1
|
Wolie ZT, Unwin S, Burke A, Won H, Wallis SC, Seaton RA, Gilchrist M, Roberts JA, Sime FB. Evaluation of the stability of tigecycline in elastomeric infusion devices used for outpatient parenteral antimicrobial therapy. JAC Antimicrob Resist 2025; 7:dlaf074. [PMID: 40365447 PMCID: PMC12070266 DOI: 10.1093/jacamr/dlaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Background Tigecycline is increasingly being considered in outpatient parenteral antimicrobial therapy (OPAT) programmes given its spectrum of activity; however, stability data are lacking, necessitating further study. Objective To assess tigecycline stability in elastomeric infusers under OPAT conditions, following the UK Yellow Cover Document (YCD) stability testing guidelines. Methods Tigecycline was reconstituted with normal saline in Leventon Dosi-Fuser and Baxter-LV10 infusers at doses of 50, 100 and 200 mg in 240 mL. Additionally, a tigecycline intermittent infusion dose (50 mg/100 mL) was reconstituted in Baxter-SV100 infusers. The infusers were stored under refrigerated storage (2°C-8°C) for 7 days, followed by exposure at an in-use temperature of 32°C for 24 h, or at 25°C for 2 hours for the intermittent infusion. Stability was evaluated using a stability-indicating assay, pH measurement, subvisible particle count and visual inspection as per the YCD. Results After 7 days of refrigeration followed by 24 h exposure to 32°C, the mean ± SD percentage of tigecycline remaining was 97.9 ± 0.6, 97.3 ± 0.6 and 95.4 ± 0.8 for the Baxter LV10 devices, and 97.2 ± 0.3, 96.9 ± 0.5 and 95.8 ± 0.8 for Dosi-Fuser devices at the low, intermediate, and high dose levels, respectively. For intermittent infusion in Baxter-SV100 devices, the mean ± SD percentage remaining after 7 days of refrigerated storage followed by 2 h at 25°C was 99.7 ± 0.2. Conclusions Tigecycline meets the UK YCD criteria of ≤5% degradation limit, indicating its suitability for both intermittent and continuous 24-h infusion in OPAT programs.
Collapse
Affiliation(s)
- Zenaw T Wolie
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane, Queensland 4029, Australia
- Department of Pharmacy, College of medicine and health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Sean Unwin
- Infection Management Services, Metro South Health, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Andrew Burke
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane, Queensland 4029, Australia
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland 4032, Australia
| | - Hayoung Won
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane, Queensland 4029, Australia
| | - Steven C Wallis
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane, Queensland 4029, Australia
| | - R Andrew Seaton
- Department of Infectious Diseases, Queen Elizabeth University Hospital, Glasgow, UK
- OPAT Initiative, British Society for Antimicrobial Chemotherapy (BSAC), Birmingham, UK
| | - Mark Gilchrist
- OPAT Initiative, British Society for Antimicrobial Chemotherapy (BSAC), Birmingham, UK
- Department of Pharmacy/Infection, Imperial College Healthcare NHS Trust, London, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Jason A Roberts
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane, Queensland 4029, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Queensland, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes 30029, France
| | - Fekade B Sime
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Building 71/918 RBWH Herston, Brisbane, Queensland 4029, Australia
| |
Collapse
|
2
|
Gao F, Zhou R, He Y, Zhang Y, Bao C, Feng G. Bio-Mimicking Nanoparticle System Facilitates Sonodynamic-Mediated Clearance of Extensively Drug-Resistant Bacteria. ACS Biomater Sci Eng 2025; 11:2988-3002. [PMID: 40294106 DOI: 10.1021/acsbiomaterials.4c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The increasing prevalence of carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii (XDR-Ab) poses a critical challenge in treating hospital-acquired pulmonary infections. In this study, we developed a biomimetic neutrophil membrane-coated nanoparticle system, NM@PCN-TIG, for the targeted delivery of tigecycline (TIG). The system utilizes the porphyrin-based metal-organic framework (MOF) PCN-224 as the core of the nanoparticle, encapsulating TIG and coated with a neutrophil membrane (NM) to enhance immune evasion and targeting of infection sites. Its loading efficiency, controlled release properties, cytotoxicity, and bactericidal activity under ultrasound mediation were systematically evaluated in vitro and in vivo. Our results demonstrated that NM@PCN-TIG significantly enhanced the bactericidal efficacy of TIG, increased reactive oxygen species (ROS) production, and promoted macrophage polarization toward an anti-inflammatory phenotype. This innovative biomimetic TIG nanosystem shows great potential as a platform for addressing XDR-Ab-induced pneumonia.
Collapse
Affiliation(s)
- Fenglin Gao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Runlu Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yucong He
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Cui Bao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Ganzhu Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| |
Collapse
|
3
|
Soria-Segarra C, Soria-Segarra C, Molina-Matute M, Agreda-Orellana I, Núñez-Quezada T, Cevallos-Apolo K, Miranda-Ayala M, Salazar-Tamayo G, Galarza-Herrera M, Vega-Hall V, Villacis JE, Gutiérrez-Fernández J. Molecular epidemiology of carbapenem-resistant gram-negative bacilli in Ecuador. BMC Infect Dis 2024; 24:378. [PMID: 38582858 PMCID: PMC10998298 DOI: 10.1186/s12879-024-09248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024] Open
Abstract
INTRODUCTION Carbapenem-resistant gram-negative bacilli are a worldwide concern because of high morbidity and mortality rates. Additionally, the increasing prevalence of these bacteria is dangerous. To investigate the extent of antimicrobial resistance and prioritize the utility of novel drugs, we evaluated the molecular characteristics and antimicrobial susceptibility profiles of carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii in Ecuador in 2022. METHODS Ninety-five clinical isolates of carbapenem non-susceptible gram-negative bacilli were collected from six hospitals in Ecuador. Carbapenem resistance was confirmed with meropenem disk diffusion assays following Clinical Laboratory Standard Institute guidelines. Carbapenemase production was tested using a modified carbapenemase inactivation method. Antimicrobial susceptibility was tested with a disk diffusion assay, the Vitek 2 System, and gradient diffusion strips. Broth microdilution assays were used to assess colistin susceptibility. All the isolates were screened for the blaKPC, blaNDM, blaOXA-48, blaVIM and blaIMP genes. In addition, A. baumannii isolates were screened for the blaOXA-23, blaOXA-58 and blaOXA-24/40 genes. RESULTS Carbapenemase production was observed in 96.84% of the isolates. The blaKPC, blaNDM and blaOXA-48 genes were detected in Enterobacterales, with blaKPC being predominant. The blaVIM gene was detected in P. aeruginosa, and blaOXA-24/40 predominated in A. baumannii. Most of the isolates showed co-resistance to aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. Both ceftazidime/avibactam and meropenem/vaborbactam were active against carbapenem-resistant gram-negative bacilli that produce serin-carbapenemases. CONCLUSION The epidemiology of carbapenem resistance in Ecuador is dominated by carbapenemase-producing K. pneumoniae harbouring blaKPC. Extensively drug resistant (XDR) P. aeruginosa and A. baumannii were identified, and their identification revealed the urgent need to implement strategies to reduce the dissemination of these strains.
Collapse
Affiliation(s)
- Claudia Soria-Segarra
- Sosecali, Medical Services, Guayaquil, EC, 090308, Ecuador.
- Faculty of Medical Sciences, Guayaquil University, Guayaquil, Ecuador.
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada & ibs, Granada, Spain.
| | - Carmen Soria-Segarra
- Sosecali, Medical Services, Guayaquil, EC, 090308, Ecuador
- Department of Internal Medicine, School of Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | | | | | - Tamara Núñez-Quezada
- Hospital del Instituto Ecuatoriano de Seguridad Social Dr. Teodoro Maldonado Carbo, Guayaquil, Ecuador
| | - Kerly Cevallos-Apolo
- Hospital de Infectología Dr. José Daniel Rodríguez Maridueña, Guayaquil, Ecuador
| | | | | | | | | | - José E Villacis
- Centro de Investigación Para La Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, 1701-2184, Ecuador
| | - José Gutiérrez-Fernández
- Department of Microbiology, School of Medicine and PhD Program in Clinical Medicine and Public Health, University of Granada & ibs, Granada, Spain
- Department of Microbiology, Hospital Virgen de Las Nieves, Institute for Biosanitary Research-Ibs, Granada, Spain
| |
Collapse
|
4
|
da Silva DAV, Dieckmann R, Makarewicz O, Hartung A, Bethe A, Grobbel M, Belik V, Pletz MW, Al Dahouk S, Neuhaus S. Biocide Susceptibility and Antimicrobial Resistance of Escherichia coli Isolated from Swine Feces, Pork Meat and Humans in Germany. Antibiotics (Basel) 2023; 12:antibiotics12050823. [PMID: 37237726 DOI: 10.3390/antibiotics12050823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Phenotypic susceptibility testing of Escherichia (E.) coli is an essential tool to gain a better understanding of the potential impact of biocide selection pressure on antimicrobial resistance. We, therefore, determined the biocide and antimicrobial susceptibility of 216 extended-spectrum β-lactamase-producing (ESBL) and 177 non-ESBL E. coli isolated from swine feces, pork meat, voluntary donors and inpatients and evaluated associations between their susceptibilities. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of benzalkonium chloride, chlorhexidine digluconate (CHG), chlorocresol (PCMC), glutaraldehyde (GDA), isopropanol (IPA), octenidine dihydrochloride and sodium hypochlorite (NaOCl) showed unimodal distributions, indicating the absence of bacterial adaptation to biocides due to the acquisition of resistance mechanisms. Although MIC95 and MBC95 did not vary more than one doubling dilution step between isolates of porcine and human origin, significant differences in MIC and/or MBC distributions were identified for GDA, CHG, IPA, PCMC and NaOCl. Comparing non-ESBL and ESBL E. coli, significantly different MIC and/or MBC distributions were found for PCMC, CHG and GDA. Antimicrobial susceptibility testing revealed the highest frequency of resistant E. coli in the subpopulation isolated from inpatients. We observed significant but weakly positive correlations between biocide MICs and/or MBCs and antimicrobial MICs. In summary, our data indicate a rather moderate effect of biocide use on the susceptibility of E. coli to biocides and antimicrobials.
Collapse
Affiliation(s)
- David Attuy Vey da Silva
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Dieckmann
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Oliwia Makarewicz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Anita Hartung
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Mirjam Grobbel
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Vitaly Belik
- System Modeling Group, Institute of Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Department of Internal Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Szilvia Neuhaus
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| |
Collapse
|
5
|
Kumar H, Williford EE, Blake KS, Virgin-Downey B, Dantas G, Wencewicz TA, Tolia NH. Structure of anhydrotetracycline-bound Tet(X6) reveals the mechanism for inhibition of type 1 tetracycline destructases. Commun Biol 2023; 6:423. [PMID: 37062778 PMCID: PMC10106456 DOI: 10.1038/s42003-023-04792-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/31/2023] [Indexed: 04/18/2023] Open
Abstract
Inactivation of tetracycline antibiotics by tetracycline destructases (TDases) remains a clinical and agricultural threat. TDases can be classified as type 1 Tet(X)-like TDases and type 2 soil-derived TDases. Type 1 TDases are widely identified in clinical pathogens. A combination therapy of tetracycline and a TDase inhibitor is much needed to rescue the clinical efficacy of tetracyclines. Anhydrotetracycline is a pan-TDase inhibitor that inhibits both type 1 and type 2 TDases. Here, we present structural, biochemical, and phenotypic evidence that anhydrotetracycline binds in a substrate-like orientation and competitively inhibits the type 1 TDase Tet(X6) to rescue tetracycline antibiotic activity as a sacrificial substrate. Anhydrotetracycline interacting residues of Tet(X6) are conserved within type 1 TDases, indicating a conserved binding mode and mechanism of inhibition. This mode of binding and inhibition is distinct from anhydrotetracycline's inhibition of type 2 TDases. This study forms the framework for development of next-generation therapies to counteract enzymatic tetracycline resistance.
