1
|
Xiang Y, Shi J, Han L, Yang C, Lu S. Pathogenicity and Bro gene typing of pediatric lower respiratory tract infections with Moraxella catarrhalis in Southwest Shandong, China. Sci Rep 2025; 15:15070. [PMID: 40301503 PMCID: PMC12041543 DOI: 10.1038/s41598-025-99873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 04/23/2025] [Indexed: 05/01/2025] Open
Abstract
To investigate the etiology and clinical characteristics of Moraxella catarrhalis infections in the lower respiratory tract among pediatric patients in southwestern Shandong Province, China. This study aims to enhance early identification and diagnostic accuracy for laboratory physicians, while providing evidence to guide clinical diagnosis and treatment of Moraxella catarrhalis-related infections. This retrospective cohort study analyzed pediatric patients with Moraxella catarrhalis lower respiratory tract infections in southwestern Shandong Province, China. Clinical isolates were obtained through standardized sputum/bronchoalveolar lavage collection protocols and subjected to microbiological identification, antimicrobial susceptibility testing, and molecular characterization of β-lactamase production and bro gene variants. Epidemiological patterns and clinical profiles were systematically evaluated using electronic medical record data spanning January 2020 to December 2023. During the 4-year surveillance period (2018-2021), Moraxella catarrhalis was isolated from 848 pediatric cases of lower respiratory tract infections, representing a 7.81% overall detection rate. Age-stratified analysis revealed the highest prevalence in infants aged 28 days to 1 year (9.69%), with significant seasonal variation peaking in the fourth quarter (11.58%, p < 0.05). Monomicrobial infections predominated (79.72%, 676/848), while polymicrobial cases (20.28%, 172/848) predominantly co-occurred with Streptococcus pneumoniae and Haemophilus influenzae. All isolates were confirmed through parallel testing using automated biochemical analyzers and MALDI-TOF mass spectrometry. Antimicrobial susceptibility profiling demonstrated complete susceptibility to ceftazidime, cefepime, and imipenem (100%), with ≥ 95% susceptibility rates to ciprofloxacin (98.2%), levofloxacin (97.6%), ceftriaxone (96.8%), cefuroxime (96.1%), tetracycline (95.4%), and chloramphenicol (95.1%). A concerning temporal escalation in erythromycin resistance was observed (69.73% in 2018 vs. 90.57% in 2021, χ²=41.32, p < 0.001), while ampicillin and clindamycin resistance remained persistently high (> 93% across all years).β-lactamase production was detected in 96.58% (819/848) of isolates, with molecular characterization identifying bro-1 (94.51%, 774/819) and bro-2 (5.49%, 45/819) gene variants. The β-lactamase-negative subgroup (3.42%, 29/848) showed no significant epidemiological clustering. Our surveillance study demonstrates that Moraxella catarrhalis lower respiratory tract infections in southwestern Shandong Province predominantly affect infants aged 28 days to 1 year, with significantly elevated seasonal incidence during the fourth quarter. Notably, we observed a concerning temporal escalation in erythromycin resistance and persistently high resistance rates to ampicillinand clindamycin throughout the 2018-2021 surveillance period. Crucially, β-lactamase hyperproduction particularly BRO-1 gene carriage emerged as the principal resistance mechanism against β-lactams, while maintained susceptibility to expanded-spectrum cephalosporins and carbapenems suggests preserved therapeutic options. These findings underscore the necessity for: Avoidance of macrolides and β-lactam/β-lactamase inhibitor combinations in empirical therapy; Continuous monitoring of BRO gene evolution patterns; Age-specific antimicrobial stewardship programs targeting infant populations.
Collapse
Affiliation(s)
- Yuhan Xiang
- Clinical Laboratory, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China
| | - Jian Shi
- Clinical Laboratory, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China
- Clinical Medicine, Jining Medical University, Jining, China
| | - Liang Han
- Clinical Laboratory, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China
| | - Chengfan Yang
- Clinical Laboratory, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China
- Clinical Medicine, Jining Medical University, Jining, China
| | - Shuhua Lu
- Clinical Laboratory, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China.
- Clinical Medicine, Jining Medical University, Jining, China.
| |
Collapse
|
2
|
Alexandrova AS, Boyanov VS, Mihova KY, Gergova RT. Phylogenetic Lineages and Diseases Associated with Moraxella catarrhalis Isolates Recovered from Bulgarian Patients. Int J Mol Sci 2024; 25:9769. [PMID: 39337257 PMCID: PMC11431480 DOI: 10.3390/ijms25189769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Moraxella catarrhalis has been recognized as an important cause of upper respiratory tract and middle ear infections in children, as well as chronic obstructive pulmonary disease and chronic bronchitis in adults. We aim to study the clonal structure, antimicrobial resistance, and serotypes of M. catarrhalis strains recovered from patients of different ages. Nasopharyngeal swabs, middle ear fluid, and sputum samples were collected. In vitro susceptibility testing was performed according to EUCAST criteria. The monoclonal Ab hybridoma technique was used for serotyping. All strains were subjected to MLST. The studied population demonstrated susceptibility to all tested antimicrobials M. catarrhalis strains, with the majority being serotype A (90.4%), followed by B (6.8%), and C (2.7%). We observed a predominant clonal complex CC224 (21.9%) along with other clusters including CC141 (8.2%), CC184 (8.2%), CC449 (6.8%), CC390 (5.5%), and CC67 (2.7%). Two primary founders, namely, ST224 and ST141, were identified. The analyzed genetic lineages displayed diversity but revealed the predominance of two main clusters, CC224 and CC141, encompassing multidrug-resistant sequence types distributed in other regions. These data underscore the need for ongoing epidemiological monitoring of successfully circulating clones and the implementation of adequate antibiotic policies to limit or delay the spread of multidrug-resistant strains in our region.
Collapse
Affiliation(s)
- Alexandra S Alexandrova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Vasil S Boyanov
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Kalina Y Mihova
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Raina T Gergova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
3
|
Anderson T, Jiang H, Cheallaigh AN, Bengtsson D, Oscarson S, Cairns C, St Michael F, Cox A, Kuttel MM. Formation and immunological evaluation of Moraxella catarrhalis glycoconjugates based on synthetic oligosaccharides. Carbohydr Polym 2024; 332:121928. [PMID: 38431400 DOI: 10.1016/j.carbpol.2024.121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Published work has shown that glycoconjugate vaccines, based on truncated detoxified lipopolysaccharides from Moraxella catarrhalis attached through their reducing end to a carrier protein, gave good protection for all three serotypes A, B, and C in mice immunisation experiments. The (from the non-reducing end) truncated LPS structures were obtained from bacterial glycosyl transferase knock-out mutants and contained the de-esterified Lipid A, two Kdo residues and five glucose moieties. This work describes the chemical synthesis of the same outer Moraxella LPS structures, spacer-equipped and further truncated from the reducing end, i.e., without the Lipid A part and containing four or five glucose moieties or four glucose moieties and one Kdo residue, and their subsequent conjugation to a carrier protein via a five‑carbon bifunctional spacer to form glycoconjugates. Immunisation experiments both in mice and rabbits of these gave a good antibody response, being 2-7 times that of pre-immune sera. However, the sera produced only recognized the immunizing glycan immunogens and failed to bind to native LPS or whole bacterial cells. Comparative molecular modelling of three alternative antigens shows that an additional (2 → 4)-linked Kdo residue, not present in the synthetic structures, has a significant impact on the shape and volume of the molecule, with implications for antigen binding and cross-reactivity.
