1
|
Shen J, Yasir M, Willcox M. Whole genome sequencing-based prediction of antibiotic-resistance of ocular Staphylococcus aureus across six continents. Exp Eye Res 2025; 257:110425. [PMID: 40409356 DOI: 10.1016/j.exer.2025.110425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
Staphylococcus aureus is a leading cause of ocular infections, resulting in vision loss in severe cases. Understanding the antibiotic resistance profiles of ocular S. aureus can help customize treatments. However, there is a lack of global data on the resistance patterns of ocular isolates and comparative regional analyses. Hence, WGS data from 195 ocular S. aureus isolates across six continents were analysed to identify antibiotic resistance genes (ARGs) and predict antibiotic resistance phenotypes in this study. A total of 40 ARGs were detected, involving resistance mechanisms against aminoglycosides, beta-lactams, macrolide-lacosamide-streptogramin B (MLSB), glycopeptides, tetracyclines, other antibiotic classes, and efflux pump regulators. Notably, the prevalences of ARGs associated with efflux pump regulators and beta-lactams were particularly high (>80 %). Resistance to 45 antibiotics was predicted across the isolates, with 51 % identified as multidrug-resistant (MDR), while only 8 % were predicted to be fully susceptible to all predicted antibiotics. Regional data varied, with isolates from North America and Asia exhibiting the most extensive resistance patterns, showing predicted resistance to 45 and 41 antibiotics, respectively. In contrast, Oceanian isolates were predicted to be resistant to only 14 antibiotics. Beta-lactams showed the highest predicted resistance prevalence among all antibiotic classes. Notably, North American isolates showed markedly higher resistance to MLSB antibiotics. A high proportion of cloud genes highlights the need for monitoring regional resistance. This study provides antibiotic resistance profiles among ocular S. aureus using WGS prediction, emphasizing the importance of regional surveillance and antimicrobial stewardship to suggest effective treatment strategies. It is recommended that WGS of more strains be deposited to overcome limited data, and laboratory tests be performed to analyse the consistency between genetic predicted and phenotypic resistance.
Collapse
Affiliation(s)
- Jiawei Shen
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Jiang Y, Zhao G, Gong Y, Chen Y, Li C, Han S, Deng Y, Zhao J, Wang J, Wang C. Dodecapeptides derived from human cathelicidin with potent activity against carbapenem-resistant Acinetobacter baumannii. Eur J Med Chem 2025; 289:117477. [PMID: 40056800 DOI: 10.1016/j.ejmech.2025.117477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The increasing infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) poses a serious threat to global public health. Antimicrobial peptides (AMPs) are alternatives to conventional antibiotics in combating superbugs. However, discovering AMPs with low synthesis costs and strong antibacterial effects against CRAB is challenging. In this study, we synthesized 28 dodecapeptides for bactericidal assessment by site mutation and all-hydrocarbon stapling on the basis of the antibacterial core of human cathelicidin. The linear derivative d12 (Q5RD9I-KR12) and the i, i + 4 stapled peptide d24, which was generated by substituting Val4 and Lys8 of d12 to staples, stood out among the candidates. These short AMPs efficiently bound to bacterial membrane and penetrated it in a lipid A-dependent manner, resulting in low minimal inhibitory concentrations to inactivate CRAB clinical isolates (2.5-20 μg/mL). The CRAB infection mouse models of irradiation-assisted local pulmonary infection and intra-abdominal sepsis revealed that treatment with d12 and d24 significantly eliminated CRAB in vivo and thereby increased mouse survival. Owing to its improved proteolytic resistance, d24 outperformed d12 in suppressing intra-abdominal CRAB infection. The excellent antibacterial effects, good biocompatibility, and facile synthesis make d12 and d24 promising candidates to curb CRAB infections in different application scenarios.
Collapse
Affiliation(s)
- Yiyi Jiang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yali Gong
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, the First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Yin Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Chenwenya Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Songling Han
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Youcai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Army Medical University, Chongqing, 400047, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Dad N, Elsawy MA, Humphreys G, Pluen A, Lu JR, McBain AJ. A critical view of antimicrobial peptides: exploring their potential and the barriers to realization. J Appl Microbiol 2025; 136:lxaf087. [PMID: 40205522 DOI: 10.1093/jambio/lxaf087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/07/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025]
Abstract
The global rise of multidrug-resistant infections highlights the urgent need for innovative therapeutic strategies beyond traditional antibiotics. Antimicrobial peptides (AMPs), naturally occurring in all forms of life and synthetically producible, have garnered significant attention for their broad-spectrum antimicrobial properties and diverse mechanisms of action, including membrane disruption, immune modulation, and biofilm formation inhibition and disruption. Despite great potential, the clinical deployment of AMPs faces significant challenges, including cytotoxicity, low chemical stability, high production costs, and stringent regulatory demands. Innovative strategies, such as AMP-antibiotic conjugation, offer potential solutions to some of these challenges by enhancing efficacy, reducing toxicity, and broadening antimicrobial activity. This review critically evaluates the promise and limitations of AMPs as therapeutic antibacterial agents. We also explore the potential of AMP-antibiotic conjugates, highlighting their potential synergistic effects and the obstacles to their clinical application. Antimicrobial self-assembling peptides are also discussed, with their ability to form nanostructures that may disrupt biofilms and inhibit bacterial communication, representing a promising but complex avenue. A critical evaluation of these emerging strategies, grounded in their practical applicability and translational challenges, is essential to drive meaningful progress in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Navid Dad
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Mohamed A Elsawy
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Gavin Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Alain Pluen
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Schuster Building, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
4
|
Baindara P, Kumari S, Dinata R, Mandal SM. Antimicrobial peptides: evolving soldiers in the battle against drug-resistant superbugs. Mol Biol Rep 2025; 52:432. [PMID: 40293554 DOI: 10.1007/s11033-025-10533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The discovery of antibiotics was one of the greatest achievements in human history, however, antibiotic resistance evolved no later than the introduction of antibiotics. The rapid evolution of antibiotic-resistant pathogens soon became frightening and remained a global healthcare threat. There is an urgent need to have new alternatives or new strategies to combat the multi-drug resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), carbapenem-resistant Pseudomonas aeruginosa (CR-PA), extended-spectrum β-lactamases (ESBL) bearing multidrug-resistant Acinetobacter baumannii (MDR-AB), Escherichia coli (E. coli), and Klebsiella pneumoniae (K. pneumoniae). Antimicrobial peptides (AMPs) have been considered promising agents equipped with unique mechanisms of action along with several other benefits to fight the battle against drug-resistant superbugs. Overall, the current review summarizes the mechanisms of drug-resistant development, the mechanism of action adopted by AMPs to combat drug-resistant pathogens, and the immunomodulatory properties of AMPs. Additionally, we have also reviewed the synergistic potential of AMPs with conventional antibiotics along with the associated challenges and limitations of AMPs in the way of pharmacological development for therapeutic applications in clinical settings.