Collapse
Affiliation(s)
- Hirdesh Kumar
- Host-pathogen interaction and structural vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emily E Williford
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brett Virgin-Downey
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA.
| | - Niraj H Tolia
- Host-pathogen interaction and structural vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
6
|
Zhu P, Ren L, Zhu Y, Dai J, Liu H, Mao Y, Li Y, He Y, Zheng X, Chen R, Fu X, Zhang L, Sun L, Zhu Y, Ji Y, Ma B, Xu Y, Xu J, Yang Q. Rapid, automated, and reliable antimicrobial susceptibility test from positive blood culture by CAST-R. MLIFE 2022; 1:329-340. [PMID: 38818218 PMCID: PMC10989881 DOI: 10.1002/mlf2.12019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 06/01/2024]
Abstract
Antimicrobial susceptibility tests (ASTs) are pivotal in combating multidrug resistant pathogens, yet they can be time-consuming, labor-intensive, and unstable. Using the AST of tigecycline for sepsis as the main model, here we establish an automated system of Clinical Antimicrobials Susceptibility Test Ramanometry (CAST-R), based on D2O-probed Raman microspectroscopy. Featuring a liquid robot for sample pretreatment and a machine learning-based control scheme for data acquisition and quality control, the 3-h, automated CAST-R process accelerates AST by >10-fold, processes 96 paralleled antibiotic-exposure reactions, and produces high-quality Raman spectra. The Expedited Minimal Inhibitory Concentration via Metabolic Activity is proposed as a quantitative and broadly applicable parameter for metabolism-based AST, which shows 99% essential agreement and 93% categorical agreement with the broth microdilution method (BMD) when tested on 100 Acinetobacter baumannii isolates. Further tests on 26 clinically positive blood samples for eight antimicrobials, including tigecycline, meropenem, ceftazidime, ampicillin/sulbactam, oxacillin, clindamycin, vancomycin, and levofloxacin reveal 93% categorical agreement with BMD-based results. The automation, speed, reliability, and general applicability of CAST-R suggest its potential utility for guiding the clinical administration of antimicrobials.
Collapse
Affiliation(s)
- Pengfei Zhu
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lihui Ren
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
- College of Information Science & EngineeringOcean University of ChinaQingdaoChina
| | - Ying Zhu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Graduate School, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Jing Dai
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huijie Liu
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuli Mao
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuandong Li
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuehui He
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoshan Zheng
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rongze Chen
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoting Fu
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lili Zhang
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lijun Sun
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuanqi Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoChina
| | - Yuetong Ji
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- Qingdao Single‐Cell Biotechnology, Co., Ltd.QingdaoChina
| | - Bo Ma
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Jian Xu
- Single‐Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
- The Bioland LaboratoryGuangzhouChina
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
7
|
Comparative Analysis of Gradient Diffusion and Disk Diffusion with Agar Dilution for Susceptibility Testing of Elizabethkingia anophelis. Antibiotics (Basel) 2021; 10:antibiotics10040450. [PMID: 33923659 PMCID: PMC8073607 DOI: 10.3390/antibiotics10040450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/02/2022] Open
Abstract
Elizabethkingia anophelis has recently emerged as a cause of life-threatening infections. This study compared the results of antimicrobial susceptibility testing (AST) conducted for E. anophelis through different methods. E. anophelis isolates collected between January 2005 and June 2019 were examined for their susceptibility to 14 antimicrobial agents by using disk diffusion, gradient diffusion (Etest; bioMérieux S.A., Marcy l’Etoile, France), and agar dilution methods. The agar dilution method was the reference assay. According to the agar dilution method, the isolates exhibited the highest susceptibility to minocycline (100%), doxycycline (97.6%), rifampin (95.2%), and levofloxacin (78.6%). A very major error rate of >1.5% was observed for nine antibiotics tested using the disk diffusion method. The overall categorical agreement rate between the disk diffusion and agar dilution methods was 74.8%, and ceftazidime, minocycline, levofloxacin, and rifampin met the minimum requirements for discrepancy and agreement rates. The Etest method tended to produce lower log2 minimum inhibitory concentrations for the antibiotics, except for trimethoprim–sulfamethoxazole and rifampin; the method resulted in very major errors for nine antibiotics. The overall essential and categorical agreement rates between the Etest and agar dilution methods were 67.3% and 76.1%, respectively. The Etest method demonstrated acceptable discrepancy and agreement rates for ceftazidime, minocycline, doxycycline, levofloxacin, and rifampin. AST results obtained through the disk diffusion and Etest methods for multiple antibiotics differed significantly from those obtained using the agar dilution method. These two assays should not be a routine alternative for AST for E. anophelis.
Collapse
|
8
|
Elnasser Z, Elsamarneh R, Obeidat H, Amarin Z, Jaradat S, Kaplan N. In-vitro activity of tigecycline against multidrug-resistant Gram negative bacteria: The experience of a university hospital. J Infect Public Health 2021; 14:478-483. [PMID: 33743369 DOI: 10.1016/j.jiph.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
The emergence of multidrug-resistant Gram negative bacteria has given rise to significant therapeutic challenges. These pathogens may have developed resistance to tigecycline, which is an alternative antibiotic used empirically in the treatment of serious infections. The objectives of this study were to identify the in-vitro activity of tigecycline against multidrug-resistant Gram negative strains isolated from clinical specimens and their related genes, at a university hospital. For this, 150 clinical isolates of multidrug-resistant Gram negative cultures from various clinical specimens were collected. Bacterial isolates were cultured, identified and their antibiotic susceptibilities were determined. Polymerase chain reaction was performed to amplify AcrB, AmpC, RamR, MexR, AdeB, TetA genes. Results revealed that all isolates were multidrug-resistant. The resistance of isolates was 91.4% to aztreonam, 94.6% to piperacillin, 34% to imipenem, 38.7% to meropenem, 71.3% to levofloxacin, 97.3% to ceftriaxone, 94.7% to cefepime, 9.3% to colistin, 78% to tetracycline, 21.4% to tigecycline and 68% to trimethoprim. AcrB, AmpC, RamR, MexR, AdeB, TetA genes were present in multidrug-resistant Gram negative bacteria. AcrB, RamR, TetA genes were related to tigecycline resistance. It is concluded that infections caused by multidrug-resistant Gram negative bacteria occur at a high rate. Most isolates were multi drug resistant, with 21.4% being resistant to tigecycline.
Collapse
Affiliation(s)
- Z Elnasser
- Pathology and Microbiology Department, Jordan University of Science and Technology, Jordan.
| | - R Elsamarneh
- Medical Laboratory Sciences Department, Jordan University of Science and Technology, Jordan
| | - H Obeidat
- Medical Laboratory Sciences Department, Jordan University of Science and Technology, Jordan
| | - Z Amarin
- Department of Obstetrics and Gynecology, Jordan University of Science and Technology, Jordan
| | - S Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan university of Science and Technology, Jordan
| | - N Kaplan
- Pathology and Microbiology Department, Jordan University of Science and Technology, Jordan
| |
Collapse
|
9
|
Lin JN, Lai CH, Huang YH, Yang CH. Antimicrobial Effects of Minocycline, Tigecycline, Ciprofloxacin, and Levofloxacin against Elizabethkingia anophelis Using In Vitro Time-Kill Assays and In Vivo Zebrafish Animal Models. Antibiotics (Basel) 2021; 10:antibiotics10030285. [PMID: 33801839 PMCID: PMC7999888 DOI: 10.3390/antibiotics10030285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Elizabethkingia anophelis is a multidrug-resistant pathogen. This study evaluated the antimicrobial activity of minocycline, tigecycline, ciprofloxacin, and levofloxacin using in vitro time-kill assays and in vivo zebrafish animal models. The E. anophelis strain ED853-49 was arbitrarily selected from a bacterial collection which was concomitantly susceptible to minocycline, tigecycline, ciprofloxacin, and levofloxacin. The antibacterial activities of single agents at 0.5-4 × minimum inhibitory concentration (MIC) and dual-agent combinations at 2 × MIC using time-kill assays were investigated. The therapeutic effects of antibiotics in E. anophelis-infected zebrafish were examined. Both minocycline and tigecycline demonstrated bacteriostatic effects but no bactericidal effect. Minocycline at concentrations ≥2 × MIC and tigecycline at concentrations ≥3 × MIC exhibited a long-standing inhibitory effect for 48 h. Bactericidal effects were observed at ciprofloxacin and levofloxacin concentrations of ≥3 × MIC within 24 h of initial inoculation. Rapid regrowth of E. anophelis occurred after the initial killing phase when ciprofloxacin was used, regardless of the concentration. Levofloxacin treatment at the concentration of ≥2 × MIC consistently resulted in the long-lasting and sustainable inhibition of bacterial growth for 48 h. The addition of minocycline or tigecycline weakened the killing effect of fluoroquinolones during the first 10 h. The minocycline-ciprofloxacin or minocycline-levofloxacin combinations achieved the lowest colony-forming unit counts at 48 h. Zebrafish treated with minocycline or a combination of minocycline and levofloxacin had the highest survival rate (70%). The results of these in vitro and in vivo studies suggest that the combination of minocycline and levofloxacin is the most effective therapy approach for E. anophelis infection.
Collapse
Affiliation(s)
- Jiun-Nong Lin
- Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
- Correspondence:
| | - Chung-Hsu Lai
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
| | - Yi-Han Huang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
| | - Chih-Hui Yang
- Department of Biological Science and Technology, Meiho University, Pingtung 912, Taiwan;
| |
Collapse
|
10
|
Mao Y, Shi Q, Zhang P, Jiang Y, Yu Y. Effect of ramR loss-of-function insertion on tigecycline resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist 2020; 21:410-413. [PMID: 32006749 DOI: 10.1016/j.jgar.2020.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Tigecycline is an antibacterial agent restricted for use against carbapenem-resistant Klebsiella pneumoniae (CRKP). This study aimed to identify the tigecycline resistance mechanism in clinical CRKP isolates obtained from a 60-year-old femalepatient during tigecycline treatment. METHODS Three K. pneumoniae isolates obtained during tigecycline treatment were subjected to antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and whole-genome sequencing and analysis. The function of ramR was confirmed by gene complementation. RESULTS Three K. pneumoniae isolates (W814, W112 and W113) were collected from the patient on Days 0, 10 and 13, respectively, of ongoing tigecycline treatment. Antimicrobial susceptibility testing showed resistance to all antibiotics except tigecycline and ceftazidime/avibactam. The tigecycline minimum inhibitory concentration (MIC) for strains W814 and W112 was 4 mg/L compared with 16 mg/L for strain W113. The three strains belonged to sequence type 11 (ST11) and had a similar PGFE pattern. Insertion sequence (IS) element ISKpn18 in ramR was identified in strain W113. A parent strain transformed with plasmid pCR2.1-Hyg carrying ramR enhanced tigecycline susceptibility, thus confirming that a loss-of-function insertion in ramR contributes to tigecycline resistance. CONCLUSION ISKpn18 insertion in the ramR gene contributes to the tigecycline resistance mechanism in the isolated K. pneumoniae strains.
