1
|
Vietri NJ, Tobery SA, Chabot DJ, Ingavale S, Somerville BC, Miller JA, Schellhase CW, Twenhafel NA, Fetterer DP, Cote CK, Klimko CP, Boyer AE, Woolfitt AR, Barr JR, Wright ME, Friedlander AM. Clindamycin Protects Nonhuman Primates Against Inhalational Anthrax But Does Not Enhance Reduction of Circulating Toxin Levels When Combined With Ciprofloxacin. J Infect Dis 2021; 223:319-325. [PMID: 32697310 DOI: 10.1093/infdis/jiaa365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/19/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inhalational anthrax is rare and clinical experience limited. Expert guidelines recommend treatment with combination antibiotics including protein synthesis-inhibitors to decrease toxin production and increase survival, although evidence is lacking. METHODS Rhesus macaques exposed to an aerosol of Bacillus anthracis spores were treated with ciprofloxacin, clindamycin, or ciprofloxacin + clindamycin after becoming bacteremic. Circulating anthrax lethal factor and protective antigen were quantitated pretreatment and 1.5 and 12 hours after beginning antibiotics. RESULTS In the clindamycin group, 8 of 11 (73%) survived demonstrating its efficacy for the first time in inhalational anthrax, compared to 9 of 9 (100%) with ciprofloxacin, and 8 of 11 (73%) with ciprofloxacin + clindamycin. These differences were not statistically significant. There were no significant differences between groups in lethal factor or protective antigen levels from pretreatment to 12 hours after starting antibiotics. Animals that died after clindamycin had a greater incidence of meningitis compared to those given ciprofloxacin or ciprofloxacin + clindamycin, but numbers of animals were very low and no definitive conclusion could be reached. CONCLUSION Treatment of inhalational anthrax with clindamycin was as effective as ciprofloxacin in the nonhuman primate. Addition of clindamycin to ciprofloxacin did not enhance reduction of circulating toxin levels.
Collapse
Affiliation(s)
- Nicholas J Vietri
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Steven A Tobery
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Donald J Chabot
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Susham Ingavale
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Brandon C Somerville
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jeremy A Miller
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Chris W Schellhase
- Division of Pathology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Nancy A Twenhafel
- Division of Pathology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - David P Fetterer
- Division of Biostatistics, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Christopher K Cote
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Christopher P Klimko
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Anne E Boyer
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adrian R Woolfitt
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R Barr
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mary E Wright
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Arthur M Friedlander
- Headquarters, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA.,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Efficacy of Single and Combined Antibiotic Treatments of Anthrax in Rabbits. Antimicrob Agents Chemother 2015; 59:7497-503. [PMID: 26392505 DOI: 10.1128/aac.01376-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023] Open
Abstract
Respiratory anthrax is a fatal disease in the absence of early treatment with antibiotics. Rabbits are highly susceptible to infection with Bacillus anthracis spores by intranasal instillation, succumbing within 2 to 4 days postinfection. This study aims to test the efficiency of antibiotic therapy to treat systemic anthrax in this relevant animal model. Delaying the initiation of antibiotic administration to more than 24 h postinfection resulted in animals with systemic anthrax in various degrees of bacteremia and toxemia. As the onset of symptoms in humans was reported to start on days 1 to 7 postexposure, delaying the initiation of treatment by 24 to 48 h (time frame for mass distribution of antibiotics) may result in sick populations. We evaluated the efficacy of antibiotic administration as a function of bacteremia levels at the time of treatment initiation. Here we compare the efficacy of treatment with clarithromycin, amoxicillin-clavulanic acid (Augmentin), imipenem, vancomycin, rifampin, and linezolid to the previously reported efficacy of doxycycline and ciprofloxacin. We demonstrate that treatment with amoxicillin-clavulanic acid, imipenem, vancomycin, and linezolid were as effective as doxycycline and ciprofloxacin, curing rabbits exhibiting bacteremia levels of up to 10(5) CFU/ml. Clarithromycin and rifampin were shown to be effective only as a postexposure prophylactic treatment but failed to treat the systemic (bacteremic) phase of anthrax. Furthermore, we evaluate the contribution of combined treatment of clindamycin and ciprofloxacin, which demonstrated improvement in efficacy compared to ciprofloxacin alone.
