1
|
Ji Y, Ma Y, Ma Y, Wang Y, Zhao X, Xu L, Ge S. An Amino Acids and Dipeptide Injection Inhibits the TNF-α/HMGB1 Inflammatory Signaling Pathway to Reduce Pyroptosis and M1 Microglial Polarization in POCD Mice: the Gut to the Brain. Mol Neurobiol 2024; 61:10097-10114. [PMID: 38700653 DOI: 10.1007/s12035-024-04209-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/27/2024] [Indexed: 11/24/2024]
Abstract
Peripheral surgery-induced neural inflammation is a key pathogenic mechanism of postoperative cognitive dysfunction (POCD). However, the mechanism underlying neuroinflammation and associated neural injury remains elusive. Surgery itself can lead to gut damage, and the occurrence of POCD is accompanied by high levels of TNF-α in the serum and blood‒brain barrier (BBB) damage. Reductions in stress, inflammation and protein loss have been emphasized as strategies for enhanced recovery after surgery (ERAS). We designed an amino acids and dipeptide (AAD) formula for injection that could provide intestinal protection during surgery. Through the intraoperative infusion of AAD based on the ERAS concept, we aimed to explore the effect of AAD injection on POCD and its underlying mechanism from the gut to the brain. Here, we observed that AAD injection ameliorated neural injury in POCD, in addition to restoring the function of the intestinal barrier and BBB. We also found that TNF-α levels decreased in the ileum, blood and hippocampus. Intestinal barrier protectors and TNF-α inhibitors also alleviated neural damage. AAD injection treatment decreased HMGB1 production, pyroptosis, and M1 microglial polarization and increased M2 polarization. In vitro, AAD injection protected the impaired gut barrier and decreased TNF-α production, alleviating damage to the BBB by stimulating cytokine transport in the body. HMGB1 and Caspase-1 inhibitors decreased pyroptosis and M1 microglial polarization and increased M2 polarization to protect TNF-α-stimulated microglia in vitro. Collectively, these findings suggest that the gut barrier-TNF-α-BBB-HMGB1-Caspase-1 inflammasome-pyroptosis-M1 microglia pathway is a novel mechanism of POCD related to the gut-brain axis and that intraoperative AAD infusion is a potential treatment for POCD.
Collapse
Affiliation(s)
- Yelong Ji
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yimei Ma
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Xining Zhao
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Li Xu
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Shengjin Ge
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
2
|
Delik E, Eroğlu B, Karabıyık R, Tefon-Öztürk BE. Antibiotic concentrations induce morphological changes and increase biofilm formation in multi-antibiotic and heavy metal resistant Kluyvera cryocrescens and Serratia fonticola. Microb Pathog 2024; 197:107112. [PMID: 39521156 DOI: 10.1016/j.micpath.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/20/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Water pollution is the biggest challenge that has rendered existing water resources unusable due to contamination with antibiotics and heavy metals. Antibiotics are often used to treat bacterial diseases. Heavy metals, on the other hand, are micro-pollutants that pose a threat to aquatic systems, especially when they accumulate in nature. Increasing pollution and the uncontrolled use of antibiotics have exposed bacteria to non-lethal concentrations (sub-MIC), potentially leading to resistance. In this study, Kluyvera cryocrescens and Serratia fonticola were isolated from a freshwater source and characterised. The resistance profiles of the isolates to 16 antibiotics and 8 heavy metals were determined, revealing that they are multidrug-resistant. The effects of sub-MICs (MIC/2 and MIC/4) of antibiotics on biofilm formation, siderophore production, and cell morphology of bacteria were analysed. It was found that at some sub-MIC values of kanamycin, tetracycline, meropenem, erythromycin, and clarithromycin, biofilm formation by K. cryocrescens increased. An increase in biofilm production was also observed in S. fonticola at sub-MIC values of imipenem, meropenem, ceftazidime, ciprofloxacin, and clarithromycin. Moreover, significant morphological changes were observed in both isolates following treatment with meropenem, ciprofloxacin, and ceftazidime. After treatment with meropenem, the typical rod-shaped (bacillary) morphology of the isolates shifted to a round (coccoid) form. In contrast, the bacteria developed into long filaments after treatment with ciprofloxacin and ceftazidime. These changes in the bacteria may favour the development of resistance and pose challenges for the prevention and treatment of diseases. Therefore, it is crucial to understand how sub-MIC levels of antimicrobial agents alter the virulence properties of bacteria.