Collapse
Affiliation(s)
- Yihan Mao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ping Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Hughes S, Chin HY, Heard KL, Kamranpour P, Bartholomew B, Mughal N, Moore LSP. Once-daily tigecycline for outpatient parenteral antibiotic therapy: a single-centre observational study. JAC Antimicrob Resist 2019; 1:dlz085. [PMID: 34222958 PMCID: PMC8210309 DOI: 10.1093/jacamr/dlz085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 11/13/2022] Open
Abstract
Background Tigecycline has potential utility in the treatment of complex polymicrobial infections or those caused by MDR organisms in the ambulatory care setting owing to its breadth of antimicrobial coverage. Whilst licensed for twice-daily IV administration, its long half-life permits once-daily administration, which may facilitate successful outpatient parenteral antibiotic therapy (OPAT). Methods A retrospective case series of patients receiving once-daily tigecycline under OPAT was analysed at a single-centre NHS acute hospital (January 2016-June 2018). Patient demographics, including comorbidities, antimicrobial indication, concurrent antimicrobial therapies, treatment duration and adverse events related to treatment were recorded using medical records. Treatment outcomes were defined using the BSAC National Outcomes Registry System (NORS). Results A total of 25 treatment episodes (24 individual patients) were analysed. The most common indications were bone and joint infections (n = 8) and intra-abdominal infections (n = 7). MDR organisms were common, including ESBL-producing Enterobacterales (n = 13) and glycopeptide-resistant enterococci (n = 4). Median treatment duration was 18 days. Nineteen of 25 (76%) cases had complete cure of treatment, 3 patients experienced treatment-related adverse reactions necessitating cessation of therapy and 3 experienced failure due to disease progression. Eight patients experienced non-limiting adverse effects, such as nausea, vomiting and rash, and one patient had a transient rise in amylase 3 times the upper normal limit (with no evidence of pancreatitis). Conclusions Once-daily tigecycline can be successfully used for management of complex infections in the OPAT setting, with predominantly mild adverse effects, which can be managed with antiemetics or slow administration.
Collapse
Affiliation(s)
- Stephen Hughes
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Hui Yin Chin
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Katie L Heard
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Pegah Kamranpour
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Brent Bartholomew
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - Nabeela Mughal
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK.,North West London Pathology, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, UK.,National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Luke S P Moore
- Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK.,North West London Pathology, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, UK.,National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.,Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK.,North West London Pathology, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, UK.,National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
12
|
Characterization and genome sequencing of a novel T7-like lytic phage, kpssk3, infecting carbapenem-resistant Klebsiella pneumoniae. Arch Virol 2019; 165:97-104. [PMID: 31734749 DOI: 10.1007/s00705-019-04447-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) has spread globally and emerged as an urgent public health threat. Bacteriophages are considered an effective weapon against multidrug-resistant pathogens. In this study, we report a novel lytic phage, kpssk3, which is able to lyse CRKP and degrade exopolysaccharide (EPS). The morphological characteristics of kpssk3 observed by transmission electron microscopy, including a polyhedral head and a short tail, indicate that it belongs to the family Podoviridae. A one-step growth curve revealed that kpssk3 has a latent period of 10 min and a burst size of 200 plaque-forming units (pfu) per cell. kpssk3 was able to lyse 25 out of 27 (92.59%) clinically isolated CRKP strains, and it also exhibited high stability to changes in temperature and pH. kpssk3 has a linear dsDNA genome of 40,539 bp with 52.80% G+C content and 42 putative open reading frames (ORFs). No antibiotic resistance genes, virulence factors, or integrases were identified in the genome. Based on bioinformatic analysis, the tail fiber protein of phage kpssk3 was speculated to possess depolymerase activity towards EPS. By comparative genomics and phylogenetic analysis, it was determined that kpssk3 is a new T7-like virus and belongs to the subfamily Autographivirinae. The characterization and genomic analysis of kpssk3 will promote our understanding of phage biology and diversity and provide a potential strategy for controlling CRKP infection.
Collapse
|
13
|
Chen F, Shen C, Pang X, Zhang Z, Deng Y, Han L, Chen X, Zhang J, Xia Q, Qian Y. Effectiveness of tigecycline in the treatment of infections caused by carbapenem-resistant gram-negative bacteria in pediatric liver transplant recipients: A retrospective study. Transpl Infect Dis 2019; 22:e13199. [PMID: 31627248 DOI: 10.1111/tid.13199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/22/2019] [Accepted: 10/12/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Tigecycline (TGC) is effective for the infections caused by carbapenem-resistant gram-negative bacteria (CRGNB) in adults, but it is not investigated systematically in children because of concern about adverse effects. This study aimed to analyze the effectiveness of TGC in treating CRGNB infections in children after receiving liver transplant. METHODS The subjects in this retrospective study were pediatric liver transplant recipients treated with TGC for at least 3 days to fight microbiologically verified CRGNB infection after initial antibiotic failure during the period from January 2014 to May 2018. Clinical and microbiological outcomes were reviewed to evaluate the efficacy and safety of TGC. RESULTS Of the 1177 pediatric liver transplant recipients, 13 patients were eligible for inclusion in this analysis. All the patients received TGC at dose of 2 mg/kg every 12 hours for a duration of 10.1 ± 5.1 days on average to treat CRGNB infections, including complicated intra-abdominal infection, ventilator-associated pneumonia, and bloodstream infection. The isolates included Klebsiella pneumoniae (69.2%, 9/13) and Acinetobacter baumannii (30.8%, 4/13). Clinical efficacy was achieved in 84.6% (11/13) and pathogen eradicated in 69.2% (9/13) of the patients. The overall mortality rate was 15.4% (2/13). No TGC-related serious adverse event was reported. CONCLUSION Tigecycline can be considered in combination antimicrobial regimen for treating CRGNB-related infections in pediatric liver transplant recipients.
Collapse
Affiliation(s)
- Fang Chen
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan Shen
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Pang
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zaili Zhang
- Department of Pharmacy, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxiao Deng
- Department of Critical Care Medicine, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Longzhi Han
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaosong Chen
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongbing Qian
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Lin JN, Lai CH, Yang CH, Huang YH. Differences in Clinical Manifestations, Antimicrobial Susceptibility Patterns, and Mutations of Fluoroquinolone Target Genes between Chryseobacterium gleum and Chryseobacterium indologenes. Antimicrob Agents Chemother 2019; 63:e02256-18. [PMID: 30782983 PMCID: PMC6496096 DOI: 10.1128/aac.02256-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/13/2019] [Indexed: 12/31/2022] Open
Abstract
Chryseobacterium infections are uncommon, and previous studies have revealed that Chryseobacterium gleum is frequently misidentified as Chryseobacterium indologenes We aimed to explore the differences in clinical manifestations and antimicrobial susceptibility patterns between C. gleum and C. indologenes The database of a clinical microbiology laboratory was searched to identify patients with Chryseobacterium infections between 2005 and 2017. Species were reidentified using 16S rRNA gene sequencing, and patients with C. gleum and C. indologenes infections were included in the study. A total of 42 C. gleum and 84 C. indologenes isolates were collected from consecutive patients. A significant increase in C. indologenes incidence was observed. C. gleum was significantly more associated with bacteremia than C. indologenes Patients with C. gleum infections had more comorbidities of malignancy and liver cirrhosis than those with C. indologenes infections. The overall case fatality rate was 19.8%. Independent risk factors for mortality were female sex and C. indologenes infection. These isolates were most susceptible to minocycline (73%), followed by trimethoprim-sulfamethoxazole (47.6%), tigecycline (34.1%), and levofloxacin (32.5%). C. gleum exhibited a significantly higher rate of susceptibility than C. indologenes to piperacillin, piperacillin-tazobactam, ceftazidime, tigecycline, and levofloxacin. Alterations in DNA gyrase subunit A were identified to be associated with fluoroquinolone resistance in C. indologenes No nonsynonymous substitutions were observed in the quinolone resistance-determining regions (QRDRs) of C. gleum Differences in epidemiology, clinical manifestations, and antimicrobial susceptibility patterns exist between C. gleum and C. indologenes Additional investigations are needed to explore the significance of these differences.
Collapse
Affiliation(s)
- Jiun-Nong Lin
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Hsu Lai
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, Meiho University, Pingtung, Taiwan
| | - Yi-Han Huang
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Liang CY, Yang CH, Lai CH, Huang YH, Lin JN. Genomic Features, Comparative Genomic Analysis, and Antimicrobial Susceptibility Patterns of Chryseobacterium arthrosphaerae Strain ED882-96 Isolated in Taiwan. Genes (Basel) 2019; 10:genes10040309. [PMID: 31010035 PMCID: PMC6523182 DOI: 10.3390/genes10040309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Bacteria belonging to the genus Chryseobacterium are ubiquitously distributed in natural environments, plants, and animals. Except C. indologenes and C. gleum, other Chryseobacterium species rarely cause human diseases. This study reported the whole-genome features, comparative genomic analysis, and antimicrobial susceptibility patterns of C. arthrosphaerae ED882-96 isolated in Taiwan. Strain ED882-96 was collected from the blood of a patient who had alcoholic liver cirrhosis and was an intravenous drug abuser. This isolate was initially identified as C. indologenes by using matrix-assisted laser desorption ionization–time of flight mass spectrometry. The analysis of 16S ribosomal RNA gene sequence revealed that ED882-96 shared 100% sequence identity with C. arthrosphaerae type strain CC-VM-7T. The results of whole-genome sequencing of ED882-96 showed two chromosome contigs and one plasmid. The total lengths of the draft genomes of chromosome and plasmid were 4,249,864 bp and 435,667 bp, respectively. The findings of both in silico DNA–DNA hybridization and average nucleotide identity analyses clearly demonstrated that strain ED882-96 was a species of C. arthrosphaerae. A total of 83 potential virulence factor homologs were predicted in the whole-genome sequencing of strain ED882-96. This isolate was resistant to all tested antibiotics, including β-lactams, β-lactam/β-lactamase inhibitor combinations, aminoglycosides, fluoroquinolones, tetracycline, glycylcycline, and trimethoprim-sulfamethoxazole. Only one antibiotic resistance gene was recognized in the plasmid. By contrast, many antibiotic resistance genes were identified in the chromosome. The findings of this study suggest that strain ED882-96 is a highly virulent and multidrug-resistant pathogen. Knowledge regarding genomic characteristics and antimicrobial susceptibility patterns provides valuable insights into this uncommon species.
Collapse
Affiliation(s)
- Chih-Yu Liang
- Department of Information Engineering, I-Shou University, Kaohsiung 824, Taiwan.
- Department of Emergency Medicine, E-Da Cancer Hospital, Kaohsiung 824, Taiwan.
- Department of Medical Imaging and Radiological Science, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan.
| | - Chih-Hui Yang
- Department of Biological Science and Technology, Meiho University, Pingtung 912, Taiwan.
| | - Chung-Hsu Lai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan.
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, Kaohsiung 824, Taiwan.
| | - Yi-Han Huang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan.
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, Kaohsiung 824, Taiwan.
- Department of Critical Care Medicine, E-Da Hospital, Kaohsiung 824, Taiwan.
| | - Jiun-Nong Lin
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan.
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, Kaohsiung 824, Taiwan.