Collapse
Affiliation(s)
- Taigh Anderson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hao Jiang
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Ní Cheallaigh
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dennis Bengtsson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Chantelle Cairns
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Andrew Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
4
|
Meng Q, Li W, Jiang H, Yan H, Wang H, Ye B, Zhou L, Chen Y. Comparison of the Distribution and Changes in the Antibiotic Resistance of Clinical Bacterial Isolates from the Lower Respiratory Tract of Children in Shenzhen Before the Epidemic, During the Epidemic, and During the Period of Normalized Prevention and Control of COVID-19. Infect Dis Ther 2023; 12:563-575. [PMID: 36598677 PMCID: PMC9812007 DOI: 10.1007/s40121-022-00751-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION This study aimed to understand the impact of the coronavirus disease 2019 (COVID-19) epidemic on the distribution and antibiotic resistance of pathogenic bacteria isolated from the lower respiratory tract of children in our hospital. METHODS Antimicrobial susceptibility tests were performed on bacteria isolated clinically from the lower respiratory tracts of children in our hospital from 2018 to 2021 by the Kirby-Bauer method and automated systems. RESULTS From 2018 to 2021, the top three lower respiratory tract clinical isolates in our hospital were Streptococcus pneumoniae, Moraxella catarrhalis, and Haemophilus influenzae. These three species showed obvious seasonal epidemic patterns, and their numbers decreased significantly during the COVID-19 epidemic, from 4559 in 2019 to 1938 in 2020. Bacterial resistance to antibiotics also changed before and after the COVID-19 epidemic. The annual proportions of methicillin-resistant S. aureus (MRSA) were 41%, 37.4%, 26.2%, and 29.8%. The resistance rates of Klebsiella pneumoniae to ceftriaxone were 40.5%, 51.9%, 35.3%, and 53.3%, and the detection rates of carbapenem-resistant K. pneumoniae (CRKP) were 2.7%, 11.1%, 5.9%, and 4.4%. The detection rates of β-lactamase-producing H. influenzae were 51.9%, 59.2%, 48.9%, and 55.3%. The rate of MRSA, ceftriaxone-resistant K. pneumoniae, CRKP, and β-lactamase-producing H. influenzae decreased significantly in 2020 compared with 2019, whereas that of carbapenem-resistant P. aeruginosa and carbapenem-resistant A. baumannii increased. The detection rates of β-lactamase-negative ampicillin-resistant H. influenzae (BLNAR) gradually increased over the 4 years. CONCLUSIONS Protective measures against COVID-19, including reduced movement of people, hand hygiene, and surgical masks, may block the transmission of S. pneumoniae, H. influenzae, and M. catarrhalis and reduce the detection rate of MRSA, ceftriaxone-resistant K. pneumoniae, CRKP, and β-lactamase-producing H. influenzae.
Collapse
Affiliation(s)
- Qing Meng
- Department of Clinical Microbiology Laboratory, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Wujiao Li
- Department of Clinical Microbiology Laboratory, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Hanfang Jiang
- Department of Clinical Microbiology Laboratory, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Huimin Yan
- Department of Clinical Microbiology Laboratory, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Heping Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Binjun Ye
- Department of Clinical Microbiology Laboratory, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China
| | - Lintao Zhou
- Department of Clinical Microbiology Laboratory, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China.
| | - Yunsheng Chen
- Department of Clinical Microbiology Laboratory, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, 518038, Guangdong, China.
| |
Collapse
|
5
|
FHUSPA2/10 is a bactericidal monoclonal antibody targeting multiple repeated sequences of Moraxella catarrhalis UspA2. Vaccine 2022; 40:6520-6527. [PMID: 36202640 DOI: 10.1016/j.vaccine.2022.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022]
Abstract
Moraxella catarrhalis is an important and common respiratory pathogen that can cause Otitis Media, Community Acquired Pneumonia, and has been associated with an increased risk of exacerbations in chronic obstructive pulmonary disease in adults, leading to morbidity and mortality. Its ubiquitous surface protein A2 (UspA2) has been shown to interact with host structures and extracellular matrix proteins, suggesting a role at an early stage of infection and a contribution to bacterial serum resistance. The UspA proteins are homo-trimeric autotransporters that appear as a lollipop-shaped structure in electron micrographs. They are composed of an N-terminal head with adhesive properties, followed by a stalk, which ends by an amphipathic helix and a C-terminal membrane domain. The three family members UspA1, UspA2 and UspA2H, present different amino acid signatures both at the head and membrane-spanning regions. By combining electron microscopy, hydrogen deuterium exchange mass spectrometry and protein modeling, we identified a shared and repeated epitope recognized by FHUSPA2/10, a potent cross-bactericidal monoclonal antibody raised by UspA2 and deduced key amino acids involved in the binding. The finding strengthens the potential of UspA2 to be incorporated in a vaccine formulation against M. catarrhalis.
Collapse
|
6
|
Prevalence of Moraxella Catarrhalis as a Nasal Flora among Healthy Kindergarten Children in Bhaktapur, Nepal. Interdiscip Perspect Infect Dis 2022; 2022:3989781. [PMID: 35378873 PMCID: PMC8976674 DOI: 10.1155/2022/3989781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/12/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Moraxella catarrhalis causes mild to severe disease in all age groups, mainly in children. This study investigates the prevalence of M. catarrhalis, its cocolonization with other common nasal flora, and associated risk factors in kindergarten children in Bhaktapur. Method A cross-sectional study was conducted among 136 healthy school-going children from four kindergartens of Bhaktapur Municipality. Nasal swabs were examined for identification and isolation of M. catarrhalis and its antibiotic susceptibility pattern. Additionally, further analysis was performed for cocolonization and associated risk factors. Results Out of 136 students, M. catarrhalis was detected in 80 (58.8%) children. Using bivariate and multivariate analysis, the associated risk factors with significantly high carriage rates were age group of 3–4 years, classroom occupancy with 15–30 children, and antibiotic consumption within 6 months, with a p value of ≤0.05 in each of the cases. Multiple logistic regression analysis of bacterial coexistence depicted M. catarrhalis to be positively associated with Streptococcus pneumoniae and Haemophilus influenzae and negatively associated with Staphylococcus aureus. Furthermore, the highest double colonization occurred among M. catarrhalis and S. aureus and the highest triple colonization occurred among M. catarrhalis, S. aureus, and S. pneumoniae. The antibiogram pattern showed the target organisms to be highly resistant to amoxycillin/clavulanate (18.8%) and most sensitive to chloramphenicol (100%). Conclusion This study shows a high prevalence of M. catarrhalis in healthy kindergarten children and is positively associated with other nasal isolates like S. pneumoniae and H. influenzae.