Collapse
Affiliation(s)
- Piyush Baindara
- Animal Science Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Sumeeta Kumari
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, Buffalo, NY, 14214, USA
| | - Roy Dinata
- Animal Science Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Santi M Mandal
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
5
|
Zhang J, Luan L, Xu Y, Jiang S, Zhang W, Tian L, Ye W, Han J, Zhang C, Wang T, Meng Q. Development of novel broad-spectrum amphipathic antimicrobial peptides against multidrug-resistant bacteria through a rational combination strategy. J Adv Res 2025:S2090-1232(25)00048-7. [PMID: 39832719 DOI: 10.1016/j.jare.2025.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION In recent years, cationic amphipathic antimicrobial peptides (AMPs) have shown great promise in combating antibiotic resistance on account of their distinctive membrane-disruptive mechanism. However, the clinical application of AMPs is restricted by their unsatisfactory stability and safety. Although attempts have been made to improve the stability and safety of AMPs, many of them are accompanied by a decline in their antimicrobial activity and bacterial selectivity. OBJECTIVES To develop AMPs with excellent and balanced antimicrobial activity, stability, and safety using a combination strategy. METHODS A series of sC184b-derived peptide analogues were designed by a combination strategy of subtly adjusting the charges, hydrophobic properties, and introducing specific unnatural amino acids in a well-balanced manner. The antimicrobial activity, cytotoxicity, hemolytic activity, stability, anti-biofilm activity, mechanism of action, synergistic effects, in vivo efficacy, and pharmacokinetics of the analogues were evaluated. RESULTS Among these analogues, P-α-02-B stood out for its broad-spectrum and potent antimicrobial activity, anti-biofilm activity, desirable bacterial selectivity, high plasma stability, and synergistic effect with antibiotic levofloxacin. P-α-02-B exhibited strong membrane disturbance effect, which could be explained by its rigid α-helical structure revealed by molecular dynamics simulations. More importantly, P-α-02-B showed favorable therapeutic efficacy in vivo, whether used alone or in combination with levofloxacin. CONCLUSION P-α-02-B is a promising antimicrobial agent for MDR bacterial infections, demonstrating the effectiveness of the combination strategy for AMP development.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Liang Luan
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Youdong Xu
- National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Shuyuan Jiang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Wenpeng Zhang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Long Tian
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Weifeng Ye
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jiaqi Han
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Changhao Zhang
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Taoran Wang
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Qingbing Meng
- State Key Laboratory of National Security Specially Needed Medicines, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
6
|
Shafqat A, Li M, Zakirullah, Liu F, Tong Y, Fan J, Fan H. A comprehensive review of research advances in the study of lactoferrin to treat viral infections. Life Sci 2025; 361:123340. [PMID: 39730037 DOI: 10.1016/j.lfs.2024.123340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Lactoferrin (Lf) is a naturally occurring glycoprotein known for its antiviral and antibacterial properties and is present in various physiological fluids. Numerous studies have demonstrated its antiviral effectiveness against multiple viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza virus (IFV), herpes simplex virus (HSV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV). Lf, a vital component of the mucosal defense system, plays a crucial role in inhibiting viral infection by binding to both host cells and viral particles, such as the Hepatitis C virus (HCV). This interaction enables Lf to keep viral particles away from their target cells, emphasizing its significance as a fundamental element of mucosal defense against viral infections. Additionally, Lf has the ability to modulate cytokine expression and enhance cellular immune responses. In the innate immune system, Lf serves as a unique iron transporter and helps suppress various pathogens like bacteria, fungi, and viruses. This article summarises the potential antiviral properties of Lf against various viruses, along with its other mentioned functions. The advancement of Lf-based therapies supports the homology of food and medicine, providing a promising avenue to address viral infections and other public health challenges.
Collapse
Affiliation(s)
- Amna Shafqat
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Feitong Liu
- H&H Group, H&H Research, China Research and Innovation, Guangzhou, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Junfen Fan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin, China.
| |
Collapse
|
7
|
Minnelli C, Mangiaterra G, Laudadio E, Citterio B, Rinaldi S. Investigation on the Synergy between Membrane Permeabilizing Amphiphilic α-Hydrazido Acids and Commonly Used Antibiotics against Drug-Resistant Bacteria. Molecules 2024; 29:4078. [PMID: 39274926 PMCID: PMC11397519 DOI: 10.3390/molecules29174078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The growth of (multi)drug resistance in bacteria is among the most urgent global health issues. Monocationic amphiphilic α-hydrazido acid derivatives are structurally simple mimics of antimicrobial peptides (AMPs) with fewer drawbacks. Their mechanism of membrane permeabilization at subtoxic concentrations was found to begin with an initial electrostatic attraction of isolated amphiphile molecules to the phospholipid heads, followed by a rapid insertion of the apolar portions. As the accumulation into the bilayer proceeded, the membrane increased its fluidity and permeability without being subjected to major structural damage. After having ascertained that α-hydrazido acid amphiphiles do not interact with bacterial DNA, they were subjected to synergy evaluation for combinations with conventional antibiotics. Synergy was observed for combinations with tetracycline against sensitive S. aureus and E. coli, as well as with ciprofloxacin and colistin against resistant strains. Additivity with a remarkable recovery in activity of conventional antibiotics (from 2-fold to ≥32-fold) together with largely subtoxic concentrations of α-hydrazido acid derivatives was found for combinations with ciprofloxacin toward susceptible S. aureus and methicillin toward MRSa. However, no potentiation of conventional antibiotics was observed for combinations with linezolid and gentamicin against the corresponding resistant S. aureus and E. coli strains.
Collapse
Affiliation(s)
- Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Gianmarco Mangiaterra
- Department of Biomolecular Science, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Barbara Citterio
- Department of Biomolecular Science, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
8
|
Ioannou P, Baliou S, Kofteridis DP. Antimicrobial Peptides in Infectious Diseases and Beyond-A Narrative Review. Life (Basel) 2023; 13:1651. [PMID: 37629508 PMCID: PMC10455936 DOI: 10.3390/life13081651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite recent medical research and clinical practice developments, the development of antimicrobial resistance (AMR) significantly limits therapeutics for infectious diseases. Thus, novel treatments for infectious diseases, especially in this era of increasing AMR, are urgently needed. There is ongoing research on non-classical therapies for infectious diseases utilizing alternative antimicrobial mechanisms to fight pathogens, such as bacteriophages or antimicrobial peptides (AMPs). AMPs are evolutionarily conserved molecules naturally produced by several organisms, such as plants, insects, marine organisms, and mammals, aiming to protect the host by fighting pathogenic microorganisms. There is ongoing research regarding developing AMPs for clinical use in infectious diseases. Moreover, AMPs have several other non-medical applications in the food industry, such as preservatives, animal husbandry, plant protection, and aquaculture. This review focuses on AMPs, their origins, biology, structure, mechanisms of action, non-medical applications, and clinical applications in infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
9
|
Zhu J, Liu J, Hong X, Sun Y. Synergism With ε-Polylysine Hydrochloride and Cinnamon Essential Oil Against Dual-Species Biofilms of Listeria monocytogenes and Pseudomonas lundensis. Front Microbiol 2022; 13:885502. [PMID: 35756071 PMCID: PMC9226771 DOI: 10.3389/fmicb.2022.885502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Various pathogenic and spoilage bacteria frequently coexist in meat processing environments and can form multispecies biofilms, causing significant health and economic issues. Despite the prevalence and coexistence, only less is known about possible interactions between Listeria monocytogenes (LM) and spoilers like Pseudomonas species, and their community-wide resistance against natural preservatives. This study evaluates the interactions between mono- or dual-species biofilms formed by LM and Pseudomonas lundensis (PL), as well as the sensitivity of these bacteria in dual-species biofilms to ε-polylysine hydrochloride (ε-PLH) alone or combined with cinnamon essential oil (CEO). The results showed that the biofilm cell density of P. lundensis in dual species was higher (p < 0.05) than LM, constituting about 85% of the total population. More biofilms and exopolysaccharide both in mono- or dual species of the two psychrotrophic strains were greatly produced at 15°C than at 30°C. The biomass, biovolume, and thickness of dual-species biofilms were significantly lower than single PL biofilm when tested using crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy, indicating the competitive interactions between them prevail. Additionally, ε-PLH significantly reduced the biofilm development as mono- and dual species in a concentration-dependent manner, especially single LM biofilm, which was consistent with the decrease in autoinducer-2 (AI-2) activity. LM as dual-species biofilms exhibited lower sensitivity to ε-PLH than its mono-biofilm probably due to protective effect conferred by PL. ε-PLH in combination with CEO, at the maximum sublethal concentrations (MSCs), showed enhanced inhibitory activity against dual-species biofilm formation, as evidenced by thin spare spatial structures and reduced AI-2 activity. In addition, the preformed dual biofilms were dramatically eradicated following treatment with ε-PLH combined with CEO at higher than minimum inhibitory concentration in comparison with either of the compounds used alone, indicating the synergistic antibiofilm of the two preservatives. This study reveals the competitive interactions between the two strains in dual-species biofilms, in which the dominant PL significantly contributed toward the tolerance of LM to ε-PLH, and the use of combined preservatives shows it is an effective strategy to control the multispecies biofilms in meat processing.
