereas intracellular bacteria increased 3 orders of magnitude in untreated or Scr PPMO-treated cultures. We conclude that either AcpP PPMO or 3+Pip-AcpP PPMO inhibited growth of S. enterica in pure culture and that 3+Pip-AcpP PPMO reduced intracellular viability of S. enterica in macrophages.
Collapse
|
36
|
Novel anion liposome-encapsulated antisense oligonucleotide restores susceptibility of methicillin-resistant Staphylococcus aureus and rescues mice from lethal sepsis by targeting mecA. Antimicrob Agents Chemother 2009; 53:2871-8. [PMID: 19433567 DOI: 10.1128/aac.01542-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Beta-lactam resistance in methicillin (meticillin)-resistant Staphylococcus aureus (MRSA) is caused by the production of an additional low-affinity penicillin-binding protein 2a, which is encoded by the mecA gene. The disruption of mecA may inhibit mecA expression and thereafter lead to the restoration of MRSA susceptibility to beta-lactams. In this study, we developed a novel anionic liposome for encapsulating and delivering the complexes of a specific anti-mecA phosphorothioate oligodeoxynucleotide (PS-ODN833) and polycation polyethylenimine (PEI). The efficiencies of liposome encapsulation of the complexes were around 79.7% +/- 2.7%. The liposomes showed sustained release of PS-ODN833 at 37 degrees C but very low levels of release at 4 degrees C and room temperature. The addition of the encapsulated anti-mecA PS-ODN833-PEI complex to cultures of MRSA strains caused 45, 76, 82, and 93% reductions in mecA expression, accompanied by the inhibition of MRSA growth on Mueller-Hinton agar containing oxacillin (6 microg/ml) in a concentration-dependent manner. The encapsulated-PS-ODN833 treatment also reduced the MICs of five of the most commonly used antibiotics for MRSA clinical isolates to values within the sensitivity range and rescued mice from MRSA-caused septic death by downregulating mecA. The survival rates of septic mice increased from 0% for the control group to 53% for the PS-ODN833-treated group. The results were associated with reductions of bacterial titers in the blood of surviving mice. The findings of the present study indicate that an antisense oligodeoxynucleotide targeted to mecA can significantly restore the susceptibility of MRSA to existing beta-lactam antibiotics, providing an apparently novel strategy for treating MRSA infections.
Collapse
|
37
|
Variations in amino acid composition of antisense peptide-phosphorodiamidate morpholino oligomer affect potency against Escherichia coli in vitro and in vivo. Antimicrob Agents Chemother 2008; 53:525-30. [PMID: 19015356 DOI: 10.1128/aac.00917-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The potency of antisense peptide-phosphorodiamidate morpholino oligomers (PPMOs) was improved by varying the peptide composition. An antisense phosphorodiamidate morpholino oligomer (PMO) complementary to the mRNA of the essential gene acpP (which encodes the acyl carrier protein required for lipid biosynthesis) in Escherichia coli was conjugated to the 5' ends of various cationic membrane-penetrating peptides. Each peptide had one of three repeating sequence motifs: C-N-N (motif 1), C-N (motif 2), or C-N-C (motif 3), where C is a cationic residue and N is a nonpolar residue. Variations in the cationic residues included arginine, lysine, and ornithine (O). Variations in the nonpolar residues included phenylalanine, valine, beta-alanine (B), and 6-aminohexanoic acid (X). The MICs of the PPMOs varied from 0.625 to >80 microM (about 3 to 480 microg/ml). Three of the most potent were the (RX)(6)B-, (RXR)(4)XB-, and (RFR)(4)XB-AcpP PMOs, which were further tested in mice infected with E. coli. The (RXR)(4)XB-AcpP PMO was the most potent of the three conjugates tested in mice. The administration of 30 microg (1.5 mg/kg of body weight) (RXR)(4)XB-AcpP PMO at 15 min postinfection reduced CFU/ml in blood by 10(2) to 10(3) within 2 to 12 h compared to the numbers in water-treated controls. All mice treated with 30 microg/dose of (RXR)(4)XB-AcpP PMO survived infection, whereas all water-treated mice died 12 h postinfection. The reduction in CFU/ml in blood was proportional to the dose of PPMO from 30 to 300 microg/ml. In summary, the C-N-C motif was more effective than the other two motifs, arginine was more effective than lysine or ornithine, phenylalanine was more effective than 6-aminohexanoic acid in vitro but not necessarily in vivo, and (RXR)(4)XB-AcpP PMO reduced bacterial infection and promoted survival at clinically relevant doses.
