1
|
Giuliano S, Angelini J, Campanile F, Conti P, Flammini S, Pagotto A, Sbrana F, Martini L, D'Elia D, Abdul-Aziz MH, Cotta MO, Roberts JA, Bonomo RA, Tascini C. Evaluation of ampicillin plus ceftobiprole combination therapy in treating Enterococcus faecalis infective endocarditis and bloodstream infection. Sci Rep 2025; 15:3519. [PMID: 39875507 PMCID: PMC11775251 DOI: 10.1038/s41598-025-87512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Enterococcus faecalis is responsible for numerous serious infections, and treatment options often include ampicillin combined with an aminoglycoside or dual beta-lactam therapy with ampicillin and a third-generation cephalosporin. The mechanism of dual beta-lactam therapy relies on the saturation of penicillin-binding proteins (PBPs). Ceftobiprole exhibits high affinity binding to nearly all E. faecalis PBPs, thus suggesting its potential utility in the treatment of severe E. faecalis infections. The availability of therapeutic drug monitoring (TDM) for ampicillin and ceftobiprole has prompted the use of this drug combination in our hospital. Due to the time-dependent antimicrobial properties of these antibiotics, an infusion administration longer than indicated was chosen. From January to December 2020, twenty-one patients were admitted to our hospital for severe E. faecalis infections and were treated with this approach. We retrospectively analyzed their clinical characteristics and pharmacological data. Most patients achieved an aggressive PK/PD target (T > 4-8 minimum inhibitory concentration, MIC) when this alternative drug combination regimen was used. Our analysis included the study of E. faecalis biofilm production, as well as the kinetics of bacterial killing of ceftobiprole alone or in combination with ampicillin. Time-kill experiments revealed strong bactericidal activity of ceftobiprole alone at concentrations four times higher than the MIC for some enterococcal strains. In cases where a bactericidal effect of ceftobiprole alone was not evident, synergism with ampicillin and bactericidal activity were demonstrated instead. The prolonged infusion of ceftobiprole, either alone or with ampicillin, emerges as a valuable option for the treatment of severe invasive E. faecalis infections.
Collapse
Affiliation(s)
- Simone Giuliano
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy.
| | - Jacopo Angelini
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Clinical Pharmacology Institute, University Hospital Friuli Centrale ASUFC, 33100, Udine, Italy
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123, Catania, Italy
| | - Paola Conti
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123, Catania, Italy
| | - Sarah Flammini
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
| | - Alberto Pagotto
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
| | - Francesco Sbrana
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Luca Martini
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Denise D'Elia
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Mohd H Abdul-Aziz
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, Australia
| | - Menino O Cotta
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, Australia
- Herston Infectious Diseases Institute, Herston, QLD, 4029, Australia
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, QLD, Australia
- Herston Infectious Diseases Institute, Herston, QLD, 4029, Australia
- Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD, 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, 34095, Nîmes, France
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Carlo Tascini
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
- Department of Medicine (DMED), University of Udine, Udine, Italy
| |
Collapse
|
2
|
Miller WR, Nguyen A, Singh KV, Rizvi S, Khan A, Erickson SG, Egge SL, Cruz M, Dinh AQ, Diaz L, Zhang R, Xu L, Garsin DA, Shamoo Y, Arias CA. Membrane Lipids Augment Cell Envelope Stress Signaling and Resistance to Antibiotics and Antimicrobial Peptides in Enterococcus faecalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562839. [PMID: 37904970 PMCID: PMC10614854 DOI: 10.1101/2023.10.17.562839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.
Collapse
Affiliation(s)
- William R Miller
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - April Nguyen
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Kavindra V Singh
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Samie Rizvi
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Ayesha Khan
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Sam G Erickson
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Stephanie L Egge
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Melissa Cruz
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - An Q Dinh
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
| | - Lorena Diaz
- Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo and Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Rutan Zhang
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Danielle A Garsin
- McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- Microbiology and Molecular Genetics, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|
3
|
Giuliano S, Angelini J, D'Elia D, Geminiani M, Barison RD, Giacinta A, Sartor A, Campanile F, Curcio F, Cotta MO, Roberts JA, Baraldo M, Tascini C. Ampicillin and Ceftobiprole Combination for the Treatment of Enterococcus faecalis Invasive Infections: "The Times They Are A-Changin". Antibiotics (Basel) 2023; 12:antibiotics12050879. [PMID: 37237782 DOI: 10.3390/antibiotics12050879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Enterococcus faecalis is responsible for a large variety of severe infections. This study is a case series reporting our experience in the treatment of E. faecalis invasive infections with ampicillin in combination with ceftobiprole (ABPR). METHODS We retrospectively analyzed all the medical records of patients admitted to the University Hospital of Udine from January to December 2020 with a diagnosis of infective endocarditis or primary or non-primary complicated or uncomplicated bacteremia caused by E. faecalis. RESULTS Twenty-one patients were included in the final analysis. The clinical success rate was very high, accounting for 81% of patients, and microbiological cure was obtained in 86% of patients. One relapse was recorded in one patient who did not adhere to the partial oral treatment prescribed. Therapeutic drug monitoring (TDM) was always performed for ampicillin and ceftobiprole, and serum concentrations of both drugs were compared to the MICs of the different enterococcal isolates. CONCLUSIONS ABPR is a well-tolerated antimicrobial regimen with anti-E. faecalis activity. TDM can help clinicians optimize medical treatments to achieve the best possible efficacy with fewer side effects. ABPR might be a reasonable option for the treatment of severe invasive infections caused by E. faecalis due to the high level of enterococcal penicillin-binding protein (PBP) saturation.