Collapse
Affiliation(s)
- Eda Delik
- Biology Department, Faculty of Science, Akdeniz University, 07070, Antalya, Türkiye.
| | - Berfin Eroğlu
- Biology Department, Faculty of Science, Akdeniz University, 07070, Antalya, Türkiye.
| | - Reyhan Karabıyık
- Biology Department, Faculty of Science, Akdeniz University, 07070, Antalya, Türkiye.
| | | |
Collapse
|
3
|
Hussein M, Allobawi R, Zhao J, Yu H, Neville SL, Wilksch J, Wong LJM, Baker M, McDevitt CA, Rao GG, Li J, Velkov T. Integrated Transcriptomic and Metabolomic Mapping Reveals the Mechanism of Action of Ceftazidime/Avibactam against Pan-Drug-Resistant Klebsiella pneumoniae. ACS Infect Dis 2023; 9:2409-2422. [PMID: 37878861 PMCID: PMC10714405 DOI: 10.1021/acsinfecdis.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Here, we employed an integrated metabolomics and transcriptomics approach to investigate the molecular mechanism(s) of action of ceftazidime/avibactam against a pan-drug-resistant K. pneumoniae clinical isolate from a patient with urinary tract infection. Ceftazidime/avibactam induced time-dependent perturbations in the metabolome and transcriptome of the bacterium, mainly at 6 h, with minimal effects at 1 and 3 h. Metabolomics analysis revealed a notable reduction in essential lipids involved in outer membrane glycerolipid biogenesis. This disruption effect extended to peptidoglycan and lipopolysaccharide biosynthetic pathways, including lipid A and O-antigen assembly. Importantly, ceftazidime/avibactam not only affected the final steps of peptidoglycan biosynthesis in the periplasm, a common mechanism of ceftazidime action, but also influenced the synthesis of lipid-linked intermediates and early stages of cytoplasmic peptidoglycan synthesis. Furthermore, ceftazidime/avibactam substantially inhibited central carbon metabolism (e.g., the pentose phosphate pathway and tricarboxylic acid cycle). Consistently, the dysregulation of genes governing these metabolic pathways aligned with the metabolomics findings. Certain metabolomics and transcriptomics signatures associated with ceftazidime resistance were also perturbed. Consistent with the primary target of antibiotic activity, biochemical assays also confirmed the direct impact of ceftazidime/avibactam on peptidoglycan production. This study explored the intricate interactions of ceftazidime and avibactam within bacterial cells, including their impact on cell envelope biogenesis and central carbon metabolism. Our findings revealed the complexities of how ceftazidime/avibactam operates, such as hindering peptidoglycan formation in different cellular compartments. In summary, this study confirms the existing hypotheses about the antibacterial and resistance mechanisms of ceftazidime/avibactam while uncovering novel insights, including its impact on lipopolysaccharide formation.
Collapse
Affiliation(s)
- Maytham Hussein
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Rafah Allobawi
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jinxin Zhao
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heidi Yu
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie L. Neville
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jonathan Wilksch
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Labell J. M. Wong
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mark Baker
- Discipline
of Biological Sciences, Priority Research Centre in Reproductive Biology,
Faculty of Science and IT, University of
Newcastle, University
Drive, Callaghan, NSW 2308, Australia
| | - Christopher A. McDevitt
- Department
of Microbiology and Immunology, The Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Gauri G. Rao
- Division
of Pharmacotherapy and Experimental Therapeutics, Eshelman School
of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7355, United
States
| | - Jian Li
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Tony Velkov
- Monash
Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Ishihara K, Sunagawa C, Haneishi T, Miyaguchi N, Endo N, Tanaka T. Comparison of antimicrobial susceptibilities of bacterial isolates between cured and uncured cases of bovine mastitis. J Vet Med Sci 2020; 82:903-907. [PMID: 32378520 PMCID: PMC7399304 DOI: 10.1292/jvms.19-0692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate the effect of antimicrobial susceptibility on outcomes, we compared the minimum inhibitory concentrations (MICs) for Staphylococcus, Streptococcus, and the family Enterobacteriaceae from cured and uncured mastitis cases; milk shipment for uncured cases could not be resumed within 3 weeks after initial clinical examination. A higher MIC50 of ampicillin and a higher MIC90 of cefazolin for Enterobacteriaceae isolates were observed for cured rather than uncured cases with differences in ≥2 tubes. Endotoxins are generally released from Enterobacteriaceae upon antimicrobial treatment; their amounts are presumed to be greater in mastitis cases resulting from β-lactam antibiotic-susceptible rather than -resistant microbes. For staphylococcal and streptococcal isolates, the MIC50 and MIC90 of β-lactam antibiotics were similar for cured and uncured cases.