- Department of Critical Care Medicine, E-Da Hospital, Kaohsiung 824, Taiwan.
| |
Collapse
|
16
|
Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, Wilson APR. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob Chemother 2019. [PMID: 29514274 DOI: 10.1093/jac/dky027] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Working Party makes more than 100 tabulated recommendations in antimicrobial prescribing for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB) and suggest further research, and algorithms for hospital and community antimicrobial usage in urinary infection. The international definition of MDR is complex, unsatisfactory and hinders the setting and monitoring of improvement programmes. We give a new definition of multiresistance. The background information on the mechanisms, global spread and UK prevalence of antibiotic prescribing and resistance has been systematically reviewed. The treatment options available in hospitals using intravenous antibiotics and in primary care using oral agents have been reviewed, ending with a consideration of antibiotic stewardship and recommendations. The guidance has been derived from current peer-reviewed publications and expert opinion with open consultation. Methods for systematic review were NICE compliant and in accordance with the SIGN 50 Handbook; critical appraisal was applied using AGREE II. Published guidelines were used as part of the evidence base and to support expert consensus. The guidance includes recommendations for stakeholders (including prescribers) and antibiotic-specific recommendations. The clinical efficacy of different agents is critically reviewed. We found there are very few good-quality comparative randomized clinical trials to support treatment regimens, particularly for licensed older agents. Susceptibility testing of MDR GNB causing infection to guide treatment needs critical enhancements. Meropenem- or imipenem-resistant Enterobacteriaceae should have their carbapenem MICs tested urgently, and any carbapenemase class should be identified: mandatory reporting of these isolates from all anatomical sites and specimens would improve risk assessments. Broth microdilution methods should be adopted for colistin susceptibility testing. Antimicrobial stewardship programmes should be instituted in all care settings, based on resistance rates and audit of compliance with guidelines, but should be augmented by improved surveillance of outcome in Gram-negative bacteraemia, and feedback to prescribers. Local and national surveillance of antibiotic use, resistance and outcomes should be supported and antibiotic prescribing guidelines should be informed by these data. The diagnosis and treatment of both presumptive and confirmed cases of infection by GNB should be improved. This guidance, with infection control to arrest increases in MDR, should be used to improve the outcome of infections with such strains. Anticipated users include medical, scientific, nursing, antimicrobial pharmacy and paramedical staff where they can be adapted for local use.
Collapse
Affiliation(s)
- Peter M Hawkey
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | | | - Cliodna A M McNulty
- Microbiology Department, Gloucestershire Royal Hospital, Great Western Road, Gloucester GL1 3NN, UK
| | - David A Enoch
- Public Health England, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - A Peter R Wilson
- Department of Microbiology and Virology, University College London Hospitals, London, UK
| |
Collapse
|
17
|
Maamar B, Abdelmalek R, Messadi A, Thabet L. [Not Available]. ANNALS OF BURNS AND FIRE DISASTERS 2019; 32:10-16. [PMID: 31285728 PMCID: PMC6588333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
This study was longitudinal, conducted at the Trauma and Burn Centre between January and June 2017. Its purpose was to determine the prevalence of CPE infection among patients admitted to the Burn Intensive Care Unit, and to study their clinical and biological characteristics. Molecular typing of carbapenemases was performed with PCR type GeneXpert. Thirteen patients were infected with 7 episodes of bacteremia, 2 had ventilator acquired pneumonia and 4 catheter infections, with a prevalence of 7% of admissions. The average length of stay in the intensive care unit prior to infection was 12 days. Antibiotic exposure involved 12 of the 13 patients: 9 patients were transferred from other intensive care units. Thirteen and ten patients were respectively exposed to central catheterization and mechanical ventilation. The predominant carbapenemase among the infecting carbapenemase-producing enterobacteriacae strains was NDM carbapenemase (9/15), with a first description of P. stuartii carrying blaNDM strain in Tunisia. One patient died before adapting antibiotic therapy. For the others, 13 adapted bi-antibiotherapies were prescribed. There were five patient deaths from infection, four of whom had received appropriate antibiotic therapy. Imipenem was used each time the MIC was ≤4mg/l, in combination with another antibiotic: amikacin (3/8), colimycin (4/8), or tigecycline (1/8). Three of these prescriptions resulted in death. The prevalence of carbapenemase-producing enterobacterial infections is high among burn patients with a predominance of NDM-type carbapenemase.
Collapse
Affiliation(s)
- B. Maamar
- Centre de Traumatologie et des Grands Brûlés, Ben Arous, Tunisie
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunisie
| | - R. Abdelmalek
- Hôpital la Rabta, Tunis, Tunisie
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunisie
| | - A.A. Messadi
- Centre de Traumatologie et des Grands Brûlés, Ben Arous, Tunisie
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunisie
| | - L. Thabet
- Centre de Traumatologie et des Grands Brûlés, Ben Arous, Tunisie
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunisie
| |
Collapse
|
18
|
Lui SL, Yap D, Cheng V, Chan TM, Yuen KY. Clinical practice guidelines for the provision of renal service in Hong Kong: Infection Control in Renal Service. Nephrology (Carlton) 2019; 24 Suppl 1:98-129. [PMID: 30900339 PMCID: PMC7167703 DOI: 10.1111/nep.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
| | - Desmond Yap
- Department of MedicineThe University of Hong KongHong Kong
| | - Vincent Cheng
- Department of MicrobiologyQueen Mary HospitalHong Kong
| | - Tak Mao Chan
- Department of MedicineThe University of Hong KongHong Kong
| | - Kwok Yung Yuen
- Department of MicrobiologyThe University of Hong KongHong Kong
| |
Collapse
|
19
|
Genomic Features, Comparative Genomics, and Antimicrobial Susceptibility Patterns of Elizabethkingia bruuniana. Sci Rep 2019; 9:2267. [PMID: 30783197 PMCID: PMC6381114 DOI: 10.1038/s41598-019-38998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Elizabethkingia bruuniana is a novel species of the Elizabethkingia genus. There is scant information on this microorganism. Here, we report the whole-genome features and antimicrobial susceptibility patterns of E. bruuniana strain EM798-26. Elizabethkingia strain EM798-26 was initially identified as E. miricola. This isolate contained a circular genome of 4,393,011 bp. The whole-genome sequence-based phylogeny revealed that Elizabethkingia strain EM798-26 was in the same group of the type strain E. bruuniana G0146T. Both in silico DNA-DNA hybridization and average nucleotide identity analysis clearly demonstrated that Elizabethkingia strain EM798-26 was a species of E. bruuniana. The pan-genome analysis identified 2,875 gene families in the core genome and 5,199 gene families in the pan genome of eight publicly available E. bruuniana genome sequences. The unique genes accounted for 0.2–12.1% of the pan genome in each E. bruuniana. A total of 59 potential virulence factor homologs were predicted in the whole-genome of E. bruuniana strain EM798–26. This isolate was nonsusceptible to multiple antibiotics, but susceptible to aminoglycosides, minocycline, and levofloxacin. The whole-genome sequence analysis of E. bruuniana EM798-26 revealed 29 homologs of antibiotic resistance-related genes. This study presents the genomic features of E. bruuniana. Knowledge of the genomic characteristics provides valuable insights into a novel species.
Collapse
|
20
|
Lin YT, Su CF, Chuang C, Lin JC, Lu PL, Huang CT, Wang JT, Chuang YC, Siu LK, Fung CP. Appropriate Treatment for Bloodstream Infections Due to Carbapenem-Resistant Klebsiella pneumoniae and Escherichia coli: A Nationwide Multicenter Study in Taiwan. Open Forum Infect Dis 2018; 6:ofy336. [PMID: 30740468 PMCID: PMC6362312 DOI: 10.1093/ofid/ofy336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/14/2018] [Indexed: 11/14/2022] Open
Abstract
Background In a multicenter study from Taiwan, we aimed to investigate the outcome of patients who received different antimicrobial therapy in carbapenem-resistant Enterobacteriaceae bloodstream infections and proposed a new definition for tigecycline use. Methods Patients from 16 hospitals in Taiwan who received appropriate therapy for bloodstream infections due to carbapenem-resistant Klebsiella pneumoniae and Escherichia coli were enrolled in the study between January 2012 and June 2015. We used a cox proportional regression model for multivariate analysis to identify independent risk factors of 14-day mortality. Tigecycline was defined as appropriate when the isolates had a minimum inhibitory concentration (MIC) ≤0.5 mg/L, and we investigated whether tigecycline was associated with mortality among patients with monotherapy. Results Sixty-four cases with carbapenem-resistant K pneumoniae (n = 50) and E coli (n = 14) bloodstream infections were analyzed. Of the 64 isolates, 17 (26.6%) had genes that encoded carbapenemases. The 14-day mortality of these cases was 31.3%. In the multivariate analysis, Charlson Comorbidity Index (hazard ratio [HR], 1.21; 95% confidence interval [CI], 1.03–1.42; P = .022) and colistin monotherapy (HR, 5.57; 95% CI, 2.13–14.61; P < .001) were independently associated with 14-day mortality. Among the 55 patients with monotherapy, the 14-day mortality was 30.9% (n = 17). Tigecycline use was not associated with mortality in the multivariate analysis. Conclusions Tigecycline monotherapy was a choice if the strains exhibited MIC ≤0.5 mg/L, and colistin monotherapy was not suitable. Our findings can initiate additional clinical studies regarding the efficacy of tigecycline in carbapenem-resistant Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taiwan.,Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Fang Su
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
| | - Chien Chuang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, and College of Medicine, Kaohsiung Medical University, Taiwan
| | - Ching-Tai Huang
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jann-Tay Wang
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital, Taipei
| | - Yin-Ching Chuang
- Department of Internal Medicine and Medical Research, Chi Mei Medical Centre, Tainan, Taiwan
| | - L Kristopher Siu
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chang-Phone Fung
- Division of Infectious Diseases, Sijhih Cathy General Hospital, New Taipei City, Taiwan
| |
Collapse
|
21
|
Comparison of Clinical Manifestations, Antimicrobial Susceptibility Patterns, and Mutations of Fluoroquinolone Target Genes between Elizabethkingia meningoseptica and Elizabethkingia anophelis Isolated in Taiwan. J Clin Med 2018; 7:jcm7120538. [PMID: 30545016 PMCID: PMC6306790 DOI: 10.3390/jcm7120538] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 01/30/2023] Open
Abstract
Elizabethkingia meningoseptica and Elizabethkingia anophelis are two major pathogens in the genus Elizabethkingia. Studies have revealed that Elizabethkingia anophelis is frequently misidentified as E. meningoseptica. Therefore, our aim was to explore the clinical and molecular differences between these two species. The database of a clinical microbiology laboratory in a university-affiliated hospital of Taiwan was searched to identify patients with Elizabethkingia infections between January 2005 and June 2018. Species were reidentified using 16S ribosomal RNA gene sequencing. Twenty E. meningoseptica and 72 E. anophelis samples were collected from consecutive patients. E. meningoseptica was significantly more frequently isolated from the cerebrospinal fluid than was E. anophelis. The most susceptible antibiotic for all Elizabethkingia isolates was minocycline (91.3%), followed by levofloxacin (52.2%), tigecycline (23.9%), and piperacillin tazobactam (23.9%). Compared with E. anophelis, E. meningoseptica was significantly less susceptible to piperacillin tazobactam, minocycline, and levofloxacin. Regarding nonsynonymous substitutions in the quinolone-resistance determining regions of DNA gyrase, six sites were recognized in E. meningoseptica and one site was recognized in E. anophelis. E. meningoseptica had a significantly higher rate of fluoroquinolone target gene mutations than did E. anophelis. Because of less susceptibility to multiple antibiotics than E. anophelis, empirical antimicrobial therapy of E. meningoseptica should be more rigorous.