Collapse
Affiliation(s)
- Simone Giuliano
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Jacopo Angelini
- Clinical Pharmacology and Toxicology Institute, University Hospital Friuli Centrale ASUFC, 33100 Udine, Italy
- Department of Medicine, University of Udine (UNIUD), 33100 Udine, Italy
| | - Denise D'Elia
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Monica Geminiani
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Roberto Daniele Barison
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Alessandro Giacinta
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Assunta Sartor
- Microbiology Unit, Udine University Hospital, 33100 Udine, Italy
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy
| | - Francesco Curcio
- Department of Medicine, University of Udine (UNIUD), 33100 Udine, Italy
- Institute of Clinical Pathology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
| | - Menino Osbert Cotta
- Faculty of Medicine, University of Queensland, Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
- Herston Infectious Diseases Institute, Herston, QLD 4029, Australia
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland, Centre for Clinical Research (UQCCR), Brisbane, QLD 4029, Australia
- Herston Infectious Diseases Institute, Herston, QLD 4029, Australia
- Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, 34095 Nîmes, France
| | - Massimo Baraldo
- Clinical Pharmacology and Toxicology Institute, University Hospital Friuli Centrale ASUFC, 33100 Udine, Italy
- Department of Medicine, University of Udine (UNIUD), 33100 Udine, Italy
| | - Carlo Tascini
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| |
Collapse
|
4
|
Herrera-Hidalgo L, Fernández-Rubio B, Luque-Márquez R, López-Cortés LE, Gil-Navarro MV, de Alarcón A. Treatment of Enterococcus faecalis Infective Endocarditis: A Continuing Challenge. Antibiotics (Basel) 2023; 12:antibiotics12040704. [PMID: 37107066 PMCID: PMC10135260 DOI: 10.3390/antibiotics12040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Today, Enterococcus faecalis is one of the main causes of infective endocarditis in the world, generally affecting an elderly and fragile population, with a high mortality rate. Enterococci are partially resistant to many commonly used antimicrobial agents such as penicillin and ampicillin, as well as high-level resistance to most cephalosporins and sometimes carbapenems, because of low-affinity penicillin-binding proteins, that lead to an unacceptable number of therapeutic failures with monotherapy. For many years, the synergistic combination of penicillins and aminoglycosides has been the cornerstone of treatment, but the emergence of strains with high resistance to aminoglycosides led to the search for new alternatives, like dual beta-lactam therapy. The development of multi-drug resistant strains of Enterococcus faecium is a matter of considerable concern due to its probable spread to E. faecalis and have necessitated the search of new guidelines with the combination of daptomycin, fosfomycin or tigecycline. Some of them have scarce clinical experience and others are still under investigation and will be analyzed in this review. In addition, the need for prolonged treatment (6–8 weeks) to avoid relapses has forced to the consideration of other viable options as outpatient parenteral strategies, long-acting administrations with the new lipoglycopeptides (dalbavancin or oritavancin), and sequential oral treatments, which will also be discussed.
Collapse
Affiliation(s)
- Laura Herrera-Hidalgo
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología (UCEIMP) Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Beatriz Fernández-Rubio
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Rafael Luque-Márquez
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología (UCEIMP) Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | - Luis E. López-Cortés
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/SCIC/Universidad de Sevilla, 41009 Seville, Spain
| | - Maria V. Gil-Navarro
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Arístides de Alarcón
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología (UCEIMP) Grupo de Resistencias Bacterianas y Antimicrobianos (CIBERINFEC), Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
5
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
6
|
Lazzaro LM, Cassisi M, Stefani S, Campanile F. Impact of PBP4 Alterations on β-Lactam Resistance and Ceftobiprole Non-Susceptibility Among Enterococcus faecalis Clinical Isolates. Front Cell Infect Microbiol 2022; 11:816657. [PMID: 35127564 PMCID: PMC8811369 DOI: 10.3389/fcimb.2021.816657] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Penicillin-resistance among Enterococcus faecalis clinical isolates has been recently associated with overexpression or aminoacidic substitutions in low-affinity PBP4. Ceftobiprole (BPR), a new-generation cephalosporin, is a therapeutic option against E. faecalis. Here, we present evidence that pbp4 gene sequence alterations may influence the expression level of the gene and ceftobiprole binding to PBP4 in E. faecalis clinical isolates showing remarkable MDR-phenotypes, and how this could interfere with BPR in vitro antibacterial and bactericidal activity. Seven E. faecalis strains from bloodstream infections were analyzed for their antibiotic and β-lactam resistance. BPR bactericidal activity was assessed by time-kill analysis; pbp4 genes were sequenced and pbp4 relative expression levels of transcription were performed by RT-qPCR. Five penicillin-resistant ampicillin-susceptible (PRAS) isolates were detected, 4 of which were also BPR non-susceptible (BPR-NS). In the time-kill experiments, BPR exposure resulted in a potent bactericidal activity (3-5 log10 reduction) at the different concentrations tested. pbp4 gene sequence analysis revealed some mutations that may account for the changes in PBP4 affinity and MIC increase in the 4 BPR-NS strains (MICs 4-16 mg/L): the deletion of an adenine (delA) in the promoter region in all PRAS/BPR-NS strains; 12 different amino acid substitutions, 7 of which were next to the PBP catalytic-sites. The most significant were: T418A, located 6 amino acids (aa) upstream of the catalytic-serine included in the 424STFK427motif I; L475Q, 7 aa upstream of the 482SDN484motif II; V606A and the novel Y605H, 13/14 aa upstream of the 619KTGT622motif III. Taken together, our data showed that elevated BPR MICs were attributable to increased transcription of pbp4 - associated with a single upstream adenine deletion and PBP4 alterations in the catalytic-site motifs - which might interfere with the formation of the BPR/PBP4 complex. pbp4 molecular alterations may account for the changes in PBP4 affinity and MIC increase, without affecting BPR cidal activity. Indeed, our in vitro dynamic analysis by time-kill assays showed that BPR exerted a bactericidal activity against E. faecalis clinical isolates, despite their MDR phenotypes.
Collapse
Affiliation(s)
| | | | | | - Floriana Campanile
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences (BIOMETEC), Microbiologia Medica Molecolare e Antibiotico Resistenza (MMARLab), University of Catania, Catania, Italy
| |
Collapse
|
7
|
Efficacy of Omadacycline against Multidrug-Resistant Enterococcus faecium Strains in a Mouse Peritonitis Model. Antimicrob Agents Chemother 2021; 65:e0070921. [PMID: 34125596 DOI: 10.1128/aac.00709-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Omadacycline (OMC) showed better in vitro potency than daptomycin (DAP) or vancomycin (VAN) against Vanr, Ampr, DAP-nonsusceptible, linezolid-resistant, cfr(B)+ Enterococcus faecium strains. In a mouse peritonitis model, OMC also showed significantly better animal survival during the study and at its end than DAP or VAN with these E. faecium strains. However, OMC, DAP, and VAN showed comparable in vitro and in vivo efficacies against a non-vancomycin-resistant, tetracycline-resistant, DAP-susceptible E. faecium strain.