Collapse
Affiliation(s)
- Kanako Ishihara
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Chihiro Sunagawa
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Takashi Haneishi
- Central Veterinary Clinical Center, Chiba Prefectural Federated Agricultural Mutual Aid Association, Chiba 299-0126, Japan.,Laboratory of Veterinary Reproduction, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Naoko Miyaguchi
- Laboratory of Veterinary Public Health, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Natsumi Endo
- Laboratory of Veterinary Reproduction, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Tomomi Tanaka
- Laboratory of Veterinary Reproduction, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
5
|
Abstract
Prompt and effective antimicrobial therapy is crucial for the management of patients with severe bacterial infections but is becoming increasingly difficult to provide due to emerging antibiotic resistance. The traditional methods for antibiotic susceptibility testing (AST) used in most clinical laboratories are reliable but slow with turnaround times of 2 to 3 days, which necessitates the use of empirical therapy with broad-spectrum antibiotics. There is a great need for fast and reliable AST methods that enable starting targeted treatment within a few hours to improve patient outcome and reduce the overuse of broad-spectrum antibiotics. The multiplex fluidic chip for phenotypic AST described in the present study may enable data on antimicrobial resistance within 2 to 4 h, allowing for an early initiation of appropriate antibiotic therapy. Many patients with severe infections receive inappropriate empirical treatment, and rapid detection of bacterial antibiotic susceptibility can improve clinical outcome and reduce mortality. To this end, we have developed a multiplex fluidic chip for rapid phenotypic antibiotic susceptibility testing of bacteria. A total of 21 clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were acquired from the EUCAST Development Laboratory and tested against amikacin, ceftazidime, and meropenem (Gram-negative bacteria) or gentamicin, ofloxacin, and tetracycline (Gram-positive bacteria). The bacterial samples were mixed with agarose and loaded in an array of growth chambers in the chip where bacterial microcolony growth was monitored over time using automated image analysis. MIC values were automatically obtained by tracking the growth rates of individual microcolonies in different regions of antibiotic gradients. Stable MIC values were obtained within 2 to 4 h, and the results showed categorical agreement with reference MIC values as determined by broth microdilution in 86% of the cases.
Collapse
|
6
|
Sy SKB, Zhuang L, Xia H, Beaudoin ME, Schuck VJ, Nichols WW, Derendorf H. A mathematical model-based analysis of the time-kill kinetics of ceftazidime/avibactam against Pseudomonas aeruginosa. J Antimicrob Chemother 2019; 73:1295-1304. [PMID: 29415212 DOI: 10.1093/jac/dkx537] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/19/2017] [Indexed: 01/28/2023] Open
Abstract
Objectives To characterize quantitatively the effect of avibactam in potentiating ceftazidime against MDR Pseudomonas aeruginosa by developing a mathematical model to describe the bacterial response to constant concentration time-kill information and validating it using both constant and time-varying concentration-effect data from in vitro and in vivo infection systems. Methods The time course of the bacterial population dynamics in the presence of static concentrations of ceftazidime and avibactam was modelled using a two-state pharmacokinetic/pharmacodynamic (PK/PD) model, consisting of active and resting states, to account for bactericidal activities, bacteria-mediated ceftazidime degradation and inhibition of degradation by avibactam. Ceftazidime's effect on the bacterial population was described as an enhancement of the death rate of the active population, with the effect of avibactam being to increase ceftazidime potency. Model validation was performed by comparing simulated time courses of bacterial responses with those from in vitro and in vivo experimental exposures of ceftazidime and avibactam that represented those predicted in an average patient dosed with 2 g/0.5 g ceftazidime/avibactam administered every 8 h as 2 h infusions. Results The two-state model successfully described the bacterial population dynamics, ceftazidime degradation and its inhibition by avibactam. For external validation, the model correctly predicted the bacterial response of P. aeruginosa isolates evaluated in in vitro hollow-fibre and in vivo neutropenic mouse thigh and lung infection models. Conclusions The PK/PD model and modelled strains successfully replicated the spread in activity when compared with a large selection of P. aeruginosa strains reported in the literature.