Collapse
|
3
|
Abstract
This retrospective, descriptive case-series reviews the clinical presentations and significant laboratory findings of patients diagnosed with and treated for injectional anthrax (IA) since December 2009 at Monklands Hospital in Central Scotland and represents the largest series of IA cases to be described from a single location. Twenty-one patients who fulfilled National Anthrax Control Team standardized case definitions of confirmed, probable or possible IA are reported. All cases survived and none required limb amputation in contrast to an overall mortality of 28% being experienced for this condition in Scotland. We document the spectrum of presentations of soft tissue infection ranging from mild cases which were managed predominantly with oral antibiotics to severe cases with significant oedema, organ failure and coagulopathy. We describe the surgical management, intensive care management and antibiotic management including the first description of daptomycin being used to treat human anthrax. It is noted that some people who had injected heroin infected with Bacillus anthracis did not develop evidence of IA. Also highlighted are biochemical and haematological parameters which proved useful in identifying deteriorating patients who required greater levels of support and surgical debridement.
Collapse
|
4
|
Plett PA, Sampson CH, Chua HL, Joshi M, Booth C, Gough A, Johnson CS, Katz BP, Farese AM, Parker J, MacVittie TJ, Orschell CM. Establishing a murine model of the hematopoietic syndrome of the acute radiation syndrome. HEALTH PHYSICS 2012; 103:343-55. [PMID: 22929467 PMCID: PMC3743168 DOI: 10.1097/hp.0b013e3182667309] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The authors have developed a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS) for efficacy testing of medical countermeasures (MCM) against radiation according to the FDA Animal Rule. Ten- to 12-wk-old male and female C57BL/6 mice were exposed to the LD50/30-LD70/30 dose of total body irradiation (TBI, (137)Cs, 0.62-0.67 Gy min(-1)) in the morning hours when mice were determined to be most radiosensitive, and they were assessed for 30-d survival and mean survival time (MST). Antibiotics were delivered in drinking water on days 4-30 post-TBI at a concentration based on the amount of water that lethally-irradiated mice were found to consume. The fluoroquinolones, ciprofloxacin and levofloxacin, as well as the tetracycline doxycycline, and aminoglycoside neomycin, all significantly increased MST of decedent mice, while ciprofloxacin (p = 0.061) and doxycycline + neomycin (p = 0.005) showed at least some efficacy to increase 30-d survival. Blood sampling (30 μL/mouse every fifth day) was found to negatively impact 30-d survival. Histopathology of tissues harvested from nonmoribund mice showed expected effects of lethal irradiation, while moribund mice were largely septicemic with a preponderance of enteric organisms. Kinetics of loss and recovery of peripheral blood cells in untreated mice and those treated with two MCM, granulocyte-colony stimulating factor and Amifostine further characterized and validated this model for use in screening studies and pivotal efficacy studies of candidate MCM for licensure to treat irradiated individuals suffering from H-ARS.
Collapse
Affiliation(s)
- P. Artur Plett
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mandar Joshi
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Barry P. Katz
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ann M. Farese
- University of Maryland at Baltimore School of Medicine, Baltimore, MD, USA
| | - Jeffrey Parker
- University of Maryland at Baltimore School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
5
|
Artenstein AW, Opal SM. Novel approaches to the treatment of systemic anthrax. Clin Infect Dis 2012; 54:1148-61. [PMID: 22438345 DOI: 10.1093/cid/cis017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthrax continues to generate concern as an agent of bioterrorism and as a natural cause of sporadic disease outbreaks. Despite the use of appropriate antimicrobial agents and advanced supportive care, the mortality associated with the systemic disease remains high. This is primarily due to the pathogenic exotoxins produced by Bacillus anthracis as well as other virulence factors of the organism. For this reason, new therapeutic strategies that target events in the pathogenesis of anthrax and may potentially augment antimicrobials are being investigated. These include anti-toxin approaches, such as passive immune-based therapies; non-antimicrobial drugs with activity against anthrax toxin components; and agents that inhibit binding, processing, or assembly of toxins. Adjunct therapies that target spore germination or downstream events in anthrax intoxication are also under investigation. In combination, these modalities may enhance the management of systemic anthrax.
Collapse
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket, and The Warren Alpert Medical School of Brown University, Providence, RI 02860, USA
| | | |
Collapse
|
6
|
MyD88-dependent signaling protects against anthrax lethal toxin-induced impairment of intestinal barrier function. Infect Immun 2010; 79:118-24. [PMID: 20974827 DOI: 10.1128/iai.00963-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MyD88-deficient mice were previously shown to have increased susceptibility to Bacillus anthracis infection relative to wild-type animals. To determine the mechanism by which MyD88 protects against B. anthracis infection, knockout mice were challenged with nonencapsulated, toxigenic B. anthracis or with anthrax toxins. MyD88-deficient mice had increased susceptibility to B. anthracis and anthrax lethal toxin but not to edema toxin. Lethal toxin alone induced marked multifocal intestinal ulcers in the knockout animals, compromising the intestinal epithelial barrier. The resulting enteric bacterial leakage in the knockout animals led to peritonitis and septicemia. Focal ulcers and erosion were also found in MyD88-heterozygous control mice but with far lower incidence and severity. B. anthracis infection also induced a similar enteric bacterial septicemia in MyD88-deficient mice but not in heterozygous controls. We show that lethal toxin and B. anthracis challenge induce bacteremia as a result of intestinal damage in MyD88-deficient mice. These results suggest that loss of the intestinal epithelial barrier and enteric bacterial septicemia may contribute to sensitizing MyD88-deficient mice to B. anthracis and that MyD88 plays a protective role against lethal toxin-induced impairment of intestinal barrier.