Collapse
|
8
|
Zeng X, She P, Zhou L, Li S, Hussain Z, Chen L, Wu Y. Drug repurposing: Antimicrobial and antibiofilm effects of penfluridol against Enterococcus faecalis. Microbiologyopen 2020; 10:e1148. [PMID: 33345466 PMCID: PMC7884926 DOI: 10.1002/mbo3.1148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
The bacterium Enterococcus faecalis has increasingly attracted global attention as an important opportunistic pathogen due to its ability to form biofilms that are known to increase drug resistance. However, there are still no effective antibiofilm drugs in clinical settings. Here, by drug repurposing, we investigated the antibacterial activity of penfluridol (PF), an oral long‐acting antipsychotic approved by the FDA, against E. faecalis type strain and its clinical isolates. It was found that PF inhibited the growth of E. faecalis planktonic cells with the MIC and MBC of 7.81 µg/ml and 15.63 ~ 62.50 µg/ml, respectively. Moreover, PF could significantly prevent the biofilm formation of E. faecalis at the concentration of 1 × MIC. Furthermore, PF significantly eradicated 24 h pre‐formed biofilms of E. faecalis in a dose‐dependent manner, with a concentration range of 1 × MIC to 8 × MIC. Here, through the checkerboard method with other tested conventional antibiotics, we also determined that gentamycin, penicillin G, and amikacin showed partial synergistic antibacterial effects with PF. Also, PF showed almost no hemolysis on human erythrocytes. In a mouse peritonitis model, a single dose of 20 mg/kg of PF treatment could significantly reduce the bacterial colonization in the liver (~5‐fold reduction) and spleen (~3‐fold reduction). In conclusion, these findings indicated that after structural optimization, PF has the potential as a new antibacterial agent against E. faecalis.
Collapse
Affiliation(s)
- Xianghai Zeng
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei She
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shijia Li
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zubair Hussain
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lihua Chen
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yong Wu
- Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Rincon S, Panesso D, Miller WR, Singh KV, Cruz MR, Khan A, Dinh AQ, Diaz L, Rios R, Shamoo Y, Reyes J, Tran TT, Garsin DA, Arias CA. Disrupting Membrane Adaptation Restores In Vivo Efficacy of Antibiotics Against Multidrug-Resistant Enterococci and Potentiates Killing by Human Neutrophils. J Infect Dis 2020; 220:494-504. [PMID: 30938438 DOI: 10.1093/infdis/jiz131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Abstract
Daptomycin resistance in enterococci is often mediated by the LiaFSR system, which orchestrates the cell membrane stress response. Activation of LiaFSR through the response regulator LiaR generates major changes in cell membrane function and architecture (membrane adaptive response), permitting the organism to survive the antibiotic attack. Here, using a laboratory strain of Enterococcus faecalis, we developed a novel Caenorhabditis elegans model of daptomycin therapy and showed that disrupting LiaR-mediated cell membrane adaptation restores the in vivo activity of daptomycin. The LiaR effect was also seen in a clinical strain of daptomycin-resistant Enterococcus faecium, using a murine model of peritonitis. Furthermore, alteration of the cell membrane response increased the ability of human polymorphonuclear neutrophils to readily clear both E. faecalis and multidrug-resistant E. faecium. Our results provide proof of concept that targeting the cell membrane adaptive response restores the in vivo activity of antibiotics, prevents resistance, and enhances the ability of the innate immune system to kill infecting bacteria.
Collapse
Affiliation(s)
- Sandra Rincon
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Diana Panesso
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Department of Internal Medicine, Division of Infectious Diseases, Rice University.,Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - William R Miller
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Department of Internal Medicine, Division of Infectious Diseases, Rice University
| | - Kavindra V Singh
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Department of Internal Medicine, Division of Infectious Diseases, Rice University
| | - Melissa R Cruz
- Department of Microbiology and Molecular Genetics, UTHealth McGovern Medical School, Rice University
| | - Ayesha Khan
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Department of Microbiology and Molecular Genetics, UTHealth McGovern Medical School, Rice University
| | - An Q Dinh
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Department of Internal Medicine, Division of Infectious Diseases, Rice University
| | - Lorena Diaz
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | | | - Jinnethe Reyes
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| | - Truc T Tran
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Department of Internal Medicine, Division of Infectious Diseases, Rice University
| | - Danielle A Garsin
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Department of Microbiology and Molecular Genetics, UTHealth McGovern Medical School, Rice University
| | - Cesar A Arias
- Center for Antimicrobial Resistance and Microbial Genomics, Rice University.,Department of Internal Medicine, Division of Infectious Diseases, Rice University.,Department of Microbiology and Molecular Genetics, UTHealth McGovern Medical School, Rice University.,Center for Infectious Diseases, School of Public Health, University of Texas Health Science Center, Houston, Texas.,Molecular Genetics and Antimicrobial Resistance Unit and International Center for Microbial Genomics, Universidad El Bosque, Bogota, Colombia
| |
Collapse
|
10
|
In vitro bactericidal activity of amoxicillin combined with different cephalosporins against endocarditis-associated Enterococcus faecalis clinical isolates. J Antimicrob Chemother 2019; 74:3511-3514. [DOI: 10.1093/jac/dkz388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/27/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
AbstractBackgroundThe combination of amoxicillin with cefazolin could be an interesting regimen for the empirical therapy of severe infective endocarditis, but its activity against enterococci is unknown.ObjectivesTo evaluate in vitro the bactericidal activity of the combination of amoxicillin with different cephalosporins including cefazolin.MethodsCombinations of amoxicillin (at MIC×¼) with cefazolin, cefotaxime, ceftriaxone, cefepime, ceftaroline or ceftobiprole (at the mean free plasma concentration) were studied using time–kill experiments for 10 endocarditis-associated Enterococcus faecalis strains and 2 reference strains.ResultsThe combinations amoxicillin/cefazolin, amoxicillin/cefotaxime, amoxicillin/ceftriaxone and amoxicillin/cefepime were synergistic at 12 and 24 h against 12/12 strains and amoxicillin/ceftobiprole and amoxicillin/ceftaroline against 10/12 strains. The combination amoxicillin/cefepime was bactericidal at 24 h against 9/12 strains, the combination amoxicillin/cefazolin against 8/12 strains, the combinations amoxicillin/ceftaroline, amoxicillin/cefotaxime and amoxicillin/ceftobiprole against 7/12 strains and the combination amoxicillin/ceftriaxone against 6/12 strains.ConclusionsThe combination amoxicillin/cefazolin is as synergistic and bactericidal in vitro as amoxicillin/cefotaxime or amoxicillin/ceftriaxone against E. faecalis.