Collapse
Affiliation(s)
- Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jingcong Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaoli Hong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yang Sun
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
10
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
11
|
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022; 42:1377-1422. [PMID: 34984699 DOI: 10.1002/med.21879] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are important effector immune defense molecules in multicellular organisms. AMPs exert their antimicrobial activities through several mechanisms; thus far, induction of drug resistance through AMPs has been regarded as unlikely. Therefore, they have great potential as new generation antimicrobial agents. To date, more than 30 AMP-related drugs are in the clinical trial phase. In recent years, studies show that some AMPs and conventional antibiotics have synergistic effects. The combined use of AMPs and antibiotics can kill drug-resistant pathogens, prevent drug resistance, and significantly improve the therapeutic effects of antibiotics. In this review, we discuss the progress in synergistic studies on AMPs and conventional antibiotics. An overview of the current understanding of the functional scope of AMPs, ongoing clinical trials, and challenges in the development processes are also presented.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijing Hao
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Deng
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Rima M, Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1095. [PMID: 34572678 PMCID: PMC8466391 DOI: 10.3390/antibiotics10091095] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides constitute one of the most promising alternatives to antibiotics since they could be used to treat bacterial infections, especially those caused by multidrug-resistant pathogens. Many antimicrobial peptides, with various activity spectra and mechanisms of actions, have been described. This review focuses on their use against ESKAPE bacteria, especially in biofilm treatments, their synergistic activity, and their application as prophylactic agents. Limitations and challenges restricting therapeutic applications are highlighted, and solutions for each challenge are evaluated to analyze whether antimicrobial peptides could replace antibiotics in the near future.
Collapse
Affiliation(s)
- Mariam Rima
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, 94270 Le Kremlin-Bicetre, France;
| | - Mohamad Rima
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (M.R.); (Z.F.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon; (M.R.); (Z.F.)
- Department of Biology, Faculty of Sciences III, Lebanese University, Tripoli 1300, Lebanon
| | - Jean-Marc Sabatier
- Institut de Neuro Physiopathologie, UMR7051, Aix-Marseille Université, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13005 Marseille, France
| | - Burkhard Bechinger
- Institut de Chimie de Strasbourg, CNRS, UMR7177, University of Strasbourg, 67008 Strasbourg, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Thierry Naas
- Team ReSIST, INSERM U1184, School of Medicine Université Paris-Saclay, 94270 Le Kremlin-Bicetre, France;
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicetre, France
- French National Reference Centre for Antibiotic Resistance: Carbapenemase-Producing Enterobacterales, 94270 Le Kremlin-Bicetre, France
| |
Collapse
|
13
|
Bioactive Secondary Metabolites from Marine Streptomyces griseorubens f8: Isolation, Identification and Biological Activity Assay. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9090978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Marine actinomycetes are a potential source of a wide variety of bioactive natural products. Herein, four cyclic dipeptides, namely, cyclo(L-Val-L-Pro) (compound 1), cyclo(L-Pro-L-Leu) (compound 2), cyclo(L-Pro-L-Tyr) (compound 3) and cyclo(L-Pro-L-Phe) (compound 5), and an N-acetyltyramine (compound 4) were first isolated and identified as products of the marine Streptomyces griseorubens f8. Compounds 3 and 5 exhibit antibacterial activity against Staphylococcus aureus, Klebsiella aerogenes and Proteus vulgaris. The minimum inhibitory concentrations (MICs) against Staphylococcus aureus, Klebsiella aerogenes and Proteus vulgaris are 160 µg/mL, 100 µg/mL, 120 µg/mL for the compound 3 and 180 µg/mL, 130 µg/mL 150 µg/mL for the compound 5, respectively. In addition, compounds 1, 2, 3 and 5 was first found to have the ability to inhibit the invasion and migration of A549 cells (lung cancer cells), which exhibited the potentiality for these compounds to be used as novel anticancer drugs. This study provides a novel production strain for compounds 1, 2, 3 and 5, and four potential promising anticancer agents.
Collapse
|
14
|
Transcriptomic analysis of the food spoilers Pseudomonas fluorescens reveals the antibiofilm of carvacrol by interference with intracellular signaling processes. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol 2021; 11:668632. [PMID: 34195099 PMCID: PMC8238046 DOI: 10.3389/fcimb.2021.668632] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are essential drugs used to treat pathogenic bacteria, but their prolonged use contributes to the development and spread of drug-resistant microorganisms. Antibiotic resistance is a serious challenge and has led to the need for new alternative molecules less prone to bacterial resistance. Antimicrobial peptides (AMPs) have aroused great interest as potential next-generation antibiotics, since they are bioactive small proteins, naturally produced by all living organisms, and representing the first line of defense against fungi, viruses and bacteria. AMPs are commonly classified according to their sources, which are represented by microorganisms, plants and animals, as well as to their secondary structure, their biosynthesis and their mechanism of action. They find application in different fields such as agriculture, food industry and medicine, on which we focused our attention in this review. Particularly, we examined AMP potential applicability in wound healing, skin infections and metabolic syndrome, considering their ability to act as potential Angiotensin-Converting Enzyme I and pancreatic lipase inhibitory peptides as well as antioxidant peptides. Moreover, we argued about the pharmacokinetic and pharmacodynamic approaches to develop new antibiotics, the drug development strategies and the formulation approaches which need to be taken into account in developing clinically suitable AMP applications.
Collapse
Affiliation(s)
- Antonio Moretta
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | | | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | | | - Antonio Franco
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | - Donatella Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Vassallo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| |
Collapse
|
16
|
Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL. Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs). Front Microbiol 2021; 12:616979. [PMID: 33692766 PMCID: PMC7937881 DOI: 10.3389/fmicb.2021.616979] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) or host defense peptides protect the host against various pathogens such as yeast, fungi, viruses and bacteria. AMPs also display immunomodulatory properties ranging from the modulation of inflammatory responses to the promotion of wound healing. More interestingly, AMPs cause cell disruption through non-specific interactions with the membrane surface of pathogens. This is most likely responsible for the low or limited emergence of bacterial resistance against many AMPs. Despite the increasing number of antibiotic-resistant bacteria and the potency of novel AMPs to combat such pathogens, only a few AMPs are in clinical use. Therefore, the current review describes (i) the potential of AMPs as alternatives to antibiotics, (ii) the challenges toward clinical implementation of AMPs and (iii) strategies to improve the success rate of AMPs in clinical trials, emphasizing the lessons we could learn from these trials.