Collapse
|
7
|
Smith D, Gill A, Hall L, Turner AM. Prevalence, Pattern, Risks Factors and Consequences of Antibiotic Resistance in COPD: A Systematic Review. COPD 2022; 18:672-682. [PMID: 35016569 DOI: 10.1080/15412555.2021.2000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A concern of antibiotic use in chronic obstructive pulmonary disease (COPD) is the emergence and propagation of antimicrobial resistance (AMR). A systematic review was conducted to determine prevalence, pattern, risk factors and consequences of AMR in COPD. Bibliographic databases were searched from inception to November 2020, with no language restrictions, including studies of any design that included patients with COPD and reported prevalence and pattern of AMR. 2748 unique titles and abstracts were identified, of which 63 articles, comprising 26,387 patients, met inclusion criteria. Forty-four (69.8%) studies were performed during acute exacerbation. The median prevalence of AMR ranged from 0-100% for Pseudomonas aeruginosa, Moraxella catarrhalis, Klebsiella pneumoniae and Acinetobacter baumannii. Median resistance rates of H influenzae and S pneumoniae were lower by comparison, with maximum rates ≤40% and ≤46%, respectively, and higher for Staphylococcus aureus. There was a trend towards higher rates of AMR in patients with poorer lung function and greater incidence of previous antibiotic exposure and hospitalisation. The impact of AMR on mortality was unclear. Data regarding antimicrobial susceptibility testing techniques and the impact of other risk factors or consequences of AMR were variable or not reported. This is the first review to systematically unify data regarding AMR in COPD. AMR is relatively common and strategies to optimise antibiotic use could be valuable to prevent the currently under-investigated potential adverse consequences of AMR.Supplemental data for this article is available online at https://doi.org/10.1080/15412555.2021.2000957 .
Collapse
Affiliation(s)
- Daniel Smith
- Medical School, University of Birmingham, United Kingdom
| | - Arran Gill
- Medical School, University of Southampton, United Kingdom
| | - Lewis Hall
- Medical School, University of Birmingham, United Kingdom
| | - Alice M Turner
- Heartlands Hospital, University Hospitals Birmingham, Birmingham, United Kingdom.,Institute of Applied Health Research, University of Birmingham, United Kingdom
| |
Collapse
|
8
|
Dynamic changes in otopathogens colonizing the nasopharynx and causing acute otitis media in children after 13-valent (PCV13) pneumococcal conjugate vaccination during 2015-2019. Eur J Clin Microbiol Infect Dis 2021; 41:37-44. [PMID: 34432166 DOI: 10.1007/s10096-021-04324-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The otopathogens colonizing the nasopharynx (NP) and causing acute otitis media (AOM) have shown dynamic changes following introduction of pneumococcal conjugate vaccines. Five hundred eighty-nine children were prospectively enrolled, 2015-2019. Two thousand fifty-nine visits (1528 healthy, 393 AOM, and 138 AOM follow-up) were studied. Two thousand forty-two NP and 495 middle ear fluid (MEF) samples by tympanocentesis from 319 AOM cases were cultured for bacterial identification and antibiotic susceptibility. Streptococcus pneumoniae (Spn) isolates were serotyped by Quellung, and multi-locus sequence type (ST) determined by genomic analysis. Haemophilus influenzae (Hi) was the most common otopathogen cultured from MEF during AOM (34% in MEF) followed by Spn (24% in MEF), then Moraxella catarrhalis (Mcat) (15% in MEF). NP isolates during healthy visit were Mcat (39%), Spn (32%), Hi (12%). 48.6% of Hi isolates from MEF were beta-lactamase-producing. Spn non-susceptibility to penicillin and other antibiotics was high. The most common Spn serotypes associated with AOM (and colonizing the NP during healthy visits) were 35B, 23B, and 15B/C. ST558 and ST199 were the most common sequence types. During 2015-2019, Hi was the most common otopathogen cultured from MEF during AOM among young children. Pneumococcal AOM was most commonly caused by non-PCV13 serotypes of Spn, predominantly 35B, 23B, and 15B/C. Resistance to common antibiotics among Spn strains showed an increasing trend.
Collapse
|
9
|
Exploration of the Neisseria Resistome Reveals Resistance Mechanisms in Commensals That May Be Acquired by N. gonorrhoeae through Horizontal Gene Transfer. Antibiotics (Basel) 2020; 9:antibiotics9100656. [PMID: 33007823 PMCID: PMC7650674 DOI: 10.3390/antibiotics9100656] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
Nonpathogenic Neisseria transfer mutations encoding antibiotic resistance to their pathogenic relative Neisseria gonorrhoeae. However, the resistance genotypes and subsequent phenotypes of nonpathogens within the genus have been described infrequently. Here, we characterize the minimum inhibitory concentrations (MICs) of a panel of Neisseria (n = 26)—including several commensal species—to a suite of diverse antibiotics. We furthermore use whole genome sequencing and the Comprehensive Antibiotic Resistance Database Resistance Gene Identifier (RGI) platform to predict putative resistance-encoding mutations. Resistant isolates to all tested antimicrobials including penicillin (n = 5/26), ceftriaxone (n = 2/26), cefixime (n = 3/26), tetracycline (n = 10/26), azithromycin (n = 11/26), and ciprofloxacin (n = 4/26) were found. In total, 63 distinct mutations were predicted by RGI to be involved in resistance. The presence of several mutations had clear associations with increased MIC such as DNA gyrase subunit A (gyrA) (S91F) and ciprofloxacin, tetracycline resistance protein (tetM) and 30S ribosomal protein S10 (rpsJ) (V57M) and tetracycline, and TEM-type β-lactamases and penicillin. However, mutations with strong associations to macrolide and cephalosporin resistance were not conclusive. This work serves as an initial exploration into the resistance-encoding mutations harbored by nonpathogenic Neisseria, which will ultimately aid in prospective surveillance for novel resistance mechanisms that may be rapidly acquired by N. gonorrhoeae.