Collapse
|
11
|
Efficacy of Tedizolid against Enterococci and Staphylococci, Including cfr + Strains, in a Mouse Peritonitis Model. Antimicrob Agents Chemother 2019; 63:AAC.02627-18. [PMID: 30670435 DOI: 10.1128/aac.02627-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
In a mouse peritonitis model, tedizolid was comparable to linezolid and daptomycin against an Enterococcus faecium strain (VANr, AMPr), an Enterococcus faecalis strain, and a methicillin-resistant Staphylococcus aureus (MRSA) strain with and without cfr Against a cfr(B)+ E. faecium, tedizolid was inferior in vivo to linezolid and daptomycin, despite an ∼4-fold lower MIC.
Collapse
|
12
|
Falcó V, Burgos J, Almirante B. Ceftobiprole medocaril for the treatment of community-acquired pneumonia. Expert Opin Pharmacother 2018; 19:1503-1509. [PMID: 30198789 DOI: 10.1080/14656566.2018.1516749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Ceftobiprole is a novel broad-spectrum cephalosporin with excellent activity against a broad range of pathogens that are important in community-acquired pneumonia (CAP), including drug-resistant pneumococci, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa. Areas covered: This article reviews the spectrum of activity, the main pharmacological and pharmacodynamic characteristics of ceftobiprole as well its clinical efficacy and safety in the treatment of CAP in adult patients. Expert opinion: Taking into account that the current treatment guidelines for CAP recommend the use of an adequate empirical therapy to improve its prognosis, ceftobiprole shows a profile of antimicrobial activity that would cover most etiological agents in patients with risk factors for infection caused by multidrug resistant organisms. The results of the pivotal clinical trial of patients hospitalized with CAP treated with ceftobiprole showed a high rate of clinical cure. The clinical tolerance of ceftobiprole in clinical trials was generally very good. These findings make ceftobiprole a good parenteral therapeutic alternative for the empirical treatment of CAP that requires hospitalization, especially in patients with risk factors for CAP caused by resistant microorganisms.
Collapse
Affiliation(s)
- Vicenç Falcó
- a Infectious Diseases Department , University Hospital Vall d'Hebron. Autonomous University of Barcelona , Barcelona , Spain
| | - Joaquin Burgos
- a Infectious Diseases Department , University Hospital Vall d'Hebron. Autonomous University of Barcelona , Barcelona , Spain
| | - Benito Almirante
- a Infectious Diseases Department , University Hospital Vall d'Hebron. Autonomous University of Barcelona , Barcelona , Spain
| |
Collapse
|
13
|
In Vivo and In Vitro Effects of a ClpP-Activating Antibiotic against Vancomycin-Resistant Enterococci. Antimicrob Agents Chemother 2018; 62:AAC.00424-18. [PMID: 29784838 DOI: 10.1128/aac.00424-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/06/2018] [Indexed: 01/14/2023] Open
Abstract
Antibiotics with novel bactericidal mechanisms of action are urgently needed. The antibiotic acyldepsipeptide 4 (ADEP4) activates the ClpP protease and causes cells to self-digest. The effects of ADEP4 and ClpP activation have not been characterized sufficiently for the enterococci, which are important pathogens known for high levels of acquired and intrinsic antibiotic resistance. In the present study, ADEP4 was found to be potently active against both Enterococcus faecalis and Enterococcus faecium, with MIC90s of 0.016 μg/ml and 0.031 μg/ml, respectively. ClpP purified from E. faecium was found to bind ADEP4 in a surface plasmon resonance analysis, and ClpP activation by ADEP4 was demonstrated biochemically with a β-casein digestion assay. In addition, E. faecium ClpP was crystallized in the presence of ADEP4, revealing ADEP4 binding to ClpP in the activated state. These results confirm that the anti-enterococcal activity of ADEP4 occurs through ClpP activation. In killing curve assays, ADEP4 was found to be bactericidal against stationary-phase vancomycin-resistant E. faecalis (VRE) strain V583, and resistance development was prevented when ADEP4 was combined with multiple classes of approved antibiotics. ADEP4 in combination with partnering antibiotics also eradicated mature VRE biofilms within 72 h of treatment. Biofilm killing with ADEP4 antibiotic combinations was superior to that with the clinically used combinations ampicillin-gentamicin and ampicillin-daptomycin. In a murine peritoneal septicemia model, ADEP4 alone was as effective as ampicillin. ADEP4 coadministered with ampicillin was significantly more effective than either drug alone. These data suggest that ClpP-activating antibiotics may be useful for treating enterococcal infections.
Collapse
|
14
|
Gelman D, Beyth S, Lerer V, Adler K, Poradosu-Cohen R, Coppenhagen-Glazer S, Hazan R. Combined bacteriophages and antibiotics as an efficient therapy against VRE Enterococcus faecalis in a mouse model. Res Microbiol 2018; 169:531-539. [PMID: 29777835 DOI: 10.1016/j.resmic.2018.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 10/16/2022]
Abstract
Clinical applications of bacteriophage therapy have been recently gathering significant attention worldwide, used mostly as rescue therapy in cases of near-fatal antibiotic failure. Thus, clinically relevant in-vivo models presenting both short- and long-term implications of phage therapy given as rescue treatment for fulminant infections are of highest importance. In this study, a cocktail consisting of two lytic bacteriophages was used to evaluate the therapeutic efficacy of phage therapy as a rescue treatment for severe septic peritonitis in a mouse model. We established that a single injection of the bacteriophage cocktail was sufficient to completely reverse a 100% mortality trend caused by Vancomycin-Resistant Enterococcus faecalis, with significant improvement in both the clinical state and laboratory test results, and without harmful effects on the microbiome. The combination of bacteriophages with a suboptimal antibiotic regimen imparts an additional beneficial effect on the treatment success.