Collapse
Affiliation(s)
- Gabrielle S Dijksteel
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Magda M W Ulrich
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
17
|
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serrano-Luna J, de la Garza M. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020; 25:E5763. [PMID: 33302377 PMCID: PMC7762604 DOI: 10.3390/molecules25245763] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.
Collapse
Affiliation(s)
- Daniela Zarzosa-Moreno
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Coyoacán 04510, CdMx, Mexico
| | - Luisa Sofía Ramírez-Texcalco
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Erick Torres-López
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Ricardo Ramírez-Mondragón
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Juan Omar Hernández-Ramírez
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Estado de México, Mexico; (L.S.R.-T.); (E.T.-L.); (R.R.-M.); (J.O.H.-R.)
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Zacatenco 07360, CdMx, Mexico; (D.Z.-M.); (C.A.-G.); (J.S.-L.)
| |
Collapse
|
18
|
Secondary Structural Transformation of Bovine Lactoferricin Affects Its Antibacterial Activity. Probiotics Antimicrob Proteins 2020; 13:873-884. [PMID: 33188636 DOI: 10.1007/s12602-020-09726-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
Lactoferricin (Lfcin) is a potent antibacterial peptide derived from lactoferrin by pepsin hydrolysis. It was hypothesized that structural transformation of Lfcin could affect its antibacterial function through forming and breaking of intramolecular disulfide bond. To prove this hypothesis, bovine Lfcin (bLfcin) and its two derivatives, bLfcin with a disulfide bond (bLfcin DB) and bLfcin with a mutation C36G (bLfcin C36G), were synthesized, purified, and identified. The circular dichroism (CD) spectra of the peptides were detected in solutions with different ionic and hydrophobic strength. Then, the secondary structure contents of the peptides were calculated on the basis of the CD spectra. The antibacterial activity of the peptides against Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 14028, Shigella flexneri ATCC 12022, and Staphylococcus aureus ATCC 25923 was evaluated. The results showed that bLfcin and bLfcin C36G had similar percentages of secondary structure in water, while bLfcin and bLfcin DB had similar ratios of secondary structure under less hydrophobic conditions. The synthetic peptides exhibited antibacterial activity against all the tested bacteria, except for S. aureus ATCC 25923. bLfcin demonstrated higher antibacterial activity compared with its derivatives. The results suggested that bLfcin could transform its structure under alterative ionic strengths and hydrophobic conditions, and the transformation of structures was beneficial to enhancing the antibacterial function.
Collapse
|
19
|
A peppermint oil emulsion stabilized by resveratrol-zein-pectin complex particles: Enhancing the chemical stability and antimicrobial activity in combination with the synergistic effect. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105675] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Hao K, Meng R, Bu X, Liu Z, Yan H, Zhang Y, Guo NA. Antibacterial Effect of Caprylic Acid and Potassium Sorbate in Combination against Listeria monocytogenes ATCC 7644. J Food Prot 2020; 83:920-927. [PMID: 32428934 DOI: 10.4315/0362-028x.jfp-19-458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/14/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Listeria monocytogenes is a common foodborne pathogen that cause life-threatening infection with high mortality rates. Biofilm development of L. monocytogenes decreases its sensitivity to antibiotics, which has long attracted attention globally. Caprylic acid (CA) and potassium sorbate (PS) are both widely used food preservatives, but their synergistic effect against L. monocytogenes has not been described. This study explored the antibacterial activities of the CA-PS combination against L. monocytogenes ATCC 7644 grown in planktonic or biofilm cultures. The fractional inhibitory concentration index values, determined by the checkerboard microdilution method, were 0.37 ± 0.03 and 0.31 ± 0.04, showing their synergistic antimicrobial effects against L. monocytogenes ATCC 7644 in planktonic and biofilm cultures, respectively. CA-PS effectively eradicated the biofilm biomass to 10.8% by crystal violet assay and to 8.63% by fluorescence microscopic analysis compared with the control. The apoptosis rates of microbial cells embedded within biofilm significantly increased to 51.4%. Subsequent analysis revealed that the combination inhibited biofilm formation by affecting extracellular DNA release and polysaccharide intercellular adhesion expression, which was decreased from 8.93 to 1.04 ng of extracellular DNA per relative biomass and to 54.7% of the control, respectively. In addition, the combination inhibited the growth of L. monocytogenes ATCC 7644 by up to 0.67 ± 0.05 and 0.30 ± 0.03 log CFU/cm2 in planktonic and biofilm modes on a carrot surface, respectively. The synergistic antibacterial effects of CA-PS against L. monocytogenes ATCC 7644 were statistically significant, and the combination is an excellent candidate to be a novel food preservative. HIGHLIGHTS
Collapse
Affiliation(s)
- Kun Hao
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Rizeng Meng
- Jilin Entry-exit Inspection and Quarantine Bureau, 130062 Changchun, People's Republic of China
| | - Xiujuan Bu
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Zonghui Liu
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Yan Zhang
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - N A Guo
- College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| |
Collapse
|
21
|
Lactoferrin Is Broadly Active against Yeasts and Highly Synergistic with Amphotericin B. Antimicrob Agents Chemother 2020; 64:AAC.02284-19. [PMID: 32094132 PMCID: PMC7179636 DOI: 10.1128/aac.02284-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Lactoferrin (LF) is a multifunctional milk protein with antimicrobial activity against a range of pathogens. While numerous studies report that LF is active against fungi, there are considerable differences in the level of antifungal activity and the capacity of LF to interact with other drugs. Here we undertook a comprehensive evaluation of the antifungal spectrum of activity of three defined sources of LF across 22 yeast and 24 mold species and assessed its interactions with six widely used antifungal drugs. LF was broadly and consistently active against all yeast species tested (MICs, 8 to 64 μg/ml), with the extent of activity being strongly affected by iron saturation. LF was synergistic with amphotericin B (AMB) against 19 out of 22 yeast species tested, and synergy was unaffected by iron saturation but was affected by the extent of LF digestion. LF-AMB combination therapy significantly prolonged the survival of Galleria mellonella wax moth larvae infected with Candida albicans or Cryptococcus neoformans and decreased the fungal burden 12- to 25-fold. Evidence that LF directly interacts with the fungal cell surface was seen via scanning electron microscopy, which showed pore formation, hyphal thinning, and major cell collapse in response to LF-AMB synergy. Important virulence mechanisms were disrupted by LF-AMB treatment, which significantly prevented biofilms in C. albicans and C. glabrata, inhibited hyphal development in C. albicans, and reduced cell and capsule size and phenotypic diversity in Cryptococcus Our results demonstrate the potential of LF-AMB as an antifungal treatment that is broadly synergistic against important yeast pathogens, with the synergy being attributed to the presence of one or more LF peptides.