Collapse
|
22
|
Bloemberg GV, Braun-Kiewnick A, Tedrup J, Meijerink C, Durer E, Ritter C, Keller PM, Hombach M. Evaluation of the AID carbapenemase line probe assay for rapid detection and identification of carbapenemase genes in Gram-negative bacilli. J Antimicrob Chemother 2018; 72:1948-1954. [PMID: 28402500 DOI: 10.1093/jac/dkx100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives This study evaluated the AID carbapenemase line probe assay (LPA) for the detection and identification of carbapenem resistance genes in Enterobacteriaceae and other Gram-negative bacilli (GNB) using bacterial cultures and DNA extracts directly from patient urine samples. Methods The AID carbapenemase LPA detects 13 different carbapenemase genes. Test probe accuracy was verified for using clinical Enterobacteriaceae isolates harbouring bla KPC , bla VIM , bla NDM , bla GIM , bla AIM , bla SPM , bla IMP and bla OXA-48 and a well-characterized set of Escherichia coli DH5α strains transformed with the vector plasmid pUC57- kan harbouring bla BIC , bla SIM , bla DIM , bla IMI-3 , bla IMI-1 and bla NMC-A . Sensitivity and specificity was determined by testing 151 clinical GNB strains previously characterized for the production of carbapenemase activity and carbapenemase genes. Direct detection of carbapenemase genes using the LPA was determined using 299 clinical urine specimens. Analytical sensitivity for detection in urine was determined by testing serial dilutions of bla KPC and bla NDM in clinical Klebsiella pneumoniae strains. Results All carbapenemase gene probes showed 100% accuracy without cross-reactions. Sensitivity and specificity of the LPA using clinical isolates was 100% for each. Analytical sensitivity for detection of bla KPC and bla NDM in urine was 10 1 -10 2 cfu. The LPA detected carbapenemase genes in 20 urines, which were confirmed in 12 samples by conventional multiplex PCR. Remarkably, 0 of the 20 urines grew carbapenemase-suspicious GNB applying EUCAST recommendations. Conclusions The AID carbapenemase LPA is an accurate, sensitive and easy-to-use test for the detection and identification of carbapenemase genes, which can readily be implemented in any diagnostic laboratory.
Collapse
Affiliation(s)
- Guido V Bloemberg
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Andrea Braun-Kiewnick
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Jan Tedrup
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Carla Meijerink
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Elena Durer
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Claudia Ritter
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Peter M Keller
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| | - Michael Hombach
- Institut für Medizinische Mikrobiologie, Universität Zürich, 8006 Zürich, Switzerland
| |
Collapse
|
23
|
Xiao T, Yu W, Niu T, Huang C, Xiao Y. A retrospective, comparative analysis of risk factors and outcomes in carbapenem-susceptible and carbapenem-nonsusceptible Klebsiella pneumoniae bloodstream infections: tigecycline significantly increases the mortality. Infect Drug Resist 2018; 11:595-606. [PMID: 29731648 PMCID: PMC5926074 DOI: 10.2147/idr.s153246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Carbapenem-nonsusceptible Klebsiella pneumoniae (CnSKP) is rapidly emerging as a life-threatening nosocomial infection. The efficacy of tigecycline in the treatment of bloodstream infections (BSIs) remains controversial. Methods Data from a total of 428 patients with carbapenem-susceptible Klebsiella pneumoniae (CSKP) and CnSKP BSIs were collected at a single center between January 2013 and December 2015. A three-part analysis was conducted to identify the risk factors associated with CnSKP, explore prognosis, and evaluate treatments. Results Data from 428 patients with Klebsiella pneumoniae (KP) BSIs were included, 31.5% (n=135) of them with CnSKP. Multivariate analysis showed that prior hospitalization, urinary catheterization, the use of immunosuppressive agents, prior use of antibiotics, pulmonary disease, and high Acute Physiology and Chronic Health Evaluation (APACHE) II scores were independent risk factors for CnSKP-BSIs. The 30-day mortality was higher in patients with CnSKP than in those with CSKP (58.5% vs 15.4%; P<0.001). In patients with KP-BSIs, neutropenia, multiple organ dysfunction, respiratory failure, CnSKP infection, high APACHE II score, and tigecycline therapy were independently associated with higher mortality risk. Among patients whose APACHE II score was <15, higher mortality rates were observed in patients treated with tigecycline than in those treated with other antibiotics (45.3% vs 7.7%; P<0.001). Central venous catheterization, multiple organ dysfunction, and high APACHE II scores were independent risk factors for death from CnSKP. Conclusion A significant increase in the incidence of CnSKP-BSIs was observed during the study period, with a higher mortality rate found in these patients. Exposure to carbapenems and severe illness were independent risk factors for the development of CnSKP-BSIs, and tigecycline therapy resulted in a significant increase in mortality.
Collapse
Affiliation(s)
- Tingting Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| | - Tianshui Niu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chen Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
24
|
Abrar S, Hussain S, Khan RA, Ul Ain N, Haider H, Riaz S. Prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae: first systematic meta-analysis report from Pakistan. Antimicrob Resist Infect Control 2018; 7:26. [PMID: 29484173 PMCID: PMC5819302 DOI: 10.1186/s13756-018-0309-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/26/2018] [Indexed: 12/18/2022] Open
Abstract
Background South-Asia is known as a hub for multidrug-resistant (MDR) bacteria. Unfortunately, proper surveillance and documentation of MDR pathogens is lacking in Pakistan. The alarming increase in the prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is a serious problem. From this perspective, we analysed published data regarding ESBL-producing Enterobacteriaceae in different regions of Pakistan. Methods A meta-analysis was performed to determine the prevalence of ESBL-producing Enterobacteriaceae in Pakistan. A Web-based search was conducted in electronic databases, including PubMed, Scopus and PakMedi Net (for non-indexed Pakistani journals). Articles published (in either indexed or non-indexed journals) between January 2002 and July 2016 were included in the study. Relevant data were extracted, and statistical analysis was performed using the Metaprop command of STATA version 14.1. Results A total of 68 studies were identified from the electronic data base search, and 55 of these studies met our inclusion criteria. Pakistan’s overall pooled proportion of ESBL-producers was 0.40 (95% CI: 0.34–0.47). The overall heterogeneity was significant (I2 = 99.75%, p < 0.001), and significant ES = 0 (Z = 18.41, p < 0.001) was found. OXA, SHV, TEM and CTX-M were the most commonly found gene variants for ESBLs in these studies. Conclusion The prevalence of ESBL-producing Enterobacteriaceae is high in Pakistan. Little is known about the annual frequency of ESBLs and their prevalence in different provinces of Pakistan. No data are available regarding ESBL frequency in Baluchistan. This underscores an urgent demand for regular surveillance to address this antimicrobial resistance problem. Surveillance to better understand the annual ESBL burden is crucial to improve national and regional guidelines.
Collapse
Affiliation(s)
- Samyyia Abrar
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Shahida Hussain
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Rehan Ahmad Khan
- 3College of Statistical and Actuarial Sciences, University of the Punjab, Lahore, Pakistan
| | - Noor Ul Ain
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Hayat Haider
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Saba Riaz
- 1Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.,Citilab and Research center, Lahore, Pakistan
| |
Collapse
|
25
|
Pfaller MA, Huband MD, Streit JM, Flamm RK, Sader HS. Surveillance of tigecycline activity tested against clinical isolates from a global (North America, Europe, Latin America and Asia-Pacific) collection (2016). Int J Antimicrob Agents 2018; 51:848-853. [PMID: 29410368 DOI: 10.1016/j.ijantimicag.2018.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 11/19/2022]
Abstract
Tigecycline and comparators were tested by the reference broth microdilution method against 33 348 non-duplicate bacterial isolates collected prospectively in 2016 from medical centres in the Asia-Pacific (3443 isolates), Europe (13 530 isolates), Latin America (3327 isolates) and the USA (13 048 isolates). Among 7098 Staphylococcus aureus isolates tested, >99.9% were inhibited by ≤0.5 mg/L tigecycline (MIC50/90, 0.06/0.12 mg/L), including >99.9% of methicillin-resistant S. aureus and 100.0% of methicillin-susceptible S. aureus. Tigecycline was slightly more active against Enterococcus faecium (MIC50/90, 0.03/0.06 mg/L) compared with Enterococcus faecalis (MIC50/90, 0.06/0.12 mg/L) and its activity was not adversely affected by vancomycin resistance when tested against these organisms. Tigecycline potency was comparable for Streptococcus pneumoniae (MIC50/90, 0.03/0.06 mg/L), viridans group streptococci (MIC50/90, 0.03/0.06 mg/L) and β-haemolytic streptococci (MIC50/90, 0.06/0.06 mg/L) regardless of species and penicillin susceptibility. Tigecycline was active against Enterobacteriaceae (MIC50/90, 0.25/1 mg/L; 97.8% inhibited at ≤2 mg/L) but was slightly less active against Enterobacteriaceae isolates expressing resistant phenotypes: carbapenem-resistant Enterobacteriaceae (MIC50/90, 0.5/2 mg/L; 98.0% susceptible); multidrug-resistant (MIC50/90, 0.5/2 mg/L; 93.1% susceptible); and extensively drug-resistant (MIC50/90, 0.5/4 mg/L; 87.8% susceptible). Tigecycline inhibited 74.4% of 888 Acinetobacter baumannii isolates at ≤2 mg/L (MIC50/90, 2/4 mg/L) and demonstrated good in vitro activity against Stenotrophomonas maltophilia (MIC50/90, 1/2 mg/L; 90.6% inhibited at ≤2 mg/L) Tigecycline was active against Haemophilus influenzae (MIC50/90, 0.12/0.25 mg/L) regardless of β-lactamase status. Tigecycline represents an important treatment option for resistant Gram-negative and Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Michael A Pfaller
- JMI Laboratories, Inc., 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA; University of Iowa, Iowa City, Iowa, USA
| | - Michael D Huband
- JMI Laboratories, Inc., 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | - Jennifer M Streit
- JMI Laboratories, Inc., 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | - Robert K Flamm
- JMI Laboratories, Inc., 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA
| | - Helio S Sader
- JMI Laboratories, Inc., 345 Beaver Kreek Centre, Suite A, North Liberty, IA 52317, USA.
| |
Collapse
|
26
|
Ni W, Li G, Zhao J, Cui J, Wang R, Gao Z, Liu Y. Use of Monte Carlo simulation to evaluate the efficacy of tigecycline and minocycline for the treatment of pneumonia due to carbapenemase-producing Klebsiella pneumoniae. Infect Dis (Lond) 2018; 50:507-513. [PMID: 29316830 DOI: 10.1080/23744235.2018.1423703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Pneumonia caused by carbapenemase-producing Klebsiella pneumoniae (CP-KP) are increasingly encountered in hospitals worldwide, causing high mortality due to lack of treatment options. The goal of this study was to assess the efficacy of tigecycline and minocycline for CP-KP hospital-acquired pneumonia (HAP) by using Monte Carlo simulation. METHODS A total of 164 non-duplicated CP-KP strains were collected from sputum or blood in patients with HAP. The MICs for antimicrobials were determined by the agar dilution method. A 10,000-patient Monte Carlo Simulation based on a PK/PD model incorporating the MICs and population pharmacokinetic parameters were conducted to calculate probability of target attainment (PTA) at each MIC value and total cumulative fraction of response (CFR). RESULTS The susceptibility rate of tigecycline and minocycline were 79.9% and 41.5%, respectively. At recommended doses, an optimal PTA of 90% was obtained for treating HAP caused by CP-KP with MICs of tigecycline ≤0.5 mg/L or minocycline ≤4 mg/L. The CFR of tigecycline at the recommended dose and double dose (100 mg q12h) were 71.2% and 90.2%, respectively. The CFR of minocycline at recommended dose and double dose (200 mg q12h) was 53.4% and 77.2%, respectively. CONCLUSIONS The findings of this study suggest that the recommended dose of tigecycline was not effective in HAP caused by CP-KP, and a higher CFR indicating a better clinical efficacy can be gained by doubling the dose (100 mg q12h). minocycline (200 mg q12h) might be a potential alternative of tigecycline to against strains with MICs ≤ 8 mg/L.