Collapse
Affiliation(s)
- Daniel Gelman
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel; The Military Track of Medicine, Faculty of Medicine, The Hebrew University - Hadassah School of Medicine, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel.
| | - Shaul Beyth
- Orthopedic Surgery Department, Hadassah Medical Center, Hadassah University Hospital, P.O.B 12000, Jerusalem, 91120, Israel.
| | - Vanda Lerer
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel.
| | - Karen Adler
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel.
| | - Ronit Poradosu-Cohen
- Department of Infectious Diseases of Sourasky Medical Center and Tel-Aviv University, Tel-Aviv, Israel.
| | - Shunit Coppenhagen-Glazer
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel.
| | - Ronen Hazan
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Hadassah Campus, P.O.B 12272, Jerusalem, 91120, Israel.
| |
Collapse
|
15
|
Pericás JM, Zboromyrska Y, Cervera C, Castañeda X, Almela M, Garcia-de-la-Maria C, Mestres C, Falces C, Quintana E, Ninot S, Llopis J, Marco F, Moreno A, Miró JM. Enterococcal endocarditis revisited. Future Microbiol 2015; 10:1215-40. [PMID: 26118390 DOI: 10.2217/fmb.15.46] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Enterococcus species is the third main cause of infective endocarditis (IE) worldwide, and it is gaining relevance, especially among healthcare-associated cases. Patients with enterococcal IE are older and have more comorbidities than other types of IE. Classical treatment options are limited due to the emergence of high-level aminoglycosides resistance (HLAR), vancomycin resistance and multidrug resistance in some cases. Besides, few new antimicrobial alternatives have shown real efficacy, despite some of them being recommended by major guidelines (including linezolid and daptomycin). Ampicillin plus ceftriaxone 2 g iv./12 h is a good option for Enterococcus faecalis IE caused by HLAR strains, but randomized clinical trials are essential to demonstrate its efficacy for non-HLAR EFIE and to compare it with ampicillin plus short-course gentamicin. The main mechanisms of resistance and treatment options are also reviewed for other enterococcal species.
Collapse
Affiliation(s)
- J M Pericás
- Infectious Diseases Service, Hospital Clínic-IDIBAPS (Institut d'Investigacions Biomèdiques Pi i Sunyer), University of Barcelona, Barcelona, Spain
| | - Y Zboromyrska
- Clinical Microbiology Service, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - C Cervera
- Infectious Diseases Service, Hospital Clínic-IDIBAPS (Institut d'Investigacions Biomèdiques Pi i Sunyer), University of Barcelona, Barcelona, Spain
| | - X Castañeda
- Infectious Diseases Service, Hospital Clínic-IDIBAPS (Institut d'Investigacions Biomèdiques Pi i Sunyer), University of Barcelona, Barcelona, Spain
| | - M Almela
- Clinical Microbiology Service, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - C Garcia-de-la-Maria
- Infectious Diseases Service, Hospital Clínic-IDIBAPS (Institut d'Investigacions Biomèdiques Pi i Sunyer), University of Barcelona, Barcelona, Spain
| | - C Mestres
- Cardiovascular Surgery Service, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - C Falces
- Cardiology Service, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - E Quintana
- Cardiovascular Surgery Service, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - S Ninot
- Cardiovascular Surgery Service, Hospital Clínic-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - J Llopis
- Department of Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - F Marco
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Microbiology Service, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - A Moreno
- Infectious Diseases Service, Hospital Clínic-IDIBAPS (Institut d'Investigacions Biomèdiques Pi i Sunyer), University of Barcelona, Barcelona, Spain
| | - J M Miró
- Infectious Diseases Service, Hospital Clínic-IDIBAPS (Institut d'Investigacions Biomèdiques Pi i Sunyer), University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Rodriguez CA, Agudelo M, Gonzalez JM, Vesga O, Zuluaga AF. An optimized mouse thigh infection model for enterococci and its impact on antimicrobial pharmacodynamics. Antimicrob Agents Chemother 2015; 59:233-238. [PMID: 25348523 PMCID: PMC4291355 DOI: 10.1128/aac.02352-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/17/2014] [Indexed: 11/20/2022] Open
Abstract
Negligible in vivo growth of enterococci and high-level dispersion of data have led to inaccurate estimations of antibiotic pharmacodynamics (PD). Here we improved an in vivo model apt for PD studies by optimizing the in vitro culture conditions for enterococci. The PD of vancomycin (VAN), ampicillin-sulbactam (SAM), and piperacillin-tazobactam (TZP) against enterococci were determined in vivo, comparing the following different conditions of inoculum preparation: aerobiosis, aerobiosis plus mucin, and anaerobiosis plus mucin. Drug exposure was expressed as the ratio of the area under the concentration-time curve for the free, unbound fraction of the drug to the MIC (fAUC/MIC) (VAN) or the time in a 24-h period that the drug concentration for the free, unbound fraction exceeded the MIC under steady-state pharmacokinetic conditions (fT(>MIC)) (SAM and TZP) and linked to the change in log10 CFU/thigh. Only anaerobiosis plus mucin enhanced the in vivo growth, yielding significant PD parameters with all antibiotics. In conclusion, robust in vivo growth of enterococci was crucial for better determining the PD of tested antibacterial agents, and this was achieved by optimizing the procedure for preparing the inoculum.
Collapse
Affiliation(s)
- Carlos A Rodriguez
- GRIPE (Grupo Investigador de Problemas en Enfermedades Infecciosas), Department of Pharmacology and Toxicology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Maria Agudelo
- GRIPE (Grupo Investigador de Problemas en Enfermedades Infecciosas), Department of Pharmacology and Toxicology, School of Medicine, Universidad de Antioquia, Medellín, Colombia Infectious Diseases Unit, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Javier M Gonzalez
- GRIPE (Grupo Investigador de Problemas en Enfermedades Infecciosas), Department of Pharmacology and Toxicology, School of Medicine, Universidad de Antioquia, Medellín, Colombia Infectious Diseases Unit, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Omar Vesga
- GRIPE (Grupo Investigador de Problemas en Enfermedades Infecciosas), Department of Pharmacology and Toxicology, School of Medicine, Universidad de Antioquia, Medellín, Colombia Department of Internal Medicine, School of Medicine, Universidad de Antioquia, Medellín, Colombia Infectious Diseases Unit, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Andres F Zuluaga
- GRIPE (Grupo Investigador de Problemas en Enfermedades Infecciosas), Department of Pharmacology and Toxicology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
17
|
Awad SS, Rodriguez AH, Chuang YC, Marjanek Z, Pareigis AJ, Reis G, Scheeren TWL, Sánchez AS, Zhou X, Saulay M, Engelhardt M. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis 2014; 59:51-61. [PMID: 24723282 DOI: 10.1093/cid/ciu219] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ceftobiprole, the active moiety of ceftobiprole medocaril, is a novel broad-spectrum cephalosporin, with bactericidal activity against a wide range of gram-positive bacteria, including Staphylococcus aureus (including methicillin-resistant strains) and penicillin- and ceftriaxone-resistant pneumococci, and gram-negative bacteria, including Enterobacteriaceae and Pseudomonas aeruginosa. METHODS This was a double-blind, randomized, multicenter study of 781 patients with hospital-acquired pneumonia (HAP), including 210 with ventilator-associated pneumonia (VAP). Treatment was intravenous ceftobiprole 500 mg every 8 hours, or ceftazidime 2 g every 8 hours plus linezolid 600 mg every 12 hours; primary outcome was clinical cure at the test-of-cure visit. RESULTS Overall cure rates for ceftobiprole vs ceftazidime/linezolid were 49.9% vs 52.8% (intent-to-treat [ITT], 95% confidence interval [CI] for the difference, -10.0 to 4.1) and 69.3% vs 71.3% (clinically evaluable [CE], 95% CI, -10.0 to 6.1). Cure rates in HAP (excluding VAP) patients were 59.6% vs 58.8% (ITT, 95% CI, -7.3 to 8.8), and 77.8% vs 76.2% (CE, 95% CI, -6.9 to 10.0). Cure rates in VAP patients were 23.1% vs 36.8% (ITT, 95% CI, -26.0 to -1.5) and 37.7% vs 55.9% (CE, 95% CI, -36.4 to 0). Microbiological eradication rates in HAP (excluding VAP) patients were, respectively, 62.9% vs 67.5% (microbiologically evaluable [ME], 95% CI, -16.7 to 7.6), and in VAP patients 30.4% vs 50.0% (ME, 95% CI, -38.8 to -0.4). Treatment-related adverse events were comparable for ceftobiprole (24.9%) and ceftazidime/linezolid (25.4%). CONCLUSIONS Ceftobiprole is a safe and effective bactericidal antibiotic for the empiric treatment of HAP (excluding VAP). Further investigations are needed before recommending the use of ceftobiprole in VAP patients. Clinical Trials Registration. NCT00210964, NCT00229008.