Collapse
|
22
|
Khan M, Stapleton F, Willcox MDP. Susceptibility of Contact Lens-Related Pseudomonas aeruginosa Keratitis Isolates to Multipurpose Disinfecting Solutions, Disinfectants, and Antibiotics. Transl Vis Sci Technol 2020; 9:2. [PMID: 32821474 PMCID: PMC7401903 DOI: 10.1167/tvst.9.5.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose This study analyzed the susceptibilities of 17 contact lens (CL)-related keratitis isolates of Pseudomonas aeruginosa from Australia to antibiotics, multipurpose contact lens disinfecting solutions (MPDS), and disinfectants through minimum inhibitory (MIC) and minimum bactericidal concentrations. Methods Antibiotics included ciprofloxacin, levofloxacin, gentamicin, tobramycin, piperacillin, imipenem, ceftazidime, and polymyxin B. The MPDS OPTI-FREE PureMoist, Complete RevitaLens OcuTec, Biotrue, and Renu Advanced Formula and the constituent disinfectants; alexidine dihydrochloride, polyquaternium-1, polyaminopropyl biguanide, and myristamidopropyl dimethylamine (Aldox) were analyzed. The combined susceptibility of disinfectants based on the MPDS formulation was assessed through fractional inhibitory concentration. Results All isolates were susceptible to levofloxacin and gentamicin, 2/17 were resistant to ciprofloxacin; 1/17 was resistant to tobramycin, piperacillin, and polymyxin; and 3/17 were resistant to ceftazidime whereas 12/17 were resistant to imipenem. Of the four MPDSs, for Renu Advanced Formula 8/17 strains have an MIC ≤ 11.36 for OPTI-FREE PureMoist 14/17 strains have an MIC ≤ 11.36% for Complete RevitaLens 9/17 strains have an MIC ≤ 11.36, and for Biotrue 5/17 strains have MIC = 11.36. All strains were killed by 100% MPDS. At the concentrations used in the MPDSs, individual disinfectants were not active. From three tested isolates, no synergy was found in dual combinations of disinfectants. However, synergy was found for triple combination of disinfectants for three tested strains. Conclusions Australian CL-related isolates of P aeruginosa were susceptible to most antibiotics. There was variability in susceptibility to different MPDS. Individual disinfectant excipients had limited activity. The combination of the disinfectants showed synergy, antagonism, and no interaction. Translational Relevance This study will help to choose better preventive and treatment measures for microbial keratitis.
Collapse
Affiliation(s)
- Mahjabeen Khan
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
23
|
Antibiotics and Microbial Keratitis: Do We Need to Test for Resistance? Eye Contact Lens 2020; 46:1-2. [DOI: 10.1097/icl.0000000000000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Willcox MDP, Chen R, Kalaiselvan P, Yasir M, Rasul R, Kumar N, Dutta D. The Development of an Antimicrobial Contact Lens - From the Laboratory to the Clinic. Curr Protein Pept Sci 2019; 21:357-368. [PMID: 31429686 DOI: 10.2174/1389203720666190820152508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/14/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022]
Abstract
Contact lens wear is generally safe and provides excellent vision. However, contact lens wear is often associated with the risk of developing ocular surface infection and inflammation, and in severe cases, the infection can result in loss of vision. Antimicrobial peptide-coated contact lenses have been made to help reduce the incidence of infection and inflammation. This paper reviews the research progress from conception, through the laboratory and preclinical tests to the latest information on clinical testing of an antimicrobial contact lens. We provide insights into the pathways followed and pitfalls that have been encountered. The journey has not always been linear or smooth, but has resulted in some of the first published clinical testing of antimicrobial peptide-coated contact lenses in humans. We hope this may help lead to the development and commercialisation of antimicrobial contact lenses in the future.
Collapse
Affiliation(s)
- Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - R Chen
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - P Kalaiselvan
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - M Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - R Rasul
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - N Kumar
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - D Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
25
|
Namivandi-Zangeneh R, Sadrearhami Z, Dutta D, Willcox M, Wong EHH, Boyer C. Synergy between Synthetic Antimicrobial Polymer and Antibiotics: A Promising Platform To Combat Multidrug-Resistant Bacteria. ACS Infect Dis 2019; 5:1357-1365. [PMID: 30939869 DOI: 10.1021/acsinfecdis.9b00049] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The failure of many antibiotics in the treatment of chronic infections caused by multidrug-resistant (MDR) bacteria necessitates the development of effective strategies to combat this global healthcare issue. Here, we report an antimicrobial platform based on the synergistic action between commercially available antibiotics and a potent synthetic antimicrobial polymer that consists of three key functionalities: low-fouling oligoethylene glycol, hydrophobic ethylhexyl, and cationic primary amine groups. Checkerboard assays with Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli demonstrated synergy between our synthetic antimicrobial polymer and two antibiotics, doxycycline and colistin. Coadministration of these compounds significantly improved the bacteriostatic efficacy especially against MDR P. aeruginosa strains PA32 and PA37, where the minimal inhibitory concentrations (MICs) of polymer and antibiotics were reduced by at least 4-fold. A synergistic killing activity was observed when the antimicrobial polymer was used in combination with doxycycline, killing >99.999% of planktonic and biofilm P. aeruginosa PAO1 upon a 20 min treatment at a polymer concentration of 128 μg mL-1 (4.6 μM) and doxycycline concentration of 64 μg mL-1 (133.1 μM). In addition, this synergistic combination reduced the rate of resistance development in P. aeruginosa compared to individual compounds and was also capable of reviving susceptibility to treatment in the resistant strains.
Collapse
Affiliation(s)
- Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales−Sydney, Building E8, Gate 2, High Street, Kensington, Sydney, New South Wales 2052, Australia
| | - Zahra Sadrearhami
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales−Sydney, Building E8, Gate 2, High Street, Kensington, Sydney, New South Wales 2052, Australia
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales−Sydney, Rupert Myers Building, Gate 13, High Street, Kensington, Sydney, New South Wales 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales−Sydney, Rupert Myers Building, Gate 13, High Street, Kensington, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales−Sydney, Building E8, Gate 2, High Street, Kensington, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, University of New South Wales−Sydney, Building E8, Gate 2, High Street, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
26
|
Chen F, Tang Y, Zheng H, Xu Y, Wang J, Wang C. Roles of the Conserved Amino Acid Residues in Reduced Human Defensin 5: Cysteine and Arginine Are Indispensable for Its Antibacterial Action and LPS Neutralization. ChemMedChem 2019; 14:1457-1465. [PMID: 31290614 DOI: 10.1002/cmdc.201900282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/21/2019] [Indexed: 01/09/2023]
Abstract
Antimicrobial peptides (AMPs) that are able to neutralize toxins are promising antibiotics. In this study we investigated the role of structurally conserved amino acids in reduced human defensin 5 (HD5RED ), which is an endogenous peptide with antibacterial action and the ability to neutralize lipopolysaccharide (LPS). Cys residues and high Arg content, rather than Gly18 and Arg6 -Glu14 , were found to be indispensable for HD5RED binding to lipid A, for penetrating the bacterial outer and inner membranes, and for eliminating bacteria. Otherwise, all the conserved sites were requisite for HD5RED to block the interaction between LPS and LPS-binding protein and to suppress the TLR4-NF-κB signaling pathway initiated by LPS. Accordingly, we designed the acetamidomethylated Acm Cys-E21R-HD5RED , which was much more potent than HD5RED at eliminating bacteria and which can neutralize LPS. Acm Cys-E21R-HD5RED was also found to exhibit a synergistic effect with ciprofloxacin in killing multidrug-resistant Acinetobacter baumannii. The results of this study, in which multifunctional AMPs were designed based on structure-activity research, may help in the development of more peptide antibiotics.