Collapse
|
38
|
Abstract
Morpholino oligonucleotides are stable, uncharged, water-soluble molecules used to block complementary sequences of RNA, preventing processing, read-through, or protein binding at those sites. Morpholinos are typically used to block translation of mRNA and to block splicing of pre-mRNA, though they can block other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA, but must be delivered into the nuclear/cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by any proteins and do not undergo protein-mediated catalysis; nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos.
Collapse
|
39
|
Abstract
Morpholino oligonucleotides are stable, uncharged, water-soluble molecules that bind to complementary sequences of RNA, thereby inhibiting mRNA processing, read-through, and protein binding at those sites. Morpholinos are typically used to inhibit translation of mRNA, splicing of pre-mRNA, and maturation of miRNA, although they can also inhibit other interactions between biological macromolecules and RNA. Morpholinos are effective, specific, and lack non-antisense effects. They work in any cell that transcribes and translates RNA. However, unmodified Morpholinos do not pass well through plasma membranes and must therefore be delivered into the nuclear or cytosolic compartment to be effective. Morpholinos form stable base pairs with complementary nucleic acid sequences but apparently do not bind to proteins to a significant extent. They are not recognized by proteins and do not undergo protein-mediated catalysis; nor do they mediate RNA cleavage by RNase H or the RISC complex. This work focuses on techniques and background for using Morpholinos.
Collapse
|
40
|
Hou Z, Meng JR, Zhao JR, Hu BQ, Liu J, Yan XJ, Jia M, Luo XX. Inhibition of beta-lactamase-mediated oxacillin resistance in Staphylococcus aureus by a deoxyribozyme. Acta Pharmacol Sin 2007; 28:1775-82. [PMID: 17959028 DOI: 10.1111/j.1745-7254.2007.00646.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To investigate the oxacillin susceptibility restoration of methicillin-resistant Staphylococcus aureus (MRSA) by targeting the signaling pathway of blaR1- blaZ with a DNAzyme. METHODS A DNAzyme (named PS-DRz602) targeting blaR1 mRNA was designed and synthesized. After DRz602 was introduced into a MRSA strain WHO-2, the colony-forming units of WHO-2 on the Mueller-Hinton agar containing 6 mg/L oxacillin and the minimum inhibitory concentrations of oxacillin were determined. The inhibitory effects of DRz602 on the expressions of antibiotic- resistant gene blaR1 and its downstream gene blaZ were detected by real time RT-PCR. RESULTS PS-DRz602 significantly decreased the transcription of blaR1 mRNA and led to the significant reduction of blaZ in a concentration-dependent manner. Consequently, the resistance of S aureus WHO-2 to the beta-lactam antibiotic oxacillin was significantly inhibited. CONCLUSION Our results indicated that blocking the blaR1-blaZ signaling pathway via DNAzyme might provide a viable strategy for inhibiting the resistance of MRSA to beta-lactam antibiotics and that BlaR1 might be a potential target for pharmacological agents combating MRSA.
Collapse
Affiliation(s)
- Zheng Hou
- Department of Pharmacology, The Fourth Military Medical University, Xioan 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Rasmussen LCV, Sperling-Petersen HU, Mortensen KK. Hitting bacteria at the heart of the central dogma: sequence-specific inhibition. Microb Cell Fact 2007; 6:24. [PMID: 17692125 PMCID: PMC1995221 DOI: 10.1186/1475-2859-6-24] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 08/10/2007] [Indexed: 12/16/2022] Open
Abstract
An important objective in developing new drugs is the achievement of high specificity to maximize curing effect and minimize side-effects, and high specificity is an integral part of the antisense approach. The antisense techniques have been extensively developed from the application of simple long, regular antisense RNA (asRNA) molecules to highly modified versions conferring resistance to nucleases, stability of hybrid formation and other beneficial characteristics, though still preserving the specificity of the original nucleic acids. These new and improved second- and third-generation antisense molecules have shown promising results. The first antisense drug has been approved and more are in clinical trials. However, these antisense drugs are mainly designed for the treatment of different human cancers and other human diseases. Applying antisense gene silencing and exploiting RNA interference (RNAi) are highly developed approaches in many eukaryotic systems. But in bacteria RNAi is absent, and gene silencing by antisense compounds is not nearly as well developed, despite its great potential and the intriguing possibility of applying antisense molecules in the fight against multiresistant bacteria. Recent breakthrough and current status on the development of antisense gene silencing in bacteria including especially phosphorothioate oligonucleotides (PS-ODNs), peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) will be presented in this review.