Collapse
|
10
|
Manenzhe RI, Dube FS, Wright M, Lennard K, Zar HJ, Mounaud S, Nierman WC, Nicol MP, Moodley C. Longitudinal changes in the nasopharyngeal resistome of South African infants using shotgun metagenomic sequencing. PLoS One 2020; 15:e0231887. [PMID: 32320455 PMCID: PMC7176138 DOI: 10.1371/journal.pone.0231887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/02/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Nasopharyngeal (NP) colonization with antimicrobial-resistant bacteria is a global public health concern. Antimicrobial-resistance (AMR) genes carried by the resident NP microbiota may serve as a reservoir for transfer of resistance elements to opportunistic pathogens. Little is known about the NP antibiotic resistome. This study longitudinally investigated the composition of the NP antibiotic resistome in Streptococcus-enriched samples in a South African birth cohort. Methods As a proof of concept study, 196 longitudinal NP samples were retrieved from a subset of 23 infants enrolled as part of broader birth cohort study. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of streptococcal and non-streptococcal bacterial reads. Contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. Results AMR genes were detected in 64% (125/196) of the samples. A total of 329 AMR genes were detected, including 36 non-redundant genes, ranging from 1 to 14 genes per sample. The predominant AMR genes detected encoded resistance mechanisms to beta-lactam (52%, 172/329), macrolide-lincosamide-streptogramin (17%, 56/329), and tetracycline antibiotics (12%, 38/329). MsrD, ermB, and mefA genes were only detected from streptococcal reads. The predominant genes detected from non- streptococcal reads included blaOXA-60, blaOXA-22, and blaBRO-1. Different patterns of carriage of AMR genes were observed, with only one infant having a stable carriage of mefA, msrD and tetM over a long period. Conclusion This study demonstrates that WMGS can provide a broad snapshot of the NP resistome and has the potential to provide a comprehensive assessment of resistance elements present in this niche.
Collapse
Affiliation(s)
- Rendani I. Manenzhe
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Felix S. Dube
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Meredith Wright
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Katie Lennard
- Division of Computational Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital and MRC unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | | | | | - Mark P. Nicol
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Division of Infection and Immunity, University of Western Australia, Perth, Australia
| | - Clinton Moodley
- Division of Medical Microbiology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
11
|
Moraxella catarrhalis: A Cause of Concern with Emerging Resistance and Presence of BRO Beta-Lactamase Gene-Report from a Tertiary Care Hospital in South India. Int J Microbiol 2020; 2020:7316257. [PMID: 32089697 PMCID: PMC7029268 DOI: 10.1155/2020/7316257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/16/2020] [Indexed: 12/05/2022] Open
Abstract
Background Found as a commensal in the upper respiratory tract, Gram-negative diplococcus Moraxella catarrhalis did not hold much importance as an infectious agent for long. The emergence of the first antibiotic-resistant strain of M. catarrhalis was noted in 1977 in Sweden. This has gradually spread worldwide over the years to more than 95% of the strains showing resistance to penicillin now. Penicillin resistance is mediated by the production of beta-lactamases encoded by bro-1 and bro-2 genes that code for beta-lactamases BRO-1 and BRO-2, respectively. The purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in M. catarrhalis was noted in 1977 in Sweden. This has gradually spread worldwide over the years to more than 95% of the strains showing resistance to penicillin now. Penicillin resistance is mediated by the production of beta-lactamases encoded by bro-1 and bro-2 genes that code for beta-lactamases BRO-1 and BRO-2, respectively. The purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in Methods Strains of M. catarrhalis was noted in 1977 in Sweden. This has gradually spread worldwide over the years to more than 95% of the strains showing resistance to penicillin now. Penicillin resistance is mediated by the production of beta-lactamases encoded by bro-1 and bro-2 genes that code for beta-lactamases BRO-1 and BRO-2, respectively. The purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in Results Fourteen strains of M. catarrhalis was noted in 1977 in Sweden. This has gradually spread worldwide over the years to more than 95% of the strains showing resistance to penicillin now. Penicillin resistance is mediated by the production of beta-lactamases encoded by bro-1 and bro-2 genes that code for beta-lactamases BRO-1 and BRO-2, respectively. The purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in Conclusion The increase in antibiotic resistance and beta-lactamase production in M. catarrhalis is a cause of concern. The emerging resistance pattern emphasises the need for an appropriate antibiotic stewardship program in clinical practice. Importance should be given to the monitoring of the trends of antibiotic susceptibility and their usage to prevent the emergence of outbreaks with resistant strains and treatment failures.M. catarrhalis was noted in 1977 in Sweden. This has gradually spread worldwide over the years to more than 95% of the strains showing resistance to penicillin now. Penicillin resistance is mediated by the production of beta-lactamases encoded by bro-1 and bro-2 genes that code for beta-lactamases BRO-1 and BRO-2, respectively. The purpose of this study was to explore the trends of antibiotic resistance, the presence of bro genes, and clinical correlation of these findings with the rise in
Collapse
|
12
|
Król-Turmińska K, Olender A. Alternations in DNA gyrase genes in low-level fluoroquinolone-resistant Moraxella catarrhalis strains isolated in Poland. Infect Drug Resist 2018; 11:1047-1053. [PMID: 30122961 PMCID: PMC6084068 DOI: 10.2147/idr.s162006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the molecular mechanisms of fluoroquinolone resistance in Moraxella catarrhalis clinical strains isolated in Lublin, Poland. MATERIALS AND METHODS A total of 150 non-duplicate clinical strains of M. catarrhalis were obtained from individuals with signs of upper respiratory tract infection. Bacterial identification was corroborated on the basis of phenotypic and biochemical characteristics as well as with the use of molecular tests. The antimicrobial susceptibility of M. catarrhalis isolates was determined using the disk diffusion method and Etest. Mutations in the gyrase (gyrA and gyrB) and topoisomerase (parC and parE) genes were determined by polymerase chain reaction and sequencing. RESULTS It was observed that 16.7% of the studied isolates were drug resistant. Resistance to tetracycline was detected for 12% of the strains. Resistance to nalidixic acid, moxifloxacin, and levofloxacin was exhibited by 2.7% of the strains; 1.3% of the strains were resistant to trimethoprim/sulfamethoxazole and 0.7% to erythromycin. Minimum inhibitory concentration values of the four strains demonstrating fluoroquinolone resistance were: 6-12 mg/L for nalidixic acid, 1-1.5 mg/L for levofloxacin, 1 mg/L for moxifloxacin, and 0.25-0.5 mg/L for ciprofloxacin. The research resulted in the detection of mutations in 4 strains, in gyrase gyrA and gyrB genes. In gyrA gene, there occurred mutation G412C as well as four silent transition mutations. Within gyrB gene, there occurred mutation, substitution A1481G, as well as two identical silent mutations. CONCLUSION Our findings reveal that resistance to fluoroquinolones in M. catarrhalis is connected with amino acid substitutions in gyrA and gyrB genes. To our knowledge, this work is the first description of fluoroquinolone-resistant clinical strains of M. catarrhalis with described mutations in gyrA and gyrB genes isolated in Poland and in Europe.