Collapse
Affiliation(s)
- Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yong Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yang Xu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
27
|
Ptaszyńska N, Olkiewicz K, Okońska J, Gucwa K, Łęgowska A, Gitlin-Domagalska A, Dębowski D, Lica J, Heldt M, Milewski S, Ng TB, Rolka K. Peptide conjugates of lactoferricin analogues and antimicrobials-Design, chemical synthesis, and evaluation of antimicrobial activity and mammalian cytotoxicity. Peptides 2019; 117:170079. [PMID: 30959143 DOI: 10.1016/j.peptides.2019.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
Eight new peptide conjugates composed of modified bovine lactoferricin truncated analogues (LFcinB) and one of the three antimicrobials - ciprofloxacin (CIP), levofloxacin (LVX), and fluconazole (FLC) - were synthesized. Four different linkers were applied to connect a peptide and an antimicrobial agent. The FLC-containing peptidic conjugates were synthesized using the "click chemistry" method. This novel approach is reported here for the first time. Unlike their components, CIP- and LVX-based conjugates exerted activity against Candida yeast. Similarly to the constituent peptides, synthesized conjugates showed activity against Gram-positive bacteria, especially S. epidermidis. The most active were the conjugates containing CIP linked to the peptide by the redox-sensitive disulfide bridge. Our results show a significant role of a linker between antimicrobial agent and a peptide. This was also confirmed by the lack of synergistic effects on the antimicrobial activity of the constituent compounds. Moreover, cytotoxicity assays revealed that the proposed conjugates cause a comparatively low cytotoxic effect in reference to antibiotics widely used in therapies. Therefore, they can be deliberated as attractive leading structures for the development of drugs.
Collapse
Affiliation(s)
- Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Katarzyna Olkiewicz
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Okońska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Gucwa
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jan Lica
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Heldt
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
28
|
Willcox MD. Tear film, contact lenses and tear biomarkers. Clin Exp Optom 2019; 102:350-363. [PMID: 31119796 DOI: 10.1111/cxo.12918] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023] Open
Abstract
This article summarises research undertaken since 1993 in the Willcox laboratory at the University of New South Wales, Sydney on the tear film, its interactions with contact lenses, and the use of tears as a source of biomarkers for ocular and non-ocular diseases. The proteome, lipidome and glycome of tears all contribute to important aspects of the tear film, including its structure, its ability to defend the ocular surface against microbes and to help heal ocular surface injuries. The tear film interacts with contact lenses in vivo and interactions between tears and lenses can affect the biocompatibility of lenses, and may be important in mediating discomfort responses during lens wear. Suggestions are made for follow-up research.
Collapse
Affiliation(s)
- Mark Dp Willcox
- School of Optometry and Vision Science, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Jang H, Eom Y. Repurposing auranofin to combat uropathogenic
Escherichia coli
biofilms. J Appl Microbiol 2019; 127:459-471. [DOI: 10.1111/jam.14312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022]
Affiliation(s)
- H.‐I. Jang
- Department of Medical Sciences, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
| | - Y.‐B. Eom
- Department of Medical Sciences, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
| |
Collapse
|
30
|
A Pilot Study of the Synergy between Two Antimicrobial Peptides and Two Common Antibiotics. Antibiotics (Basel) 2019; 8:antibiotics8020060. [PMID: 31075940 PMCID: PMC6627861 DOI: 10.3390/antibiotics8020060] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Frequent and unrestricted use of antibiotics has been associated with the development of antibiotic resistance by microorganisms. Thus, there is a need to find novel antibacterial agents or a combination of agents as the first line of treatment for various infections. This study aimed to investigate the synergy between antimicrobial peptide (AMP) combinations or between AMP-antibiotics combinations using two common pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Methods: The AMPs melimine, Mel4 and protamine, and antibiotics cefepime and ciprofloxacin were used in this study. The minimum inhibitory concentration (MIC) of each were evaluated against P. aeruginosa and S. aureus strains by a microtiter broth dilution. Based on the MIC of each antimicrobial agent, a checkerboard assay was performed to investigate the synergy between them, which was expressed as the fractional inhibitory concentration (FIC). Results: The combination of melimine and ciprofloxacin showed synergistic activity against antibiotic sensitive or resistant strains of P. aeruginosa and with FIC values ≤0.5. Conclusion: Combinations of AMPs and the fluoroquinolone ciprofloxacin is a promising method for reducing resistance to the fluoroquinolone of P. aeruginosa.
Collapse
|
31
|
Abstract
Milk whey proteins carry out a number of important biological functions and also they are precursors of many biologically active peptides (antihypertensive peptides, antagonists of opioid receptors, regulators of intestinal motility, immunomodulatory, anti-microbial and anti-cancer peptides, appetite regulators and so on.). An important stage in natural bioactive peptides obtaining from milk whey proteins is the isolation of homogeneous proteins-precursors. Considering the significant difference in the molecular masses of whey proteins, a promising method for their selection is gel filtration. The purpose of the research was the fractionation of bioactive peptides precursors from milk whey using gel filtration on Sephadex G-150. The whey was obtained from fresh skimmed milk after isoelectric precipitation of casein. Gel filtration was carried out on the columns from a liquid chromatography kit by the “Reanal” company. The fractional composition and the degree of homogeneity of milk whey proteins were determined by disc-electrophoresis in the plates of a polyacrylamide gel. A repeated gel filtration of fractions from the chromatographic peaks, separated into sections, was performed to increase the fractionation efficiency. While choosing a dextran gel for gel filtration of precursors of biologically active peptides from milk whey proteins, we have taken into account the range of their molecular weights (from 10000 to 150000 Da), the ability to form supramolecular structures (β-LG), as well as the previously obtained results of gel filtration. As a result, it was shown that repeated gel filtration of milk whey on Sephadex G-150 allows efficiently fractionate the proteins-precursors of bioactive peptides. The range of peptides and proteins molecular weights that can be fractionated on this Sephadex is from 5000 to 300 000 Da. The usage of repeated gel filtration on Sephadex G-150 with the chromatogram separation into sectors allows to effectively fractionate proteins-precursors of bioactive peptides from milk whey. In particular, homogeneous β-lactoglobulin (degree of homogeneity > 95 %) and partially purified α-lactalbumin, as well as a group of immunoglobulins and a proteose-peptone fraction were obtained.
Collapse
|
32
|
Vargas-Casanova Y, Rodríguez-Mayor AV, Cardenas KJ, Leal-Castro AL, Muñoz-Molina LC, Fierro-Medina R, Rivera-Monroy ZJ, García-Castañeda JE. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv 2019; 9:7239-7245. [PMID: 35519960 PMCID: PMC9061098 DOI: 10.1039/c9ra00708c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
Dimeric and tetrameric peptides derived from LfcinB (20-25): RRWQWR, LfcinB (20-30): RRWQWRMKKLG, LfcinB (17-31): FKARRWQWRMKKLGA, or the palindromic sequence LfcinB (21-25)Pal: RWQWRWQWR were obtained by means of the SPPS-Fmoc/tBu methodology. The antibacterial activity of these molecules was evaluated against Escherichia coli (ATCC 25922 and ATCC 11775), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), and Pseudomonas aeruginosa (ATCC 27853). The dimer LfcinB (20-25)2: (RRWQWR)2K-Ahx, the tetramer LfcinB (20-25)4: (RRWQWR)4K2-Ahx2-C2, and the palindromic sequence LfcinB (21-25)Pal exhibited the highest antibacterial activity against the tested bacterial strains. In all cases, the antibacterial activity was dependent on peptide concentration. The polyvalent molecules LfcinB (20-25)2 and LfcinB (20-25)4 exhibited bacteriostatic and bactericidal activity against E. coli, P. aeruginosa, and S. aureus strains; additionally, this dimer and this tetramer combined with ciprofloxacin exhibited a synergistic antibacterial effect against E. coli ATCC 25922 and P. aeruginosa, respectively. Furthermore, the peptides LfcinB (20-30)4, LfcinB (20-25)4, and LfcinB (21-25)Pal combined with vancomycin exhibited a synergistic antibacterial effect against S. aureus and E. faecalis, respectively. This study showed that polyvalent peptides derived from LfcinB exhibit significant antibacterial activity, suggesting that these peptides could have a therapeutic application. Furthermore, our results suggest that polyvalent peptide synthesis could be considered as an innovative and viable strategy for obtaining promising antimicrobial molecules.