Collapse
Affiliation(s)
| | - Hans Uffe Sperling-Petersen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Kim Kusk Mortensen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
42
|
Nikravesh A, Dryselius R, Faridani OR, Goh S, Sadeghizadeh M, Behmanesh M, Ganyu A, Klok EJ, Zain R, Good L. Antisense PNA accumulates in Escherichia coli and mediates a long post-antibiotic effect. Mol Ther 2007; 15:1537-42. [PMID: 17534267 DOI: 10.1038/sj.mt.6300209] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antisense agents that target growth-essential genes display surprisingly potent bactericidal properties. In particular, peptide nucleic acid (PNA) and phosphorodiamidate morpholino oligomers linked to cationic carrier peptides are effective in time kill assays and as inhibitors of bacterial peritonitis in mice. It is unclear how these relatively large antimicrobials overcome stringent bacterial barriers and mediate killing. Here we determined the transit kinetics of peptide-PNAs and observed an accumulation of cell-associated PNA in Escherichia coli and slow efflux. An inhibitor of drug efflux pumps did not alter peptide-PNA potency, indicating a lack of active efflux from cells. Consistent with cell retention, the post-antibiotic effect (PAE) of the anti-acyl carrier protein (acpP) peptide-PNA was greater than 11 hours. Bacterial cell accumulation and a long PAE are properties of significant interest for antimicrobial development.
Collapse
Affiliation(s)
- Abbas Nikravesh
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Faridani OR, Nikravesh A, Pandey DP, Gerdes K, Good L. Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli. Nucleic Acids Res 2006; 34:5915-22. [PMID: 17065468 PMCID: PMC1635323 DOI: 10.1093/nar/gkl750] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Short regulatory RNAs are widespread in bacteria, and many function through antisense recognition of mRNA. Among the best studied antisense transcripts are RNA antitoxins that repress toxin mRNA translation. The hok/sok locus of plasmid R1 from Escherichia coli is an established model for RNA antitoxin action. Base-pairing between hok mRNA and Sok-antisense-RNA increases plasmid maintenance through post-segregational-killing of plasmid-free progeny cells. To test the model and the idea that sequestration of Sok-RNA activity could provide a novel antimicrobial strategy, we designed anti Sok peptide nucleic acid (PNA) oligomers that, according to the model, would act as competitive inhibitors of hok mRNA::Sok-RNA interactions. In hok/sok-carrying cells, anti Sok PNAs were more bactericidal than rifampicin. Also, anti Sok PNAs induced ghost cell morphology and an accumulation of mature hok mRNA, consistent with cell killing through synthesis of Hok protein. The results support the sense/antisense model for hok mRNA repression by Sok-RNA and demonstrate that antisense agents can be used to out-compete RNA::RNA interactions in bacteria. Finally, BLAST analyses of approximately 200 prokaryotic genomes revealed that many enteric bacteria have multiple hok/sok homologous and analogous RNA-regulated toxin-antitoxin loci. Therefore, it is possible to activate suicide in bacteria by targeting antitoxins.
Collapse
Affiliation(s)
| | | | - Deo Prakash Pandey
- Département de Biologie Cellulaire Université de GenèveSciences III 30 Quai Ernest-Ansermet 1211 Genève 4, Switzerland
| | - Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern DenmarkDK-5230 Odense M, Denmark
- Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle, NE2 4HH, UK
| | - Liam Good
- To whom correspondence should be addressed. Tel: +46 8 5248 6385; Fax: +46 8 32 39 50;
| |
Collapse
|
44
|
Tilley LD, Hine OS, Kellogg JA, Hassinger JN, Weller DD, Iversen PL, Geller BL. Gene-specific effects of antisense phosphorodiamidate morpholino oligomer-peptide conjugates on Escherichia coli and Salmonella enterica serovar typhimurium in pure culture and in tissue culture. Antimicrob Agents Chemother 2006; 50:2789-96. [PMID: 16870773 PMCID: PMC1538669 DOI: 10.1128/aac.01286-05] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective was to improve efficacy of antisense phosphorodiamidate morpholino oligomers (PMOs) by improving their uptake into bacterial cells. Four different bacterium-permeating peptides, RFFRFFRFFXB, RTRTRFLRRTXB, RXXRXXRXXB, and KFFKFFKFFKXB (X is 6-aminohexanoic acid and B is beta-alanine), were separately coupled to two different PMOs that are complementary to regions near the start codons of a luciferase reporter gene (luc) and a gene required for viability (acpP). Luc peptide-PMOs targeted to luc inhibited luciferase activity 23 to 80% in growing cultures of Escherichia coli. In cell-free translation reactions, Luc