Collapse
|
7
|
Abstract
The term "radiation combined injury" (RCI) is used to describe conditions where radiation injury is coupled with other insults such as burns, wounds, infection, or blunt trauma. A retrospective account of injuries sustained following the atomic bombing of Hiroshima estimates that RCI comprised approximately 65% of all injuries observed. Much of the research that has been performed on RCI was carried out during the Cold War and our understanding of the clinical problem RCI presents does not reflect the latest advances in medicine or science. Because concerns have increased that terrorists might employ radiological or nuclear weapons, and because of the likelihood that victims of such terrorism would experience RCI, the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health sponsored a meeting in 2007 to explore the state of the research in this area, identify programmatic gaps, and establish priorities for future research. As a follow-up to that meeting, in 2008 NIAID sponsored an initiative on RCI, leading to the award of several exploratory/developmental grants, the goals of which are to better understand biological synergy involved in RCI-induced damage, develop improved animal models for various type of RCI, and advance identification and testing of potential countermeasures to treat injuries that would be expected following a radiological or nuclear event. This program has already yielded new insight into the nature of combined injuries and has identified a number of novel and existing compounds that may be effective treatments for this condition.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Department of Health and Human Services, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6610 Rockledge Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
8
|
DiCarlo AL, Hatchett RJ, Kaminski JM, Ledney GD, Pellmar TC, Okunieff P, Ramakrishnan N. Medical countermeasures for radiation combined injury: radiation with burn, blast, trauma and/or sepsis. report of an NIAID Workshop, March 26-27, 2007. Radiat Res 2008; 169:712-21. [PMID: 18494548 PMCID: PMC8409135 DOI: 10.1667/rr1295.1] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 12/30/2007] [Indexed: 11/03/2022]
Abstract
Non-clinical human radiation exposure events such as the Hiroshima and Nagasaki bombings or the Chernobyl accident are often coupled with other forms of injury, such as wounds, burns, blunt trauma, and infection. Radiation combined injury would also be expected after a radiological or nuclear attack. Few animal models of radiation combined injury exist, and mechanisms underlying the high mortality associated with complex radiation injuries are poorly understood. Medical countermeasures are currently available for management of the non-radiation components of radiation combined injury, but it is not known whether treatments for other insults will be effective when the injury is combined with radiation exposure. Further research is needed to elucidate mechanisms behind the synergistic lethality of radiation combined injury and to identify targets for medical countermeasures. To address these issues, the National Institute of Allergy and Infectious Diseases convened a workshop to make recommendations on the development of animal models of radiation combined injury, possible mechanisms of radiation combined injury, and future directions for countermeasure research, including target identification and end points to evaluate treatment efficacy.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Guay D. Update on clindamycin in the management of bacterial, fungal and protozoal infections. Expert Opin Pharmacother 2007; 8:2401-44. [PMID: 17927492 DOI: 10.1517/14656566.8.14.2401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lincomycin and clindamycin are the only members of the relatively small lincosamide antimicrobial class marketed for use in humans. This paper only reviews data regarding clindamycin, with an emphasis on data published over the last decade. Clindamycin exhibits a broad spectrum of antimicrobial activity, including Gram-positive aerobes/anaerobes, Gram-negative anaerobes and select protozoa (Toxoplasma gondii, Plasmodium falciparum, Babesia spp.) and fungi (Pneumocystis jiroveci). It still enjoys use in the therapy and prophylaxis of a large number of bacterial, protozoal and fungal infections, despite > 40 years of clinical use. However, the spectre of resistance by an increasing number of microorganisms is beginning to cast a shadow over the future use of this valuable agent. With the emergence and spread of infections due to community-acquired methicillin-resistant Staphylococci (for which clindamycin is a first-line agent), it is hoped that the issues of resistance can be mitigated and the use of clindamycin extended for at least the foreseeable future.
Collapse
Affiliation(s)
- David Guay
- University of Minnesota, College of Pharmacy, Weaver-Densford Hall 7-148, 308 Harvard Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|