Collapse
Affiliation(s)
| | - Alina Olender
- Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland,
| |
Collapse
|
13
|
Du Y, Zhou H, Wang F, Liang S, Cheng L, Du X, Pang F, Tian J, Zhao J, Kan B, Xu J, Li J, Zhang F. Multilocus sequence typing-based analysis of Moraxella catarrhalis population structure reveals clonal spreading of drug-resistant strains isolated from childhood pneumonia. INFECTION GENETICS AND EVOLUTION 2017; 56:117-124. [PMID: 29155241 DOI: 10.1016/j.meegid.2017.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/05/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
This work revealed the drug resistance and population structure of Moraxella catarrhalis strains isolated from children less than three years old with pneumonia. Forty-four independent M. catarrhalis strains were analyzed using broth dilution antimicrobial susceptibility testing and multilocus sequence typing (MLST). The highest non-susceptibility rate was observed for amoxicillin (AMX), which reached 95.5%, followed by clindamycin (CLI) (n=33; 75.0%), azithromycin (AZM) (61.4%), cefaclor (CEC) (25.0%), trimethoprim-sulfamethoxazole (SXT) (15.9%), cefuroxime (CXM) (4.5%), tetracycline (TE) (2.3%), and doxycycline (DOX) (2.3%). There was no strain showing non-susceptibility to other six antimicrobials. Using MLST, the 44 M. catarrhalis strains were divided into 33 sequence types (STs). Based on their allelic profiles, the 33 STs were divided into one CC (CC363) and 28 singletons. CC363 contained five STs and ST363 was the founder ST. CC363 contained 63.6%, 33.3%, and 40.7% of CEC non-susceptible, CLI non-susceptible and AZM non-susceptible strains, respectively. The proportions of CEC non-susceptible, CLI non-susceptible and AZM non-susceptible strains in CC363 were higher than that of singletons; these differences were significant for CEC (p=0.002) and AZM (p=0.011). Furthermore, CC363 contained more AMX-CLI-AZM co-non-susceptible and AMX-CEC-CLI-AZM co-non-susceptible strains than the singletons (p=0.007 and p<0.001, respectively). CC363 is a drug-resistant clone of clinical M. catarrhalis strains in China. Expansion of this clone under selective pressure of antibiotics should be noted and long-term monitoring should be established.
Collapse
Affiliation(s)
- Yinju Du
- Center for Disease Control and Prevention of Liaocheng, Liaocheng, PR China
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Fei Wang
- Center for Disease Control and Prevention of Liaocheng, Liaocheng, PR China
| | - Shengnan Liang
- Center for Disease Control and Prevention of Liaocheng, Liaocheng, PR China
| | - Lihong Cheng
- Center for Disease Control and Prevention of Liaocheng, Liaocheng, PR China
| | - Xiaofei Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Feng Pang
- The People's Hospital of Liaocheng, Liaocheng, PR China
| | - Jinjing Tian
- The Second People's Hospital of Liaocheng, Liaocheng, PR China
| | - Jinxing Zhao
- Center for Disease Control and Prevention of Liaocheng, Liaocheng, PR China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China
| | - Juan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, PR China.
| | - Furong Zhang
- Center for Disease Control and Prevention of Liaocheng, Liaocheng, PR China.
| |
Collapse
|
14
|
Molecular Characterization of Fluoroquinolone-Resistant Moraxella catarrhalis Variants Generated In Vitro by Stepwise Selection. Antimicrob Agents Chemother 2017; 61:AAC.01336-17. [PMID: 28760904 DOI: 10.1128/aac.01336-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis causes respiratory infections. In this study, fluoroquinolone-resistant strains were selected in vitro to evaluate the mechanism of fluoroquinolone resistance. Strains with reduced fluoroquinolone susceptibility were obtained by stepwise selection in levofloxacin, and fluoroquinolone targets gyr and par were sequenced. Six novel mutations in GyrA (D84Y, T594dup, and A722dup), GyrB (E479K and D439N), and ParE (Q395R) involved in M. catarrhalis resistance to fluoroquinolones were revealed.
Collapse
|
15
|
Blakeway LV, Tan A, Peak IRA, Seib KL. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development. MICROBIOLOGY-SGM 2017; 163:1371-1384. [PMID: 28893369 DOI: 10.1099/mic.0.000523] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Moraxella catarrhalis is a human-restricted opportunistic bacterial pathogen of the respiratory mucosa. It frequently colonizes the nasopharynx asymptomatically, but is also an important causative agent of otitis media (OM) in children, and plays a significant role in acute exacerbations of chronic obstructive pulmonary disease (COPD) in adults. As the current treatment options for M. catarrhalis infection in OM and exacerbations of COPD are often ineffective, the development of an efficacious vaccine is warranted. However, no vaccine candidates for M. catarrhalis have progressed to clinical trials, and information regarding the distribution of M. catarrhalis virulence factors and vaccine candidates is inconsistent in the literature. It is largely unknown if virulence is associated with particular strains or subpopulations of M. catarrhalis, or if differences in clinical manifestation can be attributed to the heterogeneous expression of specific M. catarrhalis virulence factors in the circulating population. Further investigation of the distribution of M. catarrhalis virulence factors in the context of carriage and disease is required so that vaccine development may be targeted at relevant antigens that are conserved among disease-causing strains. The challenge of determining which of the proposed M. catarrhalis virulence factors are relevant to human disease is amplified by the lack of a standardized M. catarrhalis typing system to facilitate direct comparisons of worldwide isolates. Here we summarize and evaluate proposed relationships between M. catarrhalis subpopulations and specific virulence factors in the context of colonization and disease, as well as the current methods used to infer these associations.
Collapse
Affiliation(s)
- Luke V Blakeway
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ian R A Peak
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
16
|
Yamada K, Arai K, Saito R. Antimicrobial susceptibility to β-lactam antibiotics and production of BRO β-lactamase in clinical isolates of Moraxella catarrhalis from a Japanese hospital. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 50:386-389. [PMID: 28057435 DOI: 10.1016/j.jmii.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022]
Abstract
We investigated BRO-β-lactamase production of Moraxella catarrhalis isolates and its antimicrobial susceptibility to β-lactams. Of the 233 isolates, 232 were BRO producers and 224 were BRO-1 producers. Four isolates exhibited elevated ceftriaxone minimum inhibitory concentration (2 μg/mL) and different pulsed-field gel electrophoresis patterns and we expect this number to increase in the near future.