Collapse
Affiliation(s)
- Wentao Ni
- a Department of Respiratory and Critical Care Medicine , Peking University People's Hospital , Beijing , China.,b Department of Respiratory Diseases , Chinese PLA General Hospital , Beijing , China
| | - Guobao Li
- c Pulmonary Department , The Third People's Hospital of Shenzhen , Shenzhen , China
| | - Jin Zhao
- b Department of Respiratory Diseases , Chinese PLA General Hospital , Beijing , China
| | - Junchang Cui
- c Pulmonary Department , The Third People's Hospital of Shenzhen , Shenzhen , China
| | - Rui Wang
- d Department of Clinical Pharmacology , Chinese PLA General Hospital , Beijing , China
| | - Zhancheng Gao
- a Department of Respiratory and Critical Care Medicine , Peking University People's Hospital , Beijing , China
| | - Youning Liu
- b Department of Respiratory Diseases , Chinese PLA General Hospital , Beijing , China
| |
Collapse
|
27
|
Codjoe FS, Donkor ES. Carbapenem Resistance: A Review. Med Sci (Basel) 2017; 6:medsci6010001. [PMID: 29267233 PMCID: PMC5872158 DOI: 10.3390/medsci6010001] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/25/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022] Open
Abstract
Carbapenem resistance is a major and an on-going public health problem globally. It occurs mainly among Gram-negative pathogens such as Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii, and may be intrinsic or mediated by transferable carbapenemase-encoding genes. This type of resistance genes are already widespread in certain parts of the world, particularly Europe, Asia and South America, while the situation in other places such as sub-Saharan Africa is not well documented. In this paper, we provide an in-depth review of carbapenem resistance providing up-to-date information on the subject.
Collapse
Affiliation(s)
- Francis S Codjoe
- Department of Medical Laboratory Sciences (Microbiology Division), School of Biomedical & Allied Health Sciences, College of Health Sciences, University of Ghana, Korle Bu KB 143 Accra, Ghana.
- Biomolecular Science Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK.
| | - Eric S Donkor
- Department of Medical Microbiology, School of Biomedical & Allied Health Sciences, College of Health Sciences, University of Ghana, Korle Bu KB 143 Accra, Ghana.
| |
Collapse
|
28
|
Hassan R, Mukhtar A, Hasanin A, Ghaith D. Role of insertion sequence Aba-1 and AdeS in reduced tigecycline susceptibility in MDR-Acinetobacter baumannii clinical isolates from Cairo, Egypt. J Chemother 2017; 30:89-94. [PMID: 29108486 DOI: 10.1080/1120009x.2017.1396057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infections caused by multidrug resistant (MDR) Acinetobacter baumannii (A. baumannii) especially in intensive care units have limited therapeutic options. Overexpression of the adeABC efflux pump may be caused either by the ISAba-1 insertion or by specific point mutations in adeR and adeS, therefore, plays a major role in conferring MDR-A. baumannii. We aimed in our study to monitor the tigecycline (TGC) susceptibility and to study the role of ISAba-1 and the adeS regulator within the AdeABC efflux pump among MDR-A. baumannii clinical isolates. MDR-A. baumannii (63) isolated from ICU patients were identified by detection of OXA-51-like gene. TGC MIC was determined by E-test and broth microdilution. PCR analysis of adeR, adeS, adeB and ISAba1 genes were done with further sequencing of adeS gene. Reduced susceptibility to TGC (MIC: 3-4 mg/L) was noticed in 6/63 (9.5%) MDR-A. baumannii isolates, ISAba-1 was detected in three isolates that two of which showed amino acid substitutions in the adeS operon. We concluded that the amino acids mutations in the adeS gene in presence of insertion ISAba-1 may play a role in conferring reduced TGC susceptibility of MDR-A. baumannii.
Collapse
Affiliation(s)
- Reem Hassan
- a Department of Clinical and Chemical Pathology, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Ahmed Mukhtar
- b Department of Anesthesiology, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Ahmed Hasanin
- b Department of Anesthesiology, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Doaa Ghaith
- a Department of Clinical and Chemical Pathology, Faculty of Medicine , Cairo University , Cairo , Egypt
| |
Collapse
|
29
|
Razavi Nikoo H, Ardebili A, Mardaneh J. Systematic Review of Antimicrobial Resistance of Clinical Acinetobacter baumannii Isolates in Iran: An Update. Microb Drug Resist 2017; 23:744-756. [PMID: 28085571 DOI: 10.1089/mdr.2016.0118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treatment of Acinetobacter baumannii has become a medical challenge because of the increasing incidence of multiresistant strains and a lack of viable treatment alternatives. This systematic review attempts to investigate the changes in resistance of A. baumannii to different classes of antibiotics in Iran, with emphasis on the antimicrobial activity of polymyxin B (PMB) and colistin (COL). Biomedical databases were searched for English-published articles evaluating microbiological activity of various antimicrobial agents, including PMB and COL. Then, the available data were extracted and analyzed. Thirty-one studies, published from 2009 to 2015, were identified which contain data for 3,018 A. baumannii clinical isolates. With the exception of polymyxins and tigecycline (TIG), there was a high rate of resistance to various groups of antibiotics, including carbapenems. The minimum inhibitory concentration (MIC) ranges for PMB and COL on A. baumannii isolates tested were 0.12-64 μg/ml and 0.001-128 μg/ml, respectively. Polymyxins showed adequate activity with no significant trends in the resistance rate during most of the study period. The incidence of resistance to TIG was estimated low from 2% to 38.4% among the majority of A. baumannii. The present systematic review of the published literatures revealed that multidrug-resistant (including carbapenem-resistant) strains of A. baumannii have increased in Iran. In these circumstances, the older antibiotics, such as COL or PMB, preferably in combination with other antimicrobials (rifampicin, meropenem), could be considered as the therapeutic solution against the healthcare-associated infections. Designing rational dosage regimens for patients to maximize the antimicrobial activity and minimize the emergence and prevalence of resistance is recommended.
Collapse
Affiliation(s)
- Hadi Razavi Nikoo
- 1 Laboratory Sciences Research Center, Golestan University of Medical Sciences , Gorgan, Iran
- 2 Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences , Gorgan, Iran
| | - Abdollah Ardebili
- 1 Laboratory Sciences Research Center, Golestan University of Medical Sciences , Gorgan, Iran
- 2 Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences , Gorgan, Iran
| | - Jalal Mardaneh
- 3 Department of Microbiology, Faculty of Medicine, Gonabad University of Medical Sciences , Gonabad, Iran
| |
Collapse
|
30
|
Carbapenem-Resistant Klebsiella pneumoniae: Results of a Laboratory Surveillance Program in an Italian General Hospital (August 2014-January 2015) : Surveillance of Carbapenem-resistant Klebsiella pneumoniae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 26810235 DOI: 10.1007/5584_2015_5018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In this study we report the analysis of 131 Klebsiella pneumoniae (K. pneumoniae) clinical isolates from patients hospitalized in various wards, of Perugia General Hospital, from August 2014 to January 2015. Forty two isolates (32.1 %), were resistant to at least one carbapenem antibiotic and, among these isolates, 14 (33.3 %) exhibited resistance to colistin. All isolates were carbapenemases producers and 41 (97.6 %) harboured the bla KPC gene. Carbapenem-resistant K. pneumoniae isolates (CRKPs) were, also, typed for the genotypic diversity and the results revealed the circulation of two major clusters.This surveillance study evidences the spread of CRKP isolates in Perugia General Hospital and confirms that carbapenem-resistant K. pneumoniae isolates have reached epidemic dissemination in Italy. In addition the percentage of resistance to colistin resulted to be less than that observed in other hospital laboratories across Italy. In conclusion the circulation of these isolates should be monitored and appropriate policy of surveillance must be used, in a target manner, in order to reduce the spread of carbapenem-resistant isolates.
Collapse
|
31
|
Pfaller M, Flamm R, Duncan L, Mendes R, Jones R, Sader H. Antimicrobial activity of tigecycline and cefoperazone/sulbactam tested against 18,386 Gram-negative organisms from Europe and the Asia-Pacific region (2013–2014). Diagn Microbiol Infect Dis 2017; 88:177-183. [DOI: 10.1016/j.diagmicrobio.2017.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
|
32
|
Quelle place pour la tigécycline aujourd’hui ? MEDECINE INTENSIVE REANIMATION 2017. [DOI: 10.1007/s13546-017-1281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains. Eur J Clin Microbiol Infect Dis 2017; 36:1739-1748. [PMID: 28470337 DOI: 10.1007/s10096-017-2987-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
The spread of multi-drug resistant (MDR) Klebsiella pneumoniae strains producing carbapenemases points to a pressing need for new antibacterial agents. To this end, the in-vitro antibacterial activity of a synthetic N-terminal peptide of human lactoferrin, further referred to as hLF1-11, was evaluated against K. pneumoniae strains harboring different carbapenemase genes (i.e. OXA-48, KPC-2, KPC-3, VIM-1), with different susceptibility to colistin and other antibiotics, alone or in combination with conventional antibiotics (gentamicin, tigecycline, rifampicin, clindamycin, and clarithromycin). An antimicrobial peptide susceptibility assay was used to assess the bactericidal activity of hLF1-11 against the different K. pneumoniae strains tested. The synergistic activity was evaluated by a checkerboard titration method, and the fractional inhibitory concentration (FIC) index was calculated for the various combinations. hLF1-11 was more efficient in killing a K. pneumoniae strain susceptible to most antimicrobials (including colistin) than a colistin-susceptible strain and a colistin-resistant MDR K. pneumoniae strain. In addition, hLF1-11 exhibited a synergistic effect with the tested antibiotics against MDR K. pneumoniae strains. The results of this study indicate that resistance to hLF1-11 and colistin are not strictly associated, and suggest an hLF1-11-induced sensitizing effect of K. pneumoniae to antibiotics, especially to hydrophobic antibiotics, which are normally not effective on Gram-negative bacteria. Altogether, these data indicate that hLF1-11 in combination with antibiotics is a promising candidate to treat infections caused by MDR-K. pneumoniae strains.