Collapse
Affiliation(s)
- Yerly Vargas-Casanova
- Biotechnology Institute, Universidad Nacional de Colombia Carrera 45 No 26-85 Bogotá 11321 Colombia
| | | | - Karen Johanna Cardenas
- Pharmacy Department, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 450, Office 213 Bogotá 11321 Colombia
| | - Aura Lucía Leal-Castro
- Medicine Faculty, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 450, Office 213 Bogotá 11321 Colombia
| | | | - Ricardo Fierro-Medina
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 450, Office 213 Bogotá 11321 Colombia
| | - Zuly Jenny Rivera-Monroy
- Chemistry Department, Universidad Nacional de Colombia Carrera 45 No 26-85, Building 450, Office 213 Bogotá 11321 Colombia
| | | |
Collapse
|
33
|
Koh JJ, Lin S, Bai Y, Sin WWL, Aung TT, Li J, Chandra V, Pervushin K, Beuerman RW, Liu S. Antimicrobial activity profiles of Amphiphilic Xanthone derivatives are a function of their molecular Oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2281-2298. [PMID: 29782818 DOI: 10.1016/j.bbamem.2018.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 01/01/2023]
Abstract
Currently, membrane-targeting small antimicrobial peptidomimetics (SAP) are important in antibiotic development because bacteria appear to develop resistance to these surface-active compounds less readily. However, the molecular membrane-targeting action of SAPs has received little attention. In this study, we investigated the effect of oligomerization of amphiphilic xanthone, a model SAP, on its antimicrobial properties against both Gram-positive and Gram-negative bacteria. First, oligomer formation by an amphiphilic xanthone, compound 2 (also coded as AM052), was investigated via solution-state nuclear magnetic resonance (NMR) spectroscopy. Then, the effects of oligomerization on membrane disruption were further studied via biophysical approaches. The results showed that the antimicrobial activities of SAPs develop in several stages: oligomer formation in aqueous solution, initial binding of oligomers to the membrane-water interface followed by insertion into the membrane bilayer, aggregation of antimicrobial oligomers in the membrane, and induced membrane leakage. Ultimately, the presence of the oligomers in the bacterial membrane leads to decreased membrane fluidity and bacterial cell death. Interestingly, the early formation of large oligomers leads to stronger membrane disruption and more rapid bacterial killing. However, reduced antimicrobial activities against Gram-negative bacteria were observed for compounds that formed larger oligomers because the LPS layer acts as a barrier to large complexes. Taken together, our results suggest that oligomerization of SAPs has a strong impact on their antimicrobial properties.
Collapse
Affiliation(s)
- Jun-Jie Koh
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Shuimu Lin
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Yang Bai
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Wendy Wan Ling Sin
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Thet Tun Aung
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Jianguo Li
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore; Bioinformatics Institute, 138671, Singapore
| | - Verma Chandra
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore; Bioinformatics Institute, 138671, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| | - Roger W Beuerman
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore; Duke-NUS Medical School, SRP Neuroscience and Behavioral Disorders, 169857, Singapore.
| | - Shouping Liu
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore; Duke-NUS Medical School, SRP Neuroscience and Behavioral Disorders, 169857, Singapore.
| |
Collapse
|
34
|
Hao Y, Yang N, Teng D, Wang X, Mao R, Wang J. A review of the design and modification of lactoferricins and their derivatives. Biometals 2018; 31:331-341. [PMID: 29455278 DOI: 10.1007/s10534-018-0086-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/14/2018] [Indexed: 11/28/2022]
Abstract
Lactoferricin (Lfcin), a multifunction short peptide with a length of 25 residues, is derived from the whey protein lactoferrin by acidic pepsin hydrolysis. It has potent nutritional enhancement, antimicrobial, anticancer, antiviral, antiparasitic, and anti-inflammatory activities. This review describes the research advantages of the above biological functions, with attention to the molecular design and modification of Lfcin. In this examination of design and modification studies, research on the identification of Lfcin active derivatives and crucial amino acid residues is also reviewed. Many strategies for Lfcin optimization have been studied in recent decades, but we mainly introduce chemical modification, cyclization, chimera and polymerization of this peptide. Modifications such as incorporation of D-amino acids, acetylation and/or amidation could effectively improve the activity and stability of these compounds. Due to their wide array of bio-functions and applications, Lfcins have great potential to be developed as biological agents with multiple functions involved with nutritional enhancement, as well as disease preventive and therapeutic effects.
Collapse
Affiliation(s)
- Ya Hao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,R & D Center, Beijing Shengtai Clouds Bio-Technology, Inc., Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Na Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Da Teng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Ruoyu Mao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China.,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China
| | - Jianhua Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing, 100081, People's Republic of China. .,Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
35
|
Shi C, Che M, Zhang X, Liu Z, Meng R, Bu X, Ye H, Guo N. Antibacterial activity and mode of action of totarol against Staphylococcus aureus in carrot juice. Journal of Food Science and Technology 2018; 55:924-934. [PMID: 29487434 DOI: 10.1007/s13197-017-3000-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/08/2017] [Accepted: 12/18/2017] [Indexed: 11/25/2022]
Abstract
Food contaminated with pathogenic bacteria such as Staphylococcus aureus (S. aureus), represents a serious health risk to human beings. Totarol is an antibacterial novel phenolic diterpenes. In present study, the antibacterial activity of totarol against S. aureus was investigated in a food system. The antibacterial activity of totarol was determined by measuring the zones of inhibition and minimum inhibitory concentrations (MICs). The MICs for S. aureus strains were in the range of 2-4 μg/ml. The probable antibacterial mechanism of totarol was the alteration in cell membranes integrity and permeability, which leading to the leakage of cellular materials. The electric conductivity showed a time- and dose-dependent increasing manner, and we utilized totarol to induce the production of cytoplasmic β-galactosidase in S. aureus. Scanning electron microscopy and transmission electron microscopy analysis further confirmed that S. aureus cell membranes were damaged by totarol. The time-kill assay and detection of the kinetics of S. aureus deactivation in situ indicated that totarol has good preservative activities in a food model. Totarol successfully inhibited S. aureus development in carrot juice, at room temperature (25 °C) and in refrigerator (4 °C) respectively. Our works provided not only additional evidences in support of totarol being regarded as a natural antibacterial food preservative but also fundamental understanding on the mode of antibacterial action. It is necessary to consider that totarol will become a promising antibacterial additive for food preservative.