Collapse
Affiliation(s)
- Samir S Awad
- Section of Surgical Critical Care, Baylor College of Medicine, Houston, Texas
| | | | - Yin-Ching Chuang
- Chi-Mei Medical Center, Tainan City - Yung Kang District, Taiwan
| | | | | | | | - Thomas W L Scheeren
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, The Netherlands Department of Anesthesia and Intensive Care, University Hospital Rostock, Germany
| | | | - Xin Zhou
- First People's Hospital, Shanghai, China
| | | | | |
Collapse
|
18
|
Schirmer PL, Deresinski SC. Ceftobiprole: a new cephalosporin for the treatment of skin and skin structure infections. Expert Rev Anti Infect Ther 2014; 7:777-91. [DOI: 10.1586/eri.09.54] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Arias CA, Murray BE. Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther 2014; 6:637-55. [DOI: 10.1586/14787210.6.5.637] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Skalweit Helfand M. β-lactams against emerging ‘superbugs’: progress and pitfalls. Expert Rev Clin Pharmacol 2014; 1:559-71. [DOI: 10.1586/17512433.1.4.559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Abstract
Enterococci have the potential for resistance to virtually all clinically useful antibiotics. Their emergence as important nosocomial pathogens has coincided with increased expression of antimicrobial resistance by members of the genus. The mechanisms underlying antibiotic resistance in enterococci may be intrinsic to the species or acquired through mutation of intrinsic genes or horizontal exchange of genetic material encoding resistance determinants. This paper reviews the antibiotic resistance mechanisms in Enterococcus faecium and Enterococcus faecalis and discusses treatment options.
Collapse
Affiliation(s)
- Brian L Hollenbeck
- Department of Medicine, Lifespan/Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | | |
Collapse
|
22
|
Efficacy of ceftobiprole Medocaril against Enterococcus faecalis in a murine urinary tract infection model. Antimicrob Agents Chemother 2012; 56:3457-60. [PMID: 22450988 DOI: 10.1128/aac.06102-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We evaluated ceftobiprole against the well-characterized Enterococcus faecalis strain OG1RF (with and without the β-lactamase [Bla] plasmid pBEM10) in a murine urinary tract infection (UTI) model. Ceftobiprole was equally effective for Bla(+) and Bla(-) OG1 strains, while ampicillin was moderately to markedly (depending on the inoculum) less effective against Bla(+) than Bla(-) OG1 strains. These data illustrate an in vivo effect on ampicillin of Bla production by E. faecalis and the stability and efficacy of ceftobiprole in experimental UTI.
Collapse
|
23
|
Evaluation of ceftobiprole activity against a variety of gram-negative pathogens, including Escherichia coli, Haemophilus influenzae (β-lactamase positive and β-lactamase negative), and Klebsiella pneumoniae, in a rabbit meningitis model. Antimicrob Agents Chemother 2011; 56:921-5. [PMID: 22064544 DOI: 10.1128/aac.01537-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceftobiprole medocaril, a new cephalosporin, is highly active against a broad spectrum of Gram-positive and Gram-negative clinical pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant pneumococci. In this study, we tested ceftobiprole against various Gram-negative pathogens in a rabbit meningitis model and determined its penetration into the cerebrospinal fluid (CSF). In this animal model, ceftobiprole produced an antibacterial activity similar to that of cefepime against an Escherichia coli strain, a Klebsiella pneumoniae strain, and a β-lactamase-negative Haemophilus influenzae strain. Against a β-lactamase-positive H. influenzae strain, ceftobiprole was significantly superior. The penetration of ceftobiprole through inflamed meninges reached about 16% of serum levels compared to about 2% of serum levels through uninflamed meninges.
Collapse
|
24
|
Ceftobiprole: The First Broad-Spectrum Anti–methicillin-resistant Staphylococcus aureus Beta-Lactam. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jecm.2010.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Arias CA, Contreras GA, Murray BE. Management of multidrug-resistant enterococcal infections. Clin Microbiol Infect 2011; 16:555-62. [PMID: 20569266 DOI: 10.1111/j.1469-0691.2010.03214.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enterococci are organisms with a remarkable ability to adapt to the environment and acquire antibiotic resistance determinants. The evolution of antimicrobial resistance in these organisms poses enormous challenges for clinicians when faced with patients affected with severe infections. The increased prevalence and dissemination of multidrug-resistant Enterococcus faecium worldwide has resulted in a major decrease in therapeutic options because the majority of E. faecium isolates are now resistant to ampicillin and vancomycin, and exhibit high-level resistance to aminoglycosides, which are three of the traditionally most useful anti-enterococcal antibiotics. Newer antibiotics such as linezolid, daptomycin and tigecycline have good in vitro activity against enterococcal isolates, although their clinical use may be limited in certain clinical scenarios as a result of reduced rates of success, possible underdosing for enterococci and low serum levels, respectively, and also by the emergence of resistance. The experimental agent oritavancin may offer some hope for the treatment of vancomycin-resistant enterococci but clinical data are still lacking. Thus, optimal therapies for the treatment of multidrug-resistant enterococcal infections continue to be based on empirical observations and extrapolations from in vitro and animal data. Clinical studies evaluating new strategies, including combination therapies, to treat severe vancomycin-resistant E. faecium infections are urgently needed.