Collapse
|
34
|
Tigecycline Therapy for Nosocomial Pneumonia due to Carbapenem-Resistant Gram-Negative Bacteria in Critically Ill Patients Who Received Inappropriate Initial Antibiotic Treatment: A Retrospective Case Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8395268. [PMID: 28044137 PMCID: PMC5164885 DOI: 10.1155/2016/8395268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 02/01/2023]
Abstract
Background. Nosocomial pneumonia due to carbapenem-resistant Gram-negative bacteria (CRGNB) is a growing concern because treatment options are limited and the mortality rate is high. The effect of tigecycline (TGC) on nosocomial pneumonia due to CRGNB in patients who have received inappropriate initial empiric antibiotic treatment (IIAT) is unclear. Therefore, this study aimed to examine the effect of TGC on nosocomial pneumonia due to CRGNB in critically ill patients who had received IIAT. Methods. A retrospective study was conducted in an adult respiratory intensive care unit. Data were obtained and analyzed for all patients who were treated with TGC ≥ 3 days for microbiologically confirmed nosocomial pneumonia due to CRGNB and had experienced initial antibiotic failure. Clinical and microbiological outcomes were investigated. Results. Thirty-one patients with hospital-acquired pneumonia or ventilator-associated pneumonia were included in the study. The majority of the responsible organisms were carbapenem-resistant Acinetobacter baumannii (67.7%), followed by Klebsiella pneumoniae (16.1%) and Escherichia coli (9.7%). Twenty patients were treated with high-dose TGC therapy (100 mg every 12 h after a 200 mg loading dose), and the others received a standard-dose therapy (50 mg every 12 h after a 100 mg loading dose). The duration of TGC therapy was 14.3 ± 2.8 days. The global clinical cure rate and the microbiological eradication rate were 48.4% and 61.3%, respectively. The overall ICU mortality rate was 45.2%. A higher score on the Acute Physiology and Chronic Health Evaluation II and a longer duration of IIAT were associated with clinical failure. High-dose TGC therapy had a higher clinical success rate [65.0% (13/20) versus 18.2% (2/11), P = 0.023] and a lower ICU mortality rate [30.0% (6/20) versus 72.7% (8/11), P = 0.031] than the standard-dose therapy. Conclusions. TGC, especially a high-dose regimen, might be a justifiable option for critically ill patients with nosocomial pneumonia due to CRGNB who have received IIAT when the options for these patients are limited.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW To highlight the importance of escalating pathogen resistance in ventilator-associated pneumonia (VAP) along with diagnostic and treatment implications. RECENT FINDINGS In a period of rising bacterial resistance, VAP remains an important infection occurring in critically ill patients. Risk factors for multidrug-resistant pathogens depend on both local epidemiology and host factors. New diagnostic techniques and antimicrobials can help with rapid bacterial identification and timely and appropriate treatment while avoiding emergence of bacterial resistance. SUMMARY Clinicians should be aware of risk factors for multidrug-resistant pathogens causing VAP and also of particularities of diagnosis and treatment of this important clinical entity.
Collapse
|
36
|
Osei Sekyere J, Govinden U, Bester LA, Essack SY. Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: emerging resistance mechanisms and detection methods. J Appl Microbiol 2016; 121:601-17. [PMID: 27153928 DOI: 10.1111/jam.13169] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/13/2016] [Accepted: 05/02/2016] [Indexed: 01/31/2023]
Abstract
A literature review was undertaken to ascertain the molecular basis for tigecycline and colistin resistance mechanisms and the experimental basis for the detection and delineation of this resistance particularly in carbapenemase-producing Gram-negative bacteria. Pubmed, Google Scholar and Science Direct were searched with the keywords colistin, tigecycline, resistance mechanisms and detection methods. Trans-complementation and comparative MIC studies, mass spectrometry, chromatography, spectrofluorometry, PCR, qRT-PCR and whole genome sequencing (WGS) were commonly used to determine tigecycline and colistin resistance mechanisms, specifically modifications in the structural and regulatory efflux (acrAB, OqxAB, kpgABC adeABC-FGH-IJK, mexAB-XY-oprJM and soxS, rarA robA, ramRAB marRABC, adeLRS, mexRZ and nfxb) and lipid A (pmrHFIJFKLM, lpxA, lpxC lpxD and mgrB, pmrAB, phoPQ,) genes respectively. Mutations in the ribosomal 16S rRNA operon rrnBC, also yielded resistance to tigecycline through target site modifications. The mcr-1 gene conferring resistance to colistin was identified via WGS, trans-complementation and a murine thigh infection model studies. Common detection methods are mainly antibiotic sensitivity testing with broth microdilution while molecular identification tools are mostly PCR and WGS. Spectrofluorometry, MALDI-TOF MS, micro-array and real-time multiplex PCR hold much promise for the future as new detection tools.
Collapse
Affiliation(s)
- J Osei Sekyere
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - U Govinden
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - L A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - S Y Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
37
|
Khawaja KA, Rauf M, Abbas Z, Rehman SU. A virulent phage JHP against Pseudomonas aeruginosa showed infectivity against multiple genera. J Basic Microbiol 2016; 56:1090-1097. [PMID: 27106788 DOI: 10.1002/jobm.201500764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/09/2016] [Indexed: 01/08/2023]
Abstract
The resistance to antibiotics in clinically important bacteria is one of the major global health concerns. Phage therapy could be one reliable alternative therapeutic strategy to combat these superbugs. In this study, we assessed host range of a novel bacteriophage, JHP, and characterized for its potential use in phage therapy. The bacteriophage demonstrated infectivity over a broad range of genera including multidrug resistant clinical isolates of Pseudomonas aeruginosa, members of family Enterobacteracae, and other important human pathogens. The antibacterial activity was highest at pH 7, and at temperature of 37 °C. The phage lytic activity gradually decreased till 60 °C and showed no activity when temperature was further raised. The bacteriophage could safely be stored at 4 °C or -20 °C. The latent period of the bacteriophage was 25 min and showed a burst size of 433 virions per cell. The size of JHP genome was approximately 30 kb. Family, Siphoviridae was assigned to JHP based on its icosahedral head with non-contractile tail. The diameter of JHP head and tail length was found 115 and 152 nm, respectively. To sum up, the broad spectrum Siphoviridae phage JHP is an ingenious candidate for phage therapy.
Collapse
Affiliation(s)
- Komal Ameer Khawaja
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Mahd Rauf
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Zaigham Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Shafiq Ur Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
| |
Collapse
|
38
|
Colistin and Tigecycline Resistance in Carbapenem-Resistant Enterobacteriaceae: Checkmate to Our Last Line Of Defense. Infect Control Hosp Epidemiol 2016; 37:624-5. [DOI: 10.1017/ice.2016.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Sader HS, Castanheira M, Flamm RK, Mendes RE, Farrell DJ, Jones RN. Tigecycline activity tested against carbapenem-resistant Enterobacteriaceae from 18 European nations: results from the SENTRY surveillance program (2010–2013). Diagn Microbiol Infect Dis 2015; 83:183-6. [DOI: 10.1016/j.diagmicrobio.2015.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/04/2023]
|
40
|
Evaluation of the Rapidec Carba NP Test for Detection of Carbapenemases in Enterobacteriaceae. J Clin Microbiol 2015; 53:3828-33. [PMID: 26424840 DOI: 10.1128/jcm.02327-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023] Open
Abstract
This study evaluated the performance of the Rapidec Carba NP test, which was introduced recently into the market for the detection of carbapenemase production in a broad spectrum of β-lactamase-producing Enterobacteriaceae clinical isolates. In total, 252 clinical Enterobacteriaceae isolates that had been genetically characterized with respect to carbapenemase, extended-spectrum β-lactamase (ESBL), and AmpC genes were analyzed; 51/252 isolates (20.2%) were genetically confirmed to be carbapenemase producers, whereas 201/252 isolates (79.8%) were genetically negative for the presence of carbapenemase genes. The Rapidec Carba NP test was applied according to the manufacturer's instructions, and results were read after 30 and 120 min of incubation. The overall sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the Rapidec Carba NP test were 90.2%, 100%, 100%, and 97.6%, respectively, when the manufacturer's instructions were followed. Four of 5 false-negative results occurred with OXA-48-like enzymes. After an incubation time of 30 min, the sensitivity was 49%. The sensitivity increased to 100% when the recommended bacterial inoculum was doubled and the test was read strictly after 120 min of incubation. The Rapidec Carba NP test is a useful tool for the reliable confirmation of carbapenemase-producing Enterobacteriaceae isolates. The test should be read strictly after 120 min of incubation and the inoculum should be larger than recommended by the manufacturer.
Collapse
|
41
|
Emergence of Carbapenem-Resistant Klebsiella pneumoniae: Progressive Spread and Four-Year Period of Observation in a Cardiac Surgery Division. BIOMED RESEARCH INTERNATIONAL 2015; 2015:871947. [PMID: 26064962 PMCID: PMC4434196 DOI: 10.1155/2015/871947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 11/17/2022]
Abstract
Frequent use of carbapenems has contributed to the increase to K. pneumoniae strains resistant to this class of antibiotics (CRKP), causing a problem in the clinical treatment of patients. This investigation reports the epidemiology, genetic diversity, and clinical implication of the resistance to drugs mediated by CRKP in our hospital. A total of 280 K. pneumoniae strains were collected; in particular 98/280 (35%) were CRKP. Sequencing analysis of CRKP isolated strains showed that 9/98 of MBL-producing strains carried the bla VIM-1 gene and 89/98 of the isolates were positive for bla KPC-2. Antimicrobial susceptibility tests revealed a complete resistance to third-generation cephalosporins and a moderate resistance to tigecycline, gentamicin, and fluoroquinolones with percentages of resistance of 61%, 64%, and 98%, respectively. A resistance of 31% was shown towards trimethoprim-sulfamethoxazole. Colistin was the most active agent against CRKP with 99% of susceptibility. Clonality was evaluated by PFGE and MLST: MLST showed the same clonal type, ST258, while PFGE analysis indicated the presence of a major clone, namely, pulsotype A. This finding indicates that the prevalent resistant isolates were genetically related, suggesting that the spread of these genes could be due to clonal dissemination as well as to genetic exchange between different clones.
Collapse
|
42
|
Alternative clinical indications for novel antibiotics licensed for skin and soft tissue infection? Curr Opin Infect Dis 2015; 28:117-24. [DOI: 10.1097/qco.0000000000000142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Thabit AK, Crandon JL, Nicolau DP. Antimicrobial resistance: impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin Pharmacother 2014; 16:159-77. [PMID: 25496207 DOI: 10.1517/14656566.2015.993381] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Antimicrobial resistance is a well-recognized global threat; thus, the development of strong infection control policies coupled with antimicrobial stewardship strategies and new therapies is required to reverse this process. In its 2013 report on antimicrobial resistance, the Centers for Disease Control and Prevention focused on this problem while presenting estimated annual rates of infections with antimicrobial-resistant organisms and their related mortality rates. Whereas some resistant pathogens were considered less threatening, others such as carbapenem-resistant Enterobacteriaceae were associated with higher mortality rates owing to limited treatment options. AREAS COVERED An overview of the most common antimicrobial-resistant pathogens, focusing on risk factors for acquisition, clinical and economic outcomes, as well as current treatment options. Strategies to optimize antimicrobial therapy with currently available agents, in addition to newly developed antimicrobials are also discussed. EXPERT OPINION The emergence of pathogens with a variety of resistance mechanisms has intensified the challenges associated with infection control and treatment strategies. Therefore, prudent use of currently available antimicrobial agents, as well as implementing measures to limit spread of resistance is paramount. Although several new antimicrobials have been recently approved or are in the pipeline showing promise in the battle against resistance, the appropriate use of these agents is required as the true benefits of these treatments are to be recognized in the clinical care setting.