Collapse
Affiliation(s)
- Kageto Yamada
- Department of Clinical Laboratory, Tokyo Metropolitan Health and Medical Treatment Corporation Toshima Hospital, Tokyo, Japan; Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan.
| | - Katsumi Arai
- Department of Clinical Laboratory, Tokyo Metropolitan Health and Medical Treatment Corporation Toshima Hospital, Tokyo, Japan
| | - Ryoichi Saito
- Department of Microbiology and Immunology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
17
|
Yassin GM, Amin MA, Attia AS. Immunoinformatics Identifies a Lactoferrin Binding Protein A Peptide as a Promising Vaccine With a Global Protective Prospective Against Moraxella catarrhalis. J Infect Dis 2016; 213:1938-45. [PMID: 26908723 DOI: 10.1093/infdis/jiw062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/04/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Moraxella catarrhalis is an established pathogen that is causing substantial infections to both children and adults. However, so far there is no effective vaccine to halt the spread of these infections. METHODS Immunoinformatics tools were used to predict M. catarrhalis epitopes that could offer immunoprotection among major proportions of human populations worldwide. Mice were immunized with the best 3 peptides and then challenged with M. catarrhalis in the pulmonary clearance model. Finally, antibodies against these epitopes were detected in humans. RESULTS Immunoinformatics analyses identified 44 epitopes that are predicted to be good major histocompatibility complex class II binders and at the same time show high population coverage worldwide. After intraperitoneal immunization of mice with the best 3 peptides, peptide A, derived from lactoferrin-binding protein A, showed superior activity in immunogenicity and in clearing M. catarrhalis from mouse lungs. Higher clearance was obtained by combining intraperitoneal and intranasal immunization. In the serum samples from children with otitis media infected with M. catarrhalis, antibody levels against peptide A were significantly lower than in samples from children without otitis media. CONCLUSIONS Peptide A is the first promising peptide-based vaccine against M. catarrhalis Immunoinformatics predicts that it should have a global protection around the world.
Collapse
Affiliation(s)
| | - Magdy A Amin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
18
|
Liu G, Gradstedt H, Ermert D, Englund E, Singh B, Su YC, Johansson ME, Aspberg A, Agarwal V, Riesbeck K, Blom AM. Moraxella catarrhalis Evades Host Innate Immunity via Targeting Cartilage Oligomeric Matrix Protein. THE JOURNAL OF IMMUNOLOGY 2015; 196:1249-58. [DOI: 10.4049/jimmunol.1502071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
|
19
|
Shaikh SBU, Ahmed Z, Arsalan SA, Shafiq S. Prevalence and resistance pattern of Moraxella catarrhalis in community-acquired lower respiratory tract infections. Infect Drug Resist 2015; 8:263-7. [PMID: 26261422 PMCID: PMC4527568 DOI: 10.2147/idr.s84209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction Moraxella catarrhalis previously considered as commensal of upper respiratory tract has gained importance as a pathogen responsible for respiratory tract infections. Its beta-lactamase-producing ability draws even more attention toward its varying patterns of resistance. Methods This was an observational study conducted to evaluate the prevalence and resistance pattern of M. catarrhalis. Patients aged 20–80 years admitted in the Department of Chest Medicine of Liaquat National Hospital from March 2012 to December 2012 were included in the study. Respiratory samples of sputum, tracheal secretions, and bronchoalveolar lavage were included, and their cultures were followed. Results Out of 110 respiratory samples, 22 showed positive cultures for M. catarrhalis in which 14 were males and eight were females. Ten samples out of 22 showed resistance to clarithromycin, and 13 samples out of 22 displayed resistance to erythromycin, whereas 13 showed resistance to levofloxacin. Hence, 45% of the cultures showed resistance to macrolides so far and 59% showed resistance to quinolones. Conclusion Our study shows that in our environment, M. catarrhalis may be resistant to macrolides and quinolones; hence, these should not be recommended as an alternative treatment in community-acquired lower respiratory tract infections caused by M. catarrhalis. However, a study of larger sample size should be conducted to determine if the recommendations are required to be changed.
Collapse
Affiliation(s)
| | - Zafar Ahmed
- Department of Pulmonology, Liaquat National Hospital, Karachi, Pakistan
| | - Syed Ali Arsalan
- Department of Pulmonology, Liaquat National Hospital, Karachi, Pakistan
| | - Sana Shafiq
- Department of Pulmonology, Liaquat National Hospital, Karachi, Pakistan
| |
Collapse
|
20
|
Moraxella catarrhalis AcrAB-OprM efflux pump contributes to antimicrobial resistance and is enhanced during cold shock response. Antimicrob Agents Chemother 2015; 59:1886-94. [PMID: 25583725 DOI: 10.1128/aac.03727-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a common pathogen of the human respiratory tract. Multidrug efflux pumps play a major role in antibiotic resistance and virulence in many Gram-negative organisms. In the present study, the role of the AcrAB-OprM efflux pump in antibiotic resistance was investigated by constructing mutants that lack the acrA, acrB, and oprM genes in M. catarrhalis strain O35E. We observed a moderate (1.5-fold) decrease in the MICs of amoxicillin and cefotaxime and a marked (4.7-fold) decrease in the MICs of clarithromycin for acrA, acrB, and oprM mutants in comparison with the wild-type O35E strain. Exposure of the M. catarrhalis strains O35E and 300 to amoxicillin triggered an increased transcription of all AcrAB-OprM pump genes, and exposure of strains O35E, 300, and 415 to clarithromycin enhanced the expression of acrA and oprM mRNA. Inactivation of the AcrAB-OprM efflux pump genes demonstrated a decreased ability to invade epithelial cells compared to the parental strain, suggesting that acrA, acrB, and oprM are required for efficient invasion of human pharyngeal epithelial cells. Cold shock increases the expression of AcrAB-OprM efflux pump genes in all three M. catarrhalis strains tested. Increased expression of AcrAB-OprM pump genes after cold shock leads to a lower accumulation of Hoechst 33342 (H33342), a substrate of AcrAB-OprM efflux pumps, indicating that cold shock results in increased efflux activity. In conclusion, the AcrAB-OprM efflux pump appears to play a role in the antibiotic resistance and virulence of M. catarrhalis and is involved in the cold shock response.
Collapse
|
21
|
Substrate binding protein SBP2 of a putative ABC transporter as a novel vaccine antigen of Moraxella catarrhalis. Infect Immun 2014; 82:3503-12. [PMID: 24914218 DOI: 10.1128/iai.01832-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Moraxella catarrhalis is a common respiratory tract pathogen that causes otitis media in children and infections in adults with chronic obstructive pulmonary disease. Since the introduction of the pneumococcal conjugate vaccines with/without protein D of nontypeable Haemophilus influenzae, M. catarrhalis has become a high-priority pathogen in otitis media. For the development of antibacterial vaccines and therapies, substrate binding proteins of ATP-binding cassette transporters are important targets. In this study, we identified and characterized a substrate binding protein, SBP2, of M. catarrhalis. Among 30 clinical isolates tested, the sbp2 gene sequence was highly conserved. In 2 different analyses (whole-cell enzyme-linked immunosorbent assay and flow cytometry), polyclonal antibodies raised to recombinant SBP2 demonstrated that SBP2 expresses epitopes on the bacterial surface of the wild type but not the sbp2 mutant. Mice immunized with recombinant SBP2 showed significantly enhanced clearance of M. catarrhalis from the lung compared to that in the control group at both 25-μg and 50-μg doses (P < 0.001). We conclude that SBP2 is a novel, attractive candidate as a vaccine antigen against M. catarrhalis.