Collapse
Affiliation(s)
- C A Arias
- Department of Internal Medicine, Division of Infectious Diseases and Center for the Study of Emerging and Reemerging Pathogens, University of Texas Medical School at Houston, Houston, TX, USA
| | | | | |
Collapse
|
26
|
Barbour A, Derendorf H. Resistance and the management of complicated skin and skin structure infections: the role of ceftobiprole. Ther Clin Risk Manag 2010; 6:485-95. [PMID: 20957140 PMCID: PMC2952487 DOI: 10.2147/tcrm.s5823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Antimicrobial resistant bacteria are an increasing concern due to the resulting increase in morbidity, mortality, and health-care costs associated with the administration of inadequate or delayed antimicrobial therapy. The implications of inadequate antimicrobial therapy in complicated skin and skin structure infections (cSSSIs) have gained more attention recently, most likely due to the recent emergence of community-acquired methicillin resistant Staphylococcus aureus (MRSA) and the already high prevalence of MRSA in the nosocomial setting. Due to the continuous threat of resistance arising and the limitations of currently available agents for the treatment of cSSSIs, it is necessary to develop new antimicrobials for this indication. Ceftobiprole medocaril, the prodrug of ceftobiprole, is a parental investigational cephalosporin for the treatment of cSSSIs displaying a wide-spectrum of activity against both Gram-positive and Gram-negative species, including MRSA. Ceftobiprole displays noncomplex linear pharmacokinetics, is eliminated primarily by glomerular filtration, and distributes to extracellular fluid. Additionally, it has been shown that the extent of distribution to the site of action with regard to cSSSIs, ie, the extracellular space fluid of subcutaneous adipose tissue and skeletal muscle, is expected to be efficacious, as free concentrations meet efficacy targets for most pathogens. Similar to other beta-lactams, it displays an excellent safety and tolerability profile with the primary adverse events being dysgeusia in healthy volunteers, resulting from the conversion of the prodrug to the active, and nausea in patients. Ceftobiprole has demonstrated noninferiority in two large-scale pivotal studies comparing it to vancomycin, clinical cure rates 93.3% vs 93.5%, respectively, or vancomycin plus ceftazidime, clinical cure rates 90.5% vs 90.2%, respectively. Given the pharmacokinetic and pharmacodynamic properties, ceftobiprole is a promising new agent for the treatment of cSSSIs and has the potential to be used as a single agent for empiric treatment.
Collapse
|
27
|
Ceftobiprole: A novel, broad-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus aureus. Am J Health Syst Pharm 2010; 67:983-93. [PMID: 20516468 DOI: 10.2146/ajhp090285] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The pharmacology, antimicrobial activity, pharmacokinetics, pharmacodynamics, clinical efficacy, safety, and place in therapy of ceftobiprole are reviewed. SUMMARY Ceftobiprole, a novel, broad-spectrum, parenteral cephalosporin, inhibits the cell-wall synthesis of penicillin-binding proteins (PBPs) PBP2a and PBP2x, responsible for the resistance in staphylococci and pneumococci, respectively. Ceftobiprole has good activity against gram-positive aerobes and anaerobes, and its activity against gram-negative aerobes and anaerobes is species dependent. Ceftobiprole is relatively inactive against Acinetobacter species. Its ability to bind relevant PBPs of resistant gram-positive and gram-negative bacteria indicates its potential use in the treatment of hospital-acquired pneumonia and complicated skin and skin-structure infections (cSSSIs). Ceftobiprole is primarily excreted unchanged by the kidneys and exhibits linear pharmacokinetics. The half-life of the drug is approximately 3-4 hours. It exhibits minimal plasma protein binding (16%). Ceftobiprole does not inhibit the cytochrome P-450 isoenzyme system, so the possibility of drug-drug interactions is low. The drug has not been approved for use in the United States but has been approved in Canada and elsewhere. Ceftobiprole is currently undergoing Phase III clinical trials and has demonstrated activity against methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, and Pseudomonas aeruginosa. Completed Phase III trials used i.v. dosages of 500 mg every 8-12 hours. The most commonly observed adverse effects of ceftobiprole included headache and gastrointestinal upset. CONCLUSION Ceftobiprole is a novel, broad-spectrum, parenteral cephalosporin undergoing Phase III clinical trials. Its broad spectrum of activity makes it a candidate for monotherapy of cSSSIs and pneumonias that have required combination therapy in the past.
Collapse
|
28
|
Bustos C, Del Pozo JL. Emerging agents to combat complicated and resistant infections: focus on ceftobiprole. Infect Drug Resist 2010; 3:5-14. [PMID: 21694889 PMCID: PMC3108737 DOI: 10.2147/idr.s3681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial resistance is a global concern. Over the past few years, considerable efforts and resources have been expended to detect, monitor, and understand at the basic level the many different facets of emerging and increasing resistance. Development of new antimicrobial agents has been matched by the development of new mechanisms of resistance by bacteria. Current antibiotics act at a variety of sites within the target bacteria, including the cross-linking enzymes in the cell wall, various ribosomal enzymes, nucleic acid polymerases, and folate synthesis. Ceftobiprole is a novel parenteral cephalosporin with high affinity for most penicillin-binding proteins, including the mecA product penicillin-binding protein 2a, rendering it active against methicillin-resistant staphylococci. Its in vitro activity against staphylococci and multiresistant pneumococci, combined with its Gram-negative spectrum comparable to that of other extended-spectrum cephalosporins, its stability against a wide range of beta-lactamases, and its pharmacokinetic and safety profiles make ceftobiprole an attractive and well tolerated new antimicrobial agent. The US Food and Drug Administration granted ceftobiprole medocaril fast-track status in 2003 for the treatment of complicated skin infections and skin structure infections due to methicillin-resistant staphylococci, and subsequently extended this to treatment of hospital-acquired pneumonia, including ventilator-associated pneumonia due to suspected or proven methicillin-resistant Staphylococcus aureus.