RTRTRFLRRTXB-PMO inhibited luciferase synthesis significantly more than the other Luc peptide-PMOs or the Luc PMO not coupled to peptide. AcpP peptide-PMOs targeted to acpP inhibited growth of E. coli or Salmonella enterica serovar Typhimurium to various extents, depending on the strain. The concentrations of AcpP RFFRFFRFFXB-PMO, AcpP RTRTRFLRRTXB-PMO, AcpP KFFKFFKFFKXB-PMO, and ampicillin that reduced CFU/ml by 50% after 8 h of growth (50% inhibitory concentration [IC(50)]) were 3.6, 10.8, 9.5, and 7.5 microM, respectively, in E. coli W3110. Sequence-specific effects of AcpP peptide-PMOs were shown by rescuing growth of a merodiploid strain that expressed acpP with silent mutations in the region targeted by AcpP peptide-PMO. In Caco-2 cultures infected with enteropathogenic E. coli (EPEC), 10 microM AcpP RTRTRFLRRTXB-PMO or AcpP RFFRFFRFFXB-PMO essentially cleared the infection. The IC(50) of either AcpP RTRTRFLRRTXB-PMO or AcpP RFFRFFRFFXB-PMO in EPEC-infected Caco-2 culture was 3 microM. In summary, RFFRFFRFFXB, RTRTRFLRRTXB, or KFFKFFKFFXB, when covalently bonded to PMO, significantly increased inhibition of expression of targeted genes compared to PMOs without attached peptide.
Collapse
|
45
|
Kulyté A, Nekhotiaeva N, Awasthi SK, Good L. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J Mol Microbiol Biotechnol 2006; 9:101-9. [PMID: 16319499 DOI: 10.1159/000088840] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antisense agents that inhibit genes at the mRNA level are attractive tools for genome-wide studies and drug target validation. The approach may be particularly well suited to studies of bacteria that are difficult to manipulate with standard genetic tools. Antisense peptide nucleic acids (PNA) with attached carrier peptides can inhibit gene expression in Escherichia coli and Staphylococcus aureus. Here we asked whether peptide-PNAs could mediate antisense effects in Mycobacterium smegmatis. We first targeted the gfp reporter gene and observed dose- and sequence-dependent inhibition at low micromolar concentrations. Sequence alterations within both the PNA and target mRNA sequences eliminated inhibition, strongly supporting an antisense mechanism of inhibition. Also, antisense PNAs with various attached peptides showed improved anti-gfp effects. Two peptide-PNAs targeted to the essential gene inhA were growth inhibitory and caused cell morphology changes that resemble that of InhA-depleted cells. Therefore, antisense peptide-PNAs can efficiently and specifically inhibit both reporter and endogenous essential genes in mycobacteria.
Collapse
Affiliation(s)
- Agné Kulyté
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
46
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
47
|
Dryselius R, Nekhotiaeva N, Good L. Antimicrobial synergy between mRNA- and protein-level inhibitors. J Antimicrob Chemother 2005; 56:97-103. [PMID: 15914490 DOI: 10.1093/jac/dki173] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The few available distinct classes of antimicrobials limits the scope for single and combination drug treatment of resistant infections. OBJECTIVE To evaluate antimicrobial effectiveness from combinations of protein-specific drugs and mRNA-specific antisense inhibitors. METHODS Interactions between conventional antimicrobial drugs and mRNA-specific translation inhibiting antisense peptide nucleic acids were assessed in Escherichia coli and Staphylococcus aureus cultures using pairwise combinations in a chequerboard arrangement. Fractional inhibitory concentration indices (FICIs) were calculated and grouped according to the functional relationship between the inhibitor targets. Antisense specificity controls included different antisense sequences targeting the same mRNA, as well as biochemical quantification of active protein expressed from the essential fabI gene and from the lacZ reporter gene after single and combined inhibitor treatment. RESULTS FICIs were higher for inhibitor combinations with unrelated targets than for combinations with functionally related targets. Inhibitor combinations with shared genetic targets displayed the lowest FICIs, with several qualifying for the conservative definition of antimicrobial synergy (FICI < or = 0.5). Furthermore, low FICIs arise as the hyperbolic dose-response curves for each separate inhibitor are maintained in combination. CONCLUSION Interactions between mRNA- and protein-level inhibitors with the same genetic target can be synergistic and may provide a strategy to improve antimicrobial efficacy, facilitate drug mechanism of action studies and aid the search for new antimicrobials.
Collapse
Affiliation(s)
- Rikard Dryselius
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|