Collapse
|
22
|
Saito R, Nonaka S, Fujinami Y, Matsuoka S, Nakajima S, Nishiyama H, Okamura N. The frequency of BRO β-lactamase and its relationship to antimicrobial susceptibility and serum resistance in Moraxella catarrhalis. J Infect Chemother 2014; 20:6-8. [DOI: 10.1016/j.jiac.2013.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 11/17/2022]
|
23
|
Nonaka S, Matsuzaki K, Kazama T, Nishiyama H, Ida Y, Koyano S, Sonobe K, Okamura N, Saito R. Antimicrobial susceptibility and mechanisms of high-level macrolide resistance in clinical isolates of Moraxella nonliquefaciens. J Med Microbiol 2013; 63:242-247. [PMID: 24196134 DOI: 10.1099/jmm.0.061788-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated antimicrobial susceptibility and the molecular mechanism involved in conferring high-level macrolide resistance in 47 clinical isolates of Moraxella nonliquefaciens from Japan. Antimicrobial susceptibility was determined using Etest and agar dilution methods. Thirty-two erythromycin-non-susceptible strains were evaluated for the possibility of clonal spreading, using PFGE. To analyse the mechanism related to macrolide resistance, mutations in the 23S rRNA gene and the ribosomal proteins, and the presence of methylase genes were investigated by PCR and sequencing. The efflux system was examined using appropriate inhibitors. Penicillin, ampicillin, amoxicillin, cefixime, levofloxacin and antimicrobials containing β-lactamase inhibitors showed strong activity against 47 M. nonliquefaciens isolates. Thirty-two (68.1 %) of the 47 isolates showed high-level MICs to macrolides (MIC ≥128 mg l(-1)) and shared the A2058T mutation in the 23S rRNA gene. The geometric mean MIC to macrolides of A2058T-mutated strains was significantly higher than that of WT strains (P<0.0001). Thirty-two isolates with high-level macrolide MICs clustered into 30 patterns on the basis of the PFGE dendrogram, indicating that the macrolide-resistant strains were not clonal. In contrast, no common mutations of the ribosomal proteins or methylase genes, or overproduction of the efflux system were observed in A2058T-mutated strains. Moreover, of the 47 M. nonliquefaciens strains, 43 (91.5 %) were bro-1 and 4 (8.5 %) were bro-2 positive. Our results suggest that most M. nonliquefaciens clinical isolates show high-level macrolide resistance conferred by the A2058T mutation in the 23S rRNA gene. This study represents the first characterization of M. nonliquefaciens.
Collapse
Affiliation(s)
- Shotaro Nonaka
- Department of Microbiology and Immunology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosuke Matsuzaki
- Department of Microbiology and Immunology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoya Kazama
- Department of Microbiology and Immunology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Nishiyama
- Clinical Laboratory Department, Surugadai Nihon University Hospital, Tokyo, Japan
| | - Yoko Ida
- Department of Clinical Laboratory, Kyorin University Hospital, Tokyo, Japan
| | - Saho Koyano
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazunari Sonobe
- Department of Clinical Laboratory, Nippon Medical School, Tokyo, Japan
| | - Noboru Okamura
- Department of Microbiology and Immunology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryoichi Saito
- Department of Microbiology and Immunology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
24
|
Spaniol V, Wyder S, Aebi C. RNA-Seq-based analysis of the physiologic cold shock-induced changes in Moraxella catarrhalis gene expression. PLoS One 2013; 8:e68298. [PMID: 23844181 PMCID: PMC3699543 DOI: 10.1371/journal.pone.0068298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. RESULTS In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26 °C cold shock or to continuous growth at 37 °C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26 °C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26 °C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. CONCLUSION Cold shock at a physiologically relevant temperature of 26 °C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence.
Collapse
Affiliation(s)
- Violeta Spaniol
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
25
|
Kawano T, Hirano T, Kodama S, Mitsui MT, Ahmed K, Nishizono A, Suzuki M. Pili play an important role in enhancing the bacterial clearance from the middle ear in a mouse model of acute otitis media with Moraxella catarrhalis. Pathog Dis 2013; 67:119-31. [PMID: 23620157 DOI: 10.1111/2049-632x.12025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/28/2023] Open
Abstract
Moraxella catarrhalis is a Gram-negative aerobic diplococcus that is currently the third most frequent cause of bacterial acute otitis media (AOM) in children. In this study, we developed an experimental murine AOM model by inoculating M. catarrhalis in the middle ear bulla and studied the local response to this inoculation, and modulation of its course by the pili of M. catarrhalis. The pili-positive and pili-negative M. catarrhalis showed differences in bacterial clearance and infiltration of inflammatory cells in the middle ear. Pili-negative M. catarrhalis induced a more delayed and prolonged immune response in the middle ear than that of pili-positive M. catarrhalis. TLR2, -4, -5 and -9 mRNA expression was upregulated in neutrophils that infiltrated the middle ear cavity during AOM caused by both pili-positive and pili-negative bacteria. TLR5 mRNA expression and TLR5 protein in the neutrophils were induced more robustly by pili-positive M. catarrhalis. This immune response is likely to be related to neutrophil function such as toll-like 5-dependent phagocytosis. Our results show that mice may provide a useful AOM model for studying the role of M. catarrhalis. Furthermore, we show that pili play an important role in enhancing M. catarrhalis clearance from the middle ear that is probably mediated through neutrophil-dependent TLR5 signaling.