Collapse
|
29
|
|
30
|
Abstract
The increasing threat of antimicrobial resistance in general, and that of methicillin-resistant Staphylococcus aureus (MRSA) in particular, is raising significant medical, economical and public health challenges worldwide, both within hospitals and throughout the community. These considerations, along with the extensive time and costs associated with the development and approval of new therapeutic agents, represent some of the major reasons why understanding the advantages and limitations of new antibiotics, ensuring their judicious use and maximising their active shelf life should become global priorities. On March 18, 2008, the Food and Drug Administration issued an approvable letter for ceftobiprole, a broad-spectrum beta-lactam antibiotic active against MRSA and other clinically relevant Gram-positive and Gram-negative pathogens. Ceftobiprole is currently available only for parenteral administration, and besides its remarkable antimicrobial spectrum, this antibiotic possesses additional desirable characteristics, such as low propensity to select for resistance, efficacy in animal models of disease and good safety profile. Furthermore, in recently completed clinical trials, ceftobiprole demonstrated non-inferiority to comparator compounds such as vancomycin, and emerged as a promising clinical option of monotherapy for the treatment of complicated skin and skin structure infections and community-acquired pneumonia. Here, we discuss some of the most important clinically relevant findings on ceftobiprole obtained from in vitro studies, animal models of disease and recently completed phase III clinical trials.
Collapse
Affiliation(s)
- R A Stein
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
31
|
Vidaillac C, Rybak MJ. Ceftobiprole: First Cephalosporin with Activity Against Methicillin-ResistantStaphylococcus aureus. Pharmacotherapy 2009; 29:511-25. [DOI: 10.1592/phco.29.5.511] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Ceftobiprole: a novel cephalosporin with activity against Gram-positive and Gram-negative pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents 2009; 34:1-7. [PMID: 19261449 DOI: 10.1016/j.ijantimicag.2008.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Accepted: 12/28/2008] [Indexed: 11/20/2022]
Abstract
Ceftobiprole is a novel broad-spectrum cephalosporin with activity against a wide range of Gram-positive and Gram-negative bacteria, including several resistant species such as methicillin-resistant Staphylococcus aureus and penicillin-resistant Streptococcus pneumoniae. Ceftobiprole is administered intravenously as the prodrug ceftobiprole medocaril, which is almost immediately converted to the active form. It is currently under review by the US Food and Drug Administration (FDA) and is approved in Canada under the trade name Zeftera. The pharmacokinetics of ceftobiprole are non-complex as it displays a two-compartment model, dose proportionality, linear plasma protein binding and negligible accumulation. The volume of distribution is approximately equal to the extracellular fluid volume and it is cleared primarily by glomerular filtration, resulting in a half-life of approximately 3-4h. Ceftobiprole displays a low plasma protein binding of approximately 22%. The efficacy of ceftobiprole was demonstrated in two pivotal studies in patients with complicated skin and skin-structure infections (cSSSIs) that compared ceftobiprole with vancomycin in Gram-positive infections in one study and ceftobiprole with vancomycin plus ceftazidime in Gram-positive and Gram-negative infections in the other. The clinical cure rates were similar for ceftobiprole vs. comparator treatments: 93.3% vs. 93.5% with vancomycin only and 90.5% vs. 90.2% with vancomycin plus ceftazidime. The pharmacokinetic/pharmacodynamic profile supports the use of ceftobiprole to treat a wide range of cSSSIs.
Collapse
|
33
|
Anderson SD, Gums JG. Ceftobiprole: an extended-spectrum anti-methicillin-resistant Staphylococcus aureus cephalosporin. Ann Pharmacother 2008; 42:806-16. [PMID: 18477729 DOI: 10.1345/aph.1l016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To summarize and evaluate the literature concerning ceftobiprole. DATA SOURCES Literature identification was conducted through MEDLINE (1966-February 2008) and International Pharmaceutical Abstracts (1970-February 2008) using the terms ceftobiprole, medocaril, BAL 5788, RO-5788, BAL 9141, RO 63-9141, pyrrolidinone cephalosporin, MRSA, complicated skin and skin-structure infections (cSSSIs), community-acquired pneumonia, and nosocomial pneumonia. Additional publications were identified through a review of articles and abstracts from infectious disease meetings. STUDY SELECTION AND DATA EXTRACTION All articles in English were evaluated and all pertinent information was included. DATA SYNTHESIS Ceftobiprole medocaril is an extended-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus spp., vancomycin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, vancomycin-resistant Enterococcus faecalis, Enterobacteriaceae, and Pseudomonas aeruginosa. Inactivity includes extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae and Enterococcus faecium. Preliminary data suggest that ceftobiprole may be effective with a 1-hour infusion of 500 mg every 12 hours for gram-positive infections and 500 mg every 8 hours with a 2-hour infusion for polymicrobial infections. Two clinical trials support these dosing regimens for cSSSIs. Ceftobiprole was noninferior to vancomycin in suspected gram-positive cSSSIs, with cure rates of 93.3% and 93.5%, respectively. Furthermore, ceftobiprole was noninferior to vancomycin and ceftazidime in polymicrobial cSSSIs (cure rates 90.5% vs 90.2%, respectively). Although the total number of adverse effects was similar to those of the comparator, more patients in the ceftobiprole group experienced nausea, vomiting, and dysgeusia. CONCLUSIONS The activity of ceftobiprole and limited clinical data suggest that it may be useful as empiric monotherapy for cSSSI and in combination with other antimicrobials in lower respiratory tract infections for which Phase 3 clinical trials are currently exploring. Although not shown in vitro, ceftobiprole may induce resistance due to its broad spectrum of activity. Approval is expected for the treatment of cSSSI.
Collapse
Affiliation(s)
- Shawn D Anderson
- Departments of Pharmacy Practice and Family Medicine, University of Florida, Gainesville, FL 32601, USA.
| | | |
Collapse
|
34
|
Pharmacokinetic and pharmacodynamic profile of ceftobiprole. Diagn Microbiol Infect Dis 2008; 61:96-102. [DOI: 10.1016/j.diagmicrobio.2008.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 02/25/2008] [Indexed: 11/20/2022]
|
35
|
Bassetti M, Righi E, Viscoli C. Novel β-lactam antibiotics and inhibitor combinations. Expert Opin Investig Drugs 2008; 17:285-96. [DOI: 10.1517/13543784.17.3.285] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|