Collapse
Affiliation(s)
- Sherwin K B Sy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Luning Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Huiming Xia
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Caffeic Acid Prevented LPS-Induced Injury of Primary Bovine Mammary Epithelial Cells through Inhibiting NF- κB and MAPK Activation. Mediators Inflamm 2019; 2019:1897820. [PMID: 31182930 PMCID: PMC6515104 DOI: 10.1155/2019/1897820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
In our previous study, lipopolysaccharide (LPS) significantly reduced the cell viability of primary bovine mammary epithelial cells (bMEC) leading to cell apoptosis, which were prevented by caffeic acid (CA) through inhibiting NF-κB activation and reducing proinflammatory cytokine expression. While the underlying mechanism remains unclear, here, we determined that LPS induced the extensive microstructural damage of bMEC, especially the mitochondria and endoplasmic reticulum. Then, the obvious reduction of mitochondrial membrane potential and expression changes of apoptosis-associated proteins (Bcl-2, Bax, and casepase-3) indicated that apoptosis signaling through the mitochondria should be responsible for the cell viability decrease. Next, the high-throughput cDNA sequencing (RNA-Seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were employed to verify that the MAPK and JAK-STAT signaling pathways also were the principal targets of LPS. Following, the critical proteins (ERK, JNK, p38, and c-jun) of the MAPK signaling pathways were activated, and the release of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) regulated by NF-κB and MAPKs was significantly increased, which can promote a cascade of inflammation that induces cell injury and apoptosis. Meanwhile, CA significantly inhibited the activation of MAPKs and the release of proinflammatory cytokines in a dose-dependent manner, which were similar to its effects on the NF-κB activation that we previously published. So we concluded that CA regulates the proteins located in the upstream of multiple cell signal pathways which can reduce the LPS-induced activation of NF-κB and MAPKs, thus weakening the inflammatory response and maintaining cell structure and function, which accordingly inhibit apoptosis.
Collapse
|
8
|
Mohamed-Salem R, Rodríguez Fernández C, Nieto-Pelegrín E, Conde-Valentín B, Rumbero A, Martinez-Quiles N. Aqueous extract of Hibiscus sabdariffa inhibits pedestal induction by enteropathogenic E. coli and promotes bacterial filamentation in vitro. PLoS One 2019; 14:e0213580. [PMID: 30849110 PMCID: PMC6407759 DOI: 10.1371/journal.pone.0213580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022] Open
Abstract
Diarrheic diseases account for the annual death of approximately 1.9 million children under the age of 5 years, and it is a major cause of work absenteeism in developed countries. As diarrheagenic bacteria, enteropathogenic Escherichia coli (EPEC) attach to cells in the small intestine, causing local disappearance of microvilli and inducing the formation of actin-rich pedestals that disrupt the intestinal barrier and help EPEC adhere to and infect intestinal cells. Antibiotics and other bioactive compounds can often be found by analyzing traditional medicines. Here a crude aqueous extract of Hibiscus sabdariffa, which typically grows in subtropical and tropical areas and is a popular medicinal tisane in many countries, was analyzed for antibacterial activity against EPEC. In standard microdilution assays, the extract showed a minimum inhibitory concentration of 6.5 mg/ml against EPEC growth. Time-kill kinetics assays demonstrated significant 24 h bactericidal activity at 25 mg/ml. The extract is able to impede pedestal induction. Not only did the extract inhibit preformed pedestals but it prevented pedestal induction as well. Remarkably, it also promoted the formation of EPEC filaments, as observed with other antibiotics. Our results in vitro support the potential of Hibiscus sabdariffa as an antimicrobial agent against EPEC.