Collapse
Affiliation(s)
- Abrar K Thabit
- Hartford Hospital, Center for Anti-infective Research and Development , 80 Seymour Street, Hartford, CT 06102 , USA +1 860 972 3941 ; +1 860 545 3992 ;
| | | | | |
Collapse
|
44
|
Evaluation of carbapenemase screening and confirmation tests with Enterobacteriaceae and development of a practical diagnostic algorithm. J Clin Microbiol 2014; 53:95-104. [PMID: 25355766 DOI: 10.1128/jcm.01692-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Reliable identification of carbapenemase-producing members of the family Enterobacteriaceae is necessary to limit their spread. This study aimed to develop a diagnostic flow chart using phenotypic screening and confirmation tests that is suitable for implementation in different types of clinical laboratories. A total of 334 clinical Enterobacteriaceae isolates genetically characterized with respect to carbapenemase, extended-spectrum β-lactamase (ESBL), and AmpC genes were analyzed. A total of 142/334 isolates (42.2%) were suspected of carbapenemase production, i.e., intermediate or resistant to ertapenem (ETP) and/or meropenem (MEM) and/or imipenem (IPM) according to EUCAST clinical breakpoints (CBPs). A group of 193/334 isolates (57.8%) showing susceptibility to ETP, MEM, and IPM was considered the negative-control group in this study. CLSI and EUCAST carbapenem CBPs and the new EUCAST MEM screening cutoff were evaluated as screening parameters. ETP, MEM, and IPM with or without aminophenylboronic acid (APBA) or EDTA combined-disk tests (CDTs) and the Carba NP-II test were evaluated as confirmation assays. EUCAST temocillin cutoffs were evaluated for OXA-48 detection. The EUCAST MEM screening cutoff (<25 mm) showed a sensitivity of 100%. The ETP APBA CDT on Mueller-Hinton agar containing cloxacillin (MH-CLX) displayed 100% sensitivity and specificity for class A carbapenemase confirmation. ETP and MEM EDTA CDTs showed 100% sensitivity and specificity for class B carbapenemases. Temocillin zone diameters/MIC testing on MH-CLX was highly specific for OXA-48 producers. The overall sensitivity, specificity, positive predictive value, and negative predictive value of the Carba NP-II test were 78.9, 100, 100, and 98.7%, respectively. Combining the EUCAST MEM carbapenemase screening cutoff (<25 mm), ETP (or MEM), APBA, and EDTA CDTs, and temocillin disk diffusion on MH-CLX promises excellent performance for carbapenemase detection.
Collapse
|
45
|
Guzek A, Rybicki Z, Korzeniewski K, Mackiewicz K, Saks E, Chciałowski A, Zwolińska E. Etiological factors causing lower respiratory tract infections isolated from hospitalized patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 835:37-44. [PMID: 25310945 DOI: 10.1007/5584_2014_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Lower respiratory tract infections (LRTI) account for 20-30 % of all hospital-acquired contagions. They are characterized by high mortality of hospitalized patients. The most serious form of LRTI is pneumonia, and the most common etiological factors in such cases are bacteria. The article gives the analysis of bacterial flora samples obtained from lower respiratory tract of hospitalized patients. In vitro susceptibility of pathogens to selected antibiotics has also been assessed. We carried out a retrospective analysis of 1,171 bacterial strains isolated from 1,171 patients treated in clinics of the Military Institute of Medicine in Warsaw, Poland. In most cases the samples were collected from an endotracheal or tracheostomic tube (71.5 %) and from bronchoalveolar lavage (21.7 %). The most commonly isolated pathogens included Acinetobacter baumannii (35.8 %), Staphylococcus aureus (27.6 %), Klebsiella pneumoniae (19.4 %), and Pseudomonas aeruginosa (16.2 %). Multidrug-resistant gram-negative bacteria exhibited 100 % susceptibility to colistin only. Klebsiella pneumoniae ESBL+ and Acinetobacter baumannii were most susceptible to carbapenems, while Pseudomonas aeruginosa strains to ceftazidime. Methicillin-resistant Staphylococcus aureus were 100 % susceptible to vancomycin, linezolid, and tigecycline. In conclusion, identifying the etiological factors causing infections of the lower respiratory tract and determining their drug-susceptibility is of key importance in empirical treatment.
Collapse
Affiliation(s)
- A Guzek
- Department of Medical Diagnostics, Military Institute of Medicine, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
46
|
Lee CS, Doi Y. Therapy of Infections due to Carbapenem-Resistant Gram-Negative Pathogens. Infect Chemother 2014; 46:149-64. [PMID: 25298904 PMCID: PMC4189141 DOI: 10.3947/ic.2014.46.3.149] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Indexed: 12/31/2022] Open
Abstract
The prevalence of carbapenem-resistant gram-negative bacterial pathogens (CRGNs) has increased dramatically during the last 10 years, but the optimal treatment for CRGN infections is not well established due to the relative scarcity of robust clinical data. The polymyxins remain the most consistently active agents against CRGNs in vitro. Tigecycline, based on its in vitro antibacterial spectrum, could also be considered as a therapeutic option in the treatment of infections caused by certain CRGNs. Other agents, including aminoglycosides, rifampin, trimethoprim-sulfamethoxazole, fosfomycin and fluoroquinolones, could be considered as monotherapy or combination therapy against CRGNs in appropriate contexts, as combination therapy with two or more in vitro active drugs appears to be more effective than monotherapy based on some clinical data. Several promising new agents are in late-stage clinical development, including ceftolozane-tazobactam, ceftazidime-avibactam and plazomicin. Given the shortage of adequate treatment options, containment of CRGNs should be pursued through implementation of adequate infection prevention procedures and antimicrobial stewardship to reduce the disease burden and prevent future outbreaks of CRGNs.
Collapse
Affiliation(s)
- Chang-Seop Lee
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. ; Department of Internal Medicine and Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
47
|
Delgado-Valverde M, Sojo-Dorado J, Pascual A, Rodríguez-Baño J. Clinical management of infections caused by multidrug-resistant Enterobacteriaceae. Ther Adv Infect Dis 2014; 1:49-69. [PMID: 25165544 DOI: 10.1177/2049936113476284] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enterobacteriaceae showing resistance to cephalosporins due to extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC enzymes, and those producing carbapenemases have spread worldwide during the last decades. Many of these isolates are also resistant to other first-line agents such as fluoroquinolones or aminoglycosides, leaving few available options for therapy. Thus, older drugs such as colistin and fosfomycin are being increasingly used. Infections caused by these bacteria are associated with increased morbidity and mortality compared with those caused by their susceptible counterparts. Most of the evidence supporting the present recommendations is from in vitro data, animal studies, and observational studies. While carbapenems are considered the drugs of choice for ESBL and AmpC producers, recent data suggest that certain alternatives may be suitable for some types of infections. Combined therapy seems superior to monotherapy in the treatment of invasive infections caused by carbapenemase-producing Enterobacteriaceae. Optimization of dosage according to pharmacokinetics/pharmacodynamics data is important for the treatment of infections caused by isolates with borderline minimum inhibitory concentration due to low-level resistance mechanisms. The increasing frequency and the rapid spread of multidrug resistance among the Enterobacteriaceae is a true and complex public health problem.
Collapse
Affiliation(s)
- Mercedes Delgado-Valverde
- Infectious Diseases and Clinical Microbiology Unit, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Jesús Sojo-Dorado
- Infectious Diseases and Clinical Microbiology Unit, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Alvaro Pascual
- Infectious Diseases and Clinical Microbiology Unit, Hospital Universitario Virgen Macarena, and Department of Microbiology, University of Seville, Seville, Spain
| | - Jesús Rodríguez-Baño
- Infectious Diseases and Clinical Microbiology Unit, Hospital Universitario Virgen Macarena, Avda Dr Fedriani 3, 41009 Seville, Spain
| |
Collapse
|
48
|
Guzmán-Blanco M, Labarca JA, Villegas MV, Gotuzzo E. Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis 2014; 18:421-33. [PMID: 24389277 PMCID: PMC9427466 DOI: 10.1016/j.bjid.2013.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 12/24/2022] Open
Abstract
To review the epidemiology of nosocomial extended spectrum β-lactamase-producing Enterobacteriaceae in Latin America, a systematic search of the biomedical literature (PubMed) was performed for articles published since 2005. Rates of nosocomial infections caused by extended spectrum β-lactamase-producing Enterobacteriaceae in Latin America have increased since 2005. Up to 32% of Escherichia coli and up to 58% of Klebsiella pneumoniae isolates are extended spectrum β-lactamase-positive, rates that are higher than in other world regions. From a region-wide perspective, 11–25% of E. coli isolates and 45–53% of K. pneumoniae isolates were nonsusceptible to third-generation cephalosporins. At the country level, there was a wide range in Enterobacteriaceae resistance rates to third-generation cephalosporins, with especially high rates of resistance to E. coli in Guatemala, Honduras, and Mexico, and high resistance rates to Klebsiella spp. in Argentina, Brazil, Chile, Guatemala, Honduras, and Paraguay. Susceptibility of extended spectrum β-lactamase-producing Enterobacteriaceae to cefepime, fluoroquinolones, ampicillin/sulbactam, aminoglycosides, and piperacillin/tazobactam has also been compromised, leaving the carbapenems, tigecycline, and colistin as the only antibiotics with >90% susceptibility rates. There is a steady increase in the prevalence and types of extended spectrum β-lactamases produced by Enterobacteriaceae isolates in Latin American hospitals (particularly CTX-Ms), suggesting endemic conditions overlaid by clonal outbreaks. Appropriate treatment decisions and infection control strategies informed by surveillance of regional and local susceptibilities and mechanisms of resistance are required to mitigate this major public health concern.
Collapse
|
49
|
Falagas ME, Vardakas KZ, Tsiveriotis KP, Triarides NA, Tansarli GS. Effectiveness and safety of high-dose tigecycline-containing regimens for the treatment of severe bacterial infections. Int J Antimicrob Agents 2014; 44:1-7. [DOI: 10.1016/j.ijantimicag.2014.01.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 11/25/2022]
|
50
|
Samonis G, Korbila IP, Maraki S, Michailidou I, Vardakas KZ, Kofteridis D, Dimopoulou D, Gkogkozotou VK, Falagas ME. Trends of isolation of intrinsically resistant to colistin Enterobacteriaceae and association with colistin use in a tertiary hospital. Eur J Clin Microbiol Infect Dis 2014; 33:1505-10. [PMID: 24798249 DOI: 10.1007/s10096-014-2097-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/20/2014] [Indexed: 01/05/2023]
Abstract
The objective of this investigation was to evaluate the association between colistin consumption and the isolation of intrinsically resistant to colistin Enterobacteriaceae (IRCE) in a university hospital in Crete, Greece. The database of the microbiological laboratory was reviewed retrospectively during 2006-2010. All positive cultures for IRCE were retrieved. We assessed the total consumption of colistin in medical, surgical, and intensive care units (ICUs). A total of 1,304 single-patient IRCE isolates were recorded. Of these, 466 (35.7%) were hospital-acquired, while 838 (64.3%) were community-acquired. Proteus spp. accounted for 72% of them, Serratia spp. for 16.6%, Morganella morganii for 8.4%, and Providencia spp. for 3%. Urine (44.8%), pus (20.4%), and lower respiratory tract specimens (12.8%) accounted for the majority of specimens. IRCE isolated during the first half (2006 to 1st semester of 2008) and second half (2nd semester of 2008 to 2010) of the study period accounted for 5.8% and 7.4% of Gram-negative isolates, respectively (p < 0.001). Colistin consumption was not different in the two periods in the hospital, but in the ICU, it was higher in the second half of the study period (p = 0.013). Colistin consumption was associated with the isolation of hospital-acquired IRCE (p = 0.037); a trend was noted between colistin consumption and the isolation of IRCE in the ICU (p = 0.057). In this study, colistin consumption was associated with the isolation of hospital-acquired IRCE. The use of colistin increased in the ICU during the study period. Prudent use of colistin is essential for the prevention of nosocomial outbreaks due to resistant IRCE.
Collapse
Affiliation(s)
- G Samonis
- Department of Internal Medicine, University of Crete, Heraklion, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|