Collapse
Affiliation(s)
- Toshiaki Kawano
- Department of Otolaryngology, Oita University Faculty of Medicine, Oita, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Su YC, Singh B, Riesbeck K. Moraxella catarrhalis: from interactions with the host immune system to vaccine development. Future Microbiol 2013; 7:1073-100. [PMID: 22953708 DOI: 10.2217/fmb.12.80] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Moraxella catarrhalis is a human-restricted commensal that over the last two decades has developed into an emerging respiratory tract pathogen. The bacterial species is equipped with various adhesins to facilitate its colonization. Successful evasion of the human immune system is a prerequisite for Moraxella infection. This strategy involves induction of an excessive proinflammatory response, intervention of granulocyte recruitment to the infection site, activation of selected pattern recognition receptors and cellular adhesion molecules to counteract the host bacteriolytic attack, as well as, finally, reprogramming of antigen presenting cells. Host immunomodulator molecules are also exploited by Moraxella to aid in resistance against complement killing and host bactericidal molecules. Thus, breaking the basis of Moraxella immune evasion mechanisms is fundamental for future invention of effective therapy in controlling Moraxella infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
27
|
Antimicrobial resistance of Moraxella catarrhalis isolates in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2012; 45:134-40. [DOI: 10.1016/j.jmii.2011.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 05/12/2011] [Accepted: 07/18/2011] [Indexed: 11/22/2022]
|
28
|
Liu Y, Zhao C, Zhang F, Chen H, Chen M, Wang H. High prevalence and molecular analysis of macrolide-nonsusceptible Moraxella catarrhalis isolated from nasopharynx of healthy children in China. Microb Drug Resist 2012; 18:417-26. [PMID: 22394083 DOI: 10.1089/mdr.2011.0175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Three hundred eighty-three isolates of Moraxella catarrhalis were collected from healthy children aged less than 2 years in China and assessed for antimicrobial resistance. We found that 92.2% (n=353) produced a β-lactamase. Nonsusceptibility rates to erythromycin and azithromycin, determined using Clinical Laboratory Standards Institute (CLSI) breakpoints, were 40.3% and 22.5%, respectively; nonsusceptibility rates determined using pharmacokinetics/pharmacodynamics breakpoints, however, were 59% and 60.1%. The minimal inhibitory concentration (MIC)(90) values were >256 μg/ml. Nonsusceptibility rates varied by region from 9.7% in Dongguan to 75.9% in Jinan. Further, concomitant resistance to β-lactam antibiotics was also observed. Pulsed-field gel electrophoresis analysis of 27/37 high-level macrolide-resistant M. catarrhalis isolates showed that closely related pulsotypes dominated, with a total of 11 different pulsotypes being observed. The closely related pulsotypes were observed in isolates originating from all six Chinese cities investigated, possibly as a consequence of the mobility of the Chinese population. Sixteen patterns of 23S rRNA mutations were found among 97 selected isolates using polymerase chain reaction and sequencing, but no known ermA, ermB, mefA, or mefE genes could be detected. Mutations A2982T and A2796T in 23S rRNA were related to high-level macrolide resistance (MICs ranging from 24 to >256 μg/ml), while an A2983T mutation was associated with low-level macrolide resistance (MICs ranging from 0.19 to 16 μg/ml).
Collapse
Affiliation(s)
- Yali Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
29
|
Wang H, Chen M, Xu Y, Sun H, Yang Q, Hu Y, Cao B, Chu Y, Liu Y, Zhang R, Yu Y, Sun Z, Zhuo C, Ni Y, Hu B, Tan TY, Hsueh PR, Wang JH, Ko WC, Chen YH, Wahjono H. Antimicrobial susceptibility of bacterial pathogens associated with community-acquired respiratory tract infections in Asia: report from the Community-Acquired Respiratory Tract Infection Pathogen Surveillance (CARTIPS) study, 2009–2010. Int J Antimicrob Agents 2011; 38:376-83. [DOI: 10.1016/j.ijantimicag.2011.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 11/27/2022]
|
30
|
Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother 2011; 55:3845-53. [PMID: 21576428 DOI: 10.1128/aac.01772-10] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Moraxella catarrhalis is a common pathogen found in children with upper respiratory tract infections and in patients with chronic obstructive pulmonary disease during exacerbations. The bacterial species is often isolated together with Streptococcus pneumoniae and Haemophilus influenzae. Outer membrane vesicles (OMVs) are released by M. catarrhalis and contain phospholipids, adhesins, and immunomodulatory compounds such as lipooligosaccharide. We have recently shown that M. catarrhalis OMVs exist in patients upon nasopharyngeal colonization. As virtually all M. catarrhalis isolates are β-lactamase positive, the goal of this study was to investigate whether M. catarrhalis OMVs carry β-lactamase and to analyze if OMV consequently can prevent amoxicillin-induced killing. Recombinant β-lactamase was produced and antibodies were raised in rabbits. Transmission electron microscopy, flow cytometry, and Western blotting verified that OMVs carried β-lactamase. Moreover, enzyme assays revealed that M. catarrhalis OMVs contained active β-lactamase. OMVs (25 μg/ml) incubated with amoxicillin for 1 h completely hydrolyzed amoxicillin at concentrations up to 2.5 μg/ml. In functional experiments, preincubation of amoxicillin (10× MIC) with M. catarrhalis OMVs fully rescued amoxicillin-susceptible M. catarrhalis, S. pneumoniae, and type b or nontypeable H. influenzae from β-lactam-induced killing. Our results suggest that the presence of amoxicillin-resistant M. catarrhalis originating from β-lactamase-containing OMVs may pave the way for respiratory pathogens that by definition are susceptible to β-lactam antibiotics.
Collapse
|
31
|
Jetter M, Spaniol V, Troller R, Aebi C. Down-regulation of porin M35 in Moraxella catarrhalis by aminopenicillins and environmental factors and its potential contribution to the mechanism of resistance to aminopenicillins. J Antimicrob Chemother 2010; 65:2089-96. [PMID: 20801781 PMCID: PMC2941675 DOI: 10.1093/jac/dkq312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Objectives The outer membrane protein M35 of Moraxella catarrhalis is an antigenically conserved porin. Knocking out M35 significantly increases the MICs of aminopenicillins. The aim of this study was to determine the biological mechanism of this potentially new antimicrobial resistance mechanism of M. catarrhalis and the behaviour of M35 in general stress situations. Methods PCR using m35-specific primers was used to detect the m35 gene in clinical isolates. The m35 mRNA expression of strains 300, O35E and 415 after exposure to amoxicillin and different stress conditions was measured by real-time PCR and normalized in relation to their 16S rRNA expression. The expression of M35 protein was analysed by SDS-PAGE and western blotting. Results Screening of 52 middle ear isolates resulted in positive PCR products for all tested strains. The analysis of m35 mRNA expression after amoxicillin treatment showed 24%–85% down-regulation compared with the respective amoxicillin-free controls in all three strains tested. Also, analysis of protein concentrations revealed lower M35 expression after growth with amoxicillin. Investigation of M35 during general stress responses showed down-regulation of the porin with growth at 26°C and 42°C, under hyperosmolar stress and under iron restriction. Conclusions The reduced expression of M35 after aminopenicillin exposure indicates a novel resistance mechanism against aminopenicillins in M. catarrhalis, which may be relevant in vivo. The differences in expression after different stress treatments demonstrate that M35 is involved in general stress responses.
Collapse
Affiliation(s)
- Marion Jetter
- Institute for Infectious Diseases, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | |
Collapse
|