Collapse
Affiliation(s)
- Reda Mohamed-Salem
- Department of Microbiology and Parasitology, Pharmacy School, Complutense University, Madrid, Spain
| | | | - Elvira Nieto-Pelegrín
- Department of Microbiology and Parasitology, Pharmacy School, Complutense University, Madrid, Spain
| | - Beatriz Conde-Valentín
- Department of Microbiology and Parasitology, Pharmacy School, Complutense University, Madrid, Spain
- Pharmaceutics and Food Technology Department, Complutense University, Madrid, Spain
| | - Angel Rumbero
- Organic Chemistry Department, Autonóma University, Madrid, Spain
| | - Narcisa Martinez-Quiles
- Department of Microbiology and Parasitology, Pharmacy School, Complutense University, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| |
Collapse
|
9
|
Characteristics of Escherichia coli Isolated from Bovine Mastitis Exposed to Subminimum Inhibitory Concentrations of Cefalotin or Ceftazidime. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4301628. [PMID: 30515397 PMCID: PMC6236695 DOI: 10.1155/2018/4301628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/09/2018] [Indexed: 11/23/2022]
Abstract
Escherichia coli is a major udder pathogen causing clinical mastitis in dairy cattle and its heat stable endotoxin in powdered infant formula milk is a potential risk factor in neonatal infections. Cephalosporins are frequently used for treatment of mastitis caused by mastitis; however, use of these antimicrobials may induce antimicrobial resistance in E. coli. The objective of this study was to explore the in vitro effect of subminimum inhibitory concentrations (sub-MIC) of cefalotin (CF) and ceftazidime (CAZ) on the morphology, antimicrobial resistance, and endotoxin releasing characteristics of 3 E. coli isolates recovered from bovine clinical mastitis. The parent E. coli isolates, which were susceptible to CF and CAZ, were exposed to CF or CAZ separately at sub-MIC levels to produce 9 generations of induced isolates. Colonies of the CAZ-induced isolates from all 3 parent E. coli were smaller on blood agar and the bacteria became filamentous, whereas the CF-induced isolates did not demonstrate prominent morphological changes. After induction by CF or CAZ, many induced isolates showed resistance to cefoxitin, CAZ, CF, kanamycin, ampicillin, and amoxicillin/clavulanic acid while their parent isolates were susceptible to these antimicrobials. Notably, 5 CAZ-induced isolates from the same parent isolate were found to produce extended-spectrum beta-lactamase (ESBL) though none of the tested ESBL related genes could be detected. All CAZ-induced isolates released more endotoxin with a higher release rate, whereas endotoxin release of CF-induced E. coli isolates was not different from parent isolates. The exposure of cephalosporins at sub-MIC levels induced resistant Escherichia coli. We inferred that cephalosporins, especially CAZ, should be used prudently for treatment of clinical E. coli mastitis.
Collapse
|
10
|
Su Y, Chen C, Guo L, Du J, Li X, Liu Y. Ecological Balance of Oral Microbiota Is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis. Stem Cells 2018; 36:551-561. [PMID: 29266799 DOI: 10.1002/stem.2762] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022]
Abstract
Oral microbiome is essential for maintenance of oral cavity health. Imbalanced oral microbiome causes periodontal and other diseases. It is unknown whether oral microbiome affect oral stem cells function. This study used a common clinical antibiotic treatment approach to alter oral microbiome ecology and examine whether oral mesenchymal stem cells (MSCs) are affected. We found that altered oral microbiome resulted gingival MSCs deficiency, leading to a delayed wound healing in male mice. Mechanistically, oral microbiome release lipopolysaccharide (LPS) that stimulates the expression of microRNA-21 (miR-21) and then impair the normal function of gingival MSCs and wound healing process through miR-21/Sp1/telomerase reverse transcriptase pathway. This is the first study indicate that interplay between oral microbiome and MSCs homeostasis in male mice. Stem Cells 2018;36:551-561.
Collapse
Affiliation(s)
- Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Pharmacodynamics of Cefepime Combined with Tazobactam against Clinically Relevant Enterobacteriaceae in a Neutropenic Mouse Thigh Model. Antimicrob Agents Chemother 2017. [PMID: 28630197 DOI: 10.1128/aac.00267-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lack of new antibiotics has prompted investigation of the combination of two existing agents-cefepime, a broad-spectrum cephalosporin, and tazobactam-to broaden their efficacy against extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae We determined the pharmacokinetic (PK) and pharmacodynamic (PD) properties of the combination in a murine neutropenic thigh model in order to establish its exposure-response relationships (ERRs). The PK of cefepime were determined for five doses; that of tazobactam was determined in earlier studies (Melchers et al., Antimicrob Agents Chemother 59:3373-3376, 2015, https://doi.org/10.1128/AAC.04402-14). The PK were linear for both compounds. The estimated mean (standard deviation [SD]) half-life of cefepime was 0.33 (0.12) h, and that of tazobactam was 0.176 (0.026) h; the volumes of distribution (V) were 0.73 liters/kg and 1.14 liters/kg, respectively. PD studies of cefepime administered every 2 h (q2h) with or without tazobactam, including dose fractionation studies of tazobactam, were performed against six ESBL-producing isolates. A sigmoidal maximum-effect (Emax) model was fitted to the data. In the dose fractionation study, the q2h regimen was more efficacious than the q4h and q6h regimens, indicating time-dependent activity of tazobactam. The threshold concentration (CT ) best correlating with tazobactam efficacy was 0.25 mg/liter, as evidenced by the best fit of the percentage of time above the threshold concentration (%fT>CT ) and response. A mean %fT>CT of 24.6% (range, 11.4 to 36.3%) for a CT of 0.25 mg/liter was required to obtain a bacteriostatic effect. We conclude that tazobactam enhanced the effect of cefepime in otherwise resistant isolates of Enterobacteriaceae and that the %fT>CT of 0.25 mg/liter best correlated with efficacy. These studies provide the basis for the development of human dosing regimens for this combination.
Collapse
|
12
|
Pharmacodynamics of Ceftolozane Combined with Tazobactam against Enterobacteriaceae in a Neutropenic Mouse Thigh Model. Antimicrob Agents Chemother 2016; 60:7272-7279. [PMID: 27671063 DOI: 10.1128/aac.01580-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/17/2016] [Indexed: 01/20/2023] Open
Abstract
Ceftolozane is a new broad-spectrum cephalosporin and is combined with tazobactam to broaden the activity of ceftolozane against strains producing extended-spectrum beta-lactamases (ESBLs). We determined the pharmacodynamics (PD) of the combination in the neutropenic mouse thigh model to determine the optimal exposure of tazobactam. Treatment of CD-1 neutropenic mice was started 2 h after infection with ceftolozane every 2 h (q2h) alone or in combination with tazobactam at different dosing frequencies for 24 h, and the number of CFU in the thighs was determined before and after treatment. The maximum effect model was fit to the dose-response and the pharmacokinetic/PD index (PDI)-response to determine the PDI values for ceftolozane alone and ceftolozane in combination with tazobactam resulting in a static effect and a 1-log kill. The effect of tazobactam was dependent on the percentage of time that the free drug concentration remained above the concentration threshold (percent [Formula: see text]), whereby dosing q2h was more efficacious than dosing every 8 h (q8h), reducing the tazobactam daily dose by a factor 6.9 to 59.0 (n = 3 strains) to obtain a static effect. Using R2 as an indicator of the best fit of the percent [Formula: see text]-response relationships, the concentration threshold best correlating with the response varied from 0.5 to 2 mg/liter, depending on the strain. A similar result was obtained when the q2h and q8h regimens were analyzed. For all isolates tested, the mean [Formula: see text] for 0.5 mg/liter tazobactam was 28.2% (range, 17.5 to 45.8%) and 44.4% (range, 26.6 to 54.7%) for a static effect and a 1-log kill, respectively, at ceftolozane exposures that produced a ceftolozane concentration of 4 mg/liter (a concentration greater than the MIC) for 33.9 to 63.3% of a 24-h period under steady-state pharmacokinetic conditions. The main PDI that correlated with the effect of tazobactam was the [Formula: see text] achieved with a CT of 0.5 mg/liter tazobactam.
Collapse
|
13
|
Sub-Inhibitory Concentration of Piperacillin-Tazobactam May be Related to Virulence Properties of Filamentous Escherichia coli. Curr Microbiol 2015; 72:19-28. [PMID: 26364189 DOI: 10.1007/s00284-015-0912-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
Sub-inhibitory concentrations of antibiotics are always generated as a consequence of antimicrobial therapy and the effects of such residual products in bacterial morphology are well documented, especially the filamentation generated by beta-lactams. The aim of this study was to investigate some morphological and pathological aspects (virulence factors) of Escherichia coli cultivated under half-minimum inhibitory concentration (1.0 µg/mL) of piperacillin-tazobactam (PTZ sub-MIC). PTZ sub-MIC promoted noticeable changes in the bacterial cells which reach the peak of morphological alterations (filamentation) and complexity at 16 h of antimicrobial exposure. Thereafter the filamentous cells and a control one, not treated with PTZ, were comparatively tested for growth curve; biochemical profile; oxidative stress tolerance; biofilm production and cell hydrophobicity; motility and pathogenicity in vivo. PTZ sub-MIC attenuated the E. coli growth rate, but without changes in carbohydrate fermentation or in traditional biochemical tests. Overall, the treatment of E. coli with sub-MIC of PTZ generated filamentous forms which were accompanied by the inhibition of virulence factors such as the oxidative stress response, biofilm formation, cell surface hydrophobicity, and motility. These results are consistent with the reduced pathogenicity observed for the filamentous E. coli in the murine model of intra-abdominal infection. In other words, the treatment of E. coli with sub-MIC of PTZ suggests a decrease in their virulence.
Collapse
|
14
|
Pharmacokinetics and penetration of ceftazidime and avibactam into epithelial lining fluid in thigh- and lung-infected mice. Antimicrob Agents Chemother 2015; 59:2299-304. [PMID: 25645843 DOI: 10.1128/aac.04627-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceftazidime and the β-lactamase inhibitor avibactam constitute a new, potentially highly active combination in the battle against extended-spectrum-β-lactamase (ESBL)-producing bacteria. To determine possible clinical use, it is important to know the pharmacokinetic profiles of the compounds related to each other in plasma and the different compartments of infection in experimentally infected animals and in humans. We used a neutropenic murine thigh infection model and lung infection model to study pharmacokinetics in plasma and epithelial lining fluid (ELF). Mice were infected with ca. 10(6) CFU of Pseudomonas aeruginosa intramuscularly into the thigh or intranasally to cause pneumonia and were given 8 different (single) subcutaneous doses of ceftazidime and avibactam in various combined concentrations, ranging from 1 to 128 mg/kg of body weight in 2-fold increases. Concomitant samples of serum and bronchoalveolar lavage fluid were taken at up to 12 time points until 6 h after administration. Pharmacokinetics of both compounds were linear and dose proportional in plasma and ELF and were independent of the infection type, with estimated half-lives (standard deviations [SD]) in plasma of ceftazidime of 0.28 (0.02) h and of avibactam of 0.24 (0.04) h and volumes of distribution of 0.80 (0.14) and 1.18 (0.34) liters/kg. The ELF-plasma (area under the concentration-time curve [AUC]) ratios (standard errors [SE]) were 0.24 (0.03) for total ceftazidime and 0.27 (0.03) for unbound ceftazidime; for avibactam, the ratios were 0.20 (0.02) and 0.22 (0.02), respectively. No pharmacokinetic interaction between ceftazidime and avibactam was observed. Ceftazidime and avibactam showed linear plasma pharmacokinetics that were independent of the dose combinations used or the infection site in mice. Assuming pharmacokinetic similarity in humans, this indicates that similar dose ratios of ceftazidime and avibactam could be used for different types and sites of infection.
Collapse
|
15
|
Synergistic efficacy of meropenem and rifampicin in a murine model of sepsis caused by multidrug-resistant Acinetobacter baumannii. Eur J Pharmacol 2014; 729:116-22. [DOI: 10.1016/j.ejphar.2014.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 11/23/2022]
|
16
|
Abstract
PURPOSE OF REVIEW We focus on a number of studies in the past 2 years that herald a dramatic shift in how we treat patients with not just community-acquired pneumonia (CAP), but potentially all sepsis. RECENT FINDINGS Recent studies report that high bacterial load, and specifically pneumococcal load in CAP, appears to be significantly associated with worse outcomes. These findings change the sepsis paradigm. Bacterial load may identify potential candidates for adjunctive therapy, ICU admission and more aggressive management. SUMMARY Whereas we all acknowledge the importance of the virulence of the pathogen in the outcome of CAP, microbiological tests currently play little role in management of patients. Whereas molecular tests such as polymerase chain reaction have promised to deliver accurate results in a clinically useful period of time, apart from a few niche situations they have yet to enter routine practice. In particular the ability to calculate the bacterial load in blood, and specifically pneumococcal load in CAP, appears to have significant clinical utility. Not only does bacterial load predict clinical outcome, the data so far available challenge some of our fundamental assumptions about optimal antibiotic therapy and the pathogenesis of severe sepsis.
Collapse
|
17
|
Comparative effects of carbapenems on bacterial load and host immune response in a Klebsiella pneumoniae murine pneumonia model. Antimicrob Agents Chemother 2010; 55:836-44. [PMID: 21135187 DOI: 10.1128/aac.00670-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Doripenem is a carbapenem with potent broad-spectrum activity against Gram-negative pathogens, including antibiotic-resistant Enterobacteriaceae. As the incidence of extended-spectrum β-lactamase (ESBL)-producing Gram-negative bacilli is increasing, it was of interest to examine the in vivo comparative efficacy of doripenem, imipenem, and meropenem against a Klebsiella pneumoniae isolate expressing the TEM-26 ESBL enzyme. In a murine lethal lower respiratory infection model, doripenem reduced the Klebsiella lung burden by 2 log(10) CFU/g lung tissue over the first 48 h of the infection. Treatment of mice with meropenem or imipenem yielded reductions of approximately 1.5 log(10) CFU/g during this time period. Seven days postinfection, Klebsiella titers in the lungs of treated mice decreased an additional 2 log(10) CFU/g relative to those in the lungs of untreated control animals. Lipopolysaccharide (LPS) endotoxin release assays indicated that 6 h postinfection, meropenem- and imipenem-treated animals had 10-fold more endotoxin in lung homogenates and sera than doripenem-treated mice. Following doripenem treatment, the maximum endotoxin release postinfection (6 h) was 53,000 endotoxin units (EU)/ml, which was 2.7- and 6-fold lower than imipenem or meropenem-treated animals, respectively. While the levels of several proinflammatory cytokines increased in both the lungs and sera following intranasal K. pneumoniae inoculation, doripenem treatment, but not meropenem or imipenem treatment, resulted in significantly increased interleukin 6 levels in lung homogenates relative to those in lung homogenates of untreated controls, which may contribute to enhanced neutrophil killing of bacteria in the lung. Histological examination of tissue sections indicated less overall inflammation and tissue damage in doripenem-treated mice, consistent with improved antibacterial efficacy, reduced LPS endotoxin release, and the observed cytokine induction profile.
Collapse
|
18
|
Walters SM, Dubey VS, Jeffrey NR, Dixon DR. Antibiotic-induced Porphyromonas gingivalis LPS release and inhibition of LPS-stimulated cytokines by antimicrobial peptides. Peptides 2010; 31:1649-53. [PMID: 20541574 DOI: 10.1016/j.peptides.2010.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/01/2010] [Accepted: 06/01/2010] [Indexed: 11/25/2022]
Abstract
Bacterial lipopolysaccharide (LPS) release during periodontal infection is a significant component of periodontal disease. We hypothesized that some bacterial LPS release results from bacterial exposure to antibiotics. Therefore, we examined the ability of various classes of antibiotics to induce LPS release from Porphyromonas gingivalis as well as the ability of antimicrobial peptides (AMPs) to inhibit purified LPS. All antibiotics tested against P. gingivalis were able to liberate 1.9-12.9 times more LPS as compared to untreated bacteria. Among the three AMPs tested, LL-37 was found to be the most potent inhibitor of cytokine (tumor necrosis factor-alpha, interleukin-1beta, interleukin-6) production and completely neutralized purified P. ginigivalis LPS activity in the chromogenic limulus amebocyte lysate (LAL) and whole blood cytokine stimulation assays. These observations suggest that therapeutic approaches utilizing AMPs as adjuncts to neutralize released LPS should be considered.
Collapse
Affiliation(s)
- S M Walters
- Immunology and Microbiology Branch, US Army Dental and Trauma Research Detachment, Walter Reed Army Institute of Research, Great Lakes Naval Training Center, Great Lakes, IL 60088, USA
| | | | | | | |
Collapse
|
19
|
Buijs J, Dofferhoff ASM, Mouton JW, Wagenvoort JHT, van der Meer JWM. Concentration-dependency of beta-lactam-induced filament formation in Gram-negative bacteria. Clin Microbiol Infect 2008; 14:344-9. [PMID: 18261128 DOI: 10.1111/j.1469-0691.2007.01940.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ceftazidime and cefotaxime are beta-lactam antibiotics with dose-related affinities for penicillin-binding protein (PBP)-3 and PBP-1. At low concentrations, these antibiotics inhibit PBP-3, leading to filament formation. Filaments are long strands of non-dividing bacteria that contain enhanced quantities of endotoxin molecules. Higher concentrations of ceftazidime or cefotaxime cause inhibition of PBP-1, resulting in rapid bacterial lysis, which is associated with low endotoxin release. In the present study, 37 isolates of Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa and Acinetobacter spp. were studied over a 4-h incubation period in the presence of eight concentrations of ceftazidime or cefotaxime. As resistance of Gram-negative bacteria is an emerging problem in clinical practice, 14 isolates of E. coli and Klebsiella pneumoniae that produced extended-spectrum beta-lactamases (ESBLs) were also investigated. Morphological changes after exposure to the beta-lactam antibiotics revealed recognisable patterns in various bacterial families, genera and isolates. In general, all isolates of Enterobacteriaceae produced filaments within a relatively small concentration range, with similar patterns for E. coli and K. pneumoniae. Pseudomonas and Acinetobacter spp. produced filaments in the presence of clinically-relevant concentrations of both antibiotics as high as 50 mg/L. In all genera, filament-producing capacity was clearly related to the MIC. Ceftazidime induced filament production in more isolates and over wider concentration ranges than did cefotaxime. Interestingly, ESBL-producing isolates were not protected against filament induction. The induction of filament production may lead to additional risks during empirical treatment of severe infections.
Collapse
Affiliation(s)
- J Buijs
- Department of Medical Microbiology and Infectious Diseases, Atrium Medical Centre, Heerlen, The Netherlands.
| | | | | | | | | |
Collapse
|