Collapse
Affiliation(s)
- Ce Shi
- 1Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Meiyao Che
- 1Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Xiaowei Zhang
- 1Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Zuojia Liu
- 2State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, People's Republic of China
| | - Rizeng Meng
- Jilin Entry-Exit Inspection and Quarantine Bureau, 130062 Changchun, People's Republic of China
| | - Xiujuan Bu
- 1Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Haiqing Ye
- 1Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| | - Na Guo
- 1Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 130062 Changchun, People's Republic of China
| |
Collapse
|
36
|
Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium. mSphere 2017; 2:mSphere00301-17. [PMID: 28875176 PMCID: PMC5577653 DOI: 10.1128/msphere.00301-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/04/2017] [Indexed: 01/15/2023] Open
Abstract
The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis, M. leprae, M. avium, etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we show that peptides derived from bovine lactoferricin (LFcin) improve the antimicrobial activity of ethambutol against Mycobacterium avium growing inside macrophages. Moreover, the d-enantiomer of a short version of lactoferricin containing amino acids 17 to 30 (d-LFcin17–30) causes intramacrophagic death of M. avium by increasing the formation of lysosomes and autophagosomes. This work opens the way to the use of lactoferricin-derived peptides to treat infections caused by mycobacteria and highlights important modulatory effects of d-FLcin17–30 on macrophages, which may be useful under other conditions in which macrophage activation is needed. Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17–30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17–30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17–30 did not localize to M. avium-harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17–30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis, M. leprae, M. avium, etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we show that peptides derived from bovine lactoferricin (LFcin) improve the antimicrobial activity of ethambutol against Mycobacterium avium growing inside macrophages. Moreover, the d-enantiomer of a short version of lactoferricin containing amino acids 17 to 30 (d-LFcin17–30) causes intramacrophagic death of M. avium by increasing the formation of lysosomes and autophagosomes. This work opens the way to the use of lactoferricin-derived peptides to treat infections caused by mycobacteria and highlights important modulatory effects of d-FLcin17–30 on macrophages, which may be useful under other conditions in which macrophage activation is needed.
Collapse
|
37
|
Zhao X, Zhen Z, Wang X, Guo N. Synergy of a combination of nisin and citric acid against Staphylococcus aureus and Listeria monocytogenes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:2058-2068. [PMID: 28795907 DOI: 10.1080/19440049.2017.1366076] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Food-borne diseases caused by pathogens, such as Staphylococcus aureus and Listeria monocytogenes, have long attracted attention globally from researchers, food industries, and food safety authorities. Nisin (NS) is the only bacteriocin used worldwide as a generally recognised as safe (GRAS) food preservative, while citric acid (CA) has an unrestricted use in foods since it has GRAS status. In this study, synergistic interactions of NS combined with CA against S. aureus and L. monocytogenes were studied by the chequerboard microdilution method, with fractional inhibitory concentration index values ranging from 0.25 to 0.375 and 0.19 to 0.375, respectively. The positive interactions were verified by time-kill studies in pasteurised milk and disk diffusion assays. The mechanism of the synergistic antibacterial of NS and CA is proposed following SEM analysis and the determination of release of cell constituents. These results suggest that the cell walls and membrane are the probable main targets of this antimicrobial combination. These findings indicated that the combination of NS and CA not only could be used as a new promising naturally sourced food preservative, but may also reduce the problem of bacterial resistance.
Collapse
Affiliation(s)
- Xingchen Zhao
- a Department of Food Quality and Safety, School of Pharmaceutics and Food Science , Tonghua Normal University , Tonghua , China.,b Department of Food Quality and Safety, College of Food Science and Engineering , Jilin University , Changchun , China
| | - Zhen Zhen
- c Department of Technology Center , Qiqihar Entry-Exit Inspection and Quarantine Bureau , Qiqihar , China
| | - Xinyang Wang
- d Department of Petrochemical , Daqing Entry-Exit Inspection and Quarantine Bureau , Daqing , China
| | - Na Guo
- b Department of Food Quality and Safety, College of Food Science and Engineering , Jilin University , Changchun , China
| |
Collapse
|
38
|
Killing of Staphylococcus aureus and Salmonella enteritidis and neutralization of lipopolysaccharide by 17-residue bovine lactoferricins: improved activity of Trp/Ala-containing molecules. Sci Rep 2017; 7:44278. [PMID: 28287172 PMCID: PMC5347165 DOI: 10.1038/srep44278] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022] Open
Abstract
Bovine lactoferricin (LfcinB) has potent antibacterial, antifungal and antiparasitic activities but is also hemolytic. Our objective was to identify LfcinB17-31 derivatives with reduced hemolysis and improved antimicrobial activity via substituting Cys3, Arg4, Gln7, Met10, and Gly14 with more hydrophobic residues. Two peptides, Lfcin4 and Lfcin5, showed higher activity against Staphylococcus aureus and Salmonella enteritidis and lower hemolytic activity than the parent peptide LfcinB17-31. These peptides permeabilized the outer and inner membranes of S. enteritidis; however, Lfcin5 did not permeabilize the inner membrane of S. aureus. Gel retardation and circular dichroism spectra showed that Lfcin4 and Lfcin5 bound to bacterial genomic DNA. Lfcin4 inhibited DNA, RNA and protein synthesis. Both peptides induced the peeling of membranes and the lysis of S. enteritidis. At doses of 10 and 15 mg/kg, Lfcin4 and Lfcin5 reduced the bacterial counts in infected thigh muscles by 0.03‒0.10 and 0.05‒0.63 log10 CFU/g of tissue, respectively, within 10 h. Lfcin4 and Lfcin5 enhanced the survival rate of endotoxemic mice; reduced serum IL-6, IL-1β and TNF-α levels; and protected mice from lipopolysaccharide-induced lung injury. These data suggest that Lfcin4 and Lfcin5 may be antimicrobial and anti-endotoxin peptides that could serve as the basis for the development of dual-function agents.
Collapse
|
39
|
Huertas Méndez NDJ, Vargas Casanova Y, Gómez Chimbi AK, Hernández E, Leal Castro AL, Melo Diaz JM, Rivera Monroy ZJ, García Castañeda JE. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules 2017; 22:molecules22030452. [PMID: 28287494 PMCID: PMC6155255 DOI: 10.3390/molecules22030452] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/14/2022] Open
Abstract
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B–containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)2K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli.
Collapse
Affiliation(s)
- Nataly De Jesús Huertas Méndez
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Yerly Vargas Casanova
- Bacteriology Department, Universidad Colegio Mayor de Cundinamarca, Bogotá Calle 28 No. 5B-02, Bogotá 110311; Colombia.
| | | | - Edith Hernández
- Bacteriology Department, Universidad Colegio Mayor de Cundinamarca, Bogotá Calle 28 No. 5B-02, Bogotá 110311; Colombia.
| | - Aura Lucia Leal Castro
- Medicine Faculty, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 471, Bogotá 11321, Colombia.
| | - Javier Mauricio Melo Diaz
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Zuly Jenny Rivera Monroy
- Chemistry Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia.
| | - Javier Eduardo García Castañeda
- Pharmacy Department, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 450, office 203, Bogotá 11321, Colombia.
| |
Collapse
|
40
|
Drago-Serrano ME, Campos-Rodríguez R, Carrero JC, de la Garza M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int J Mol Sci 2017; 18:E501. [PMID: 28257033 PMCID: PMC5372517 DOI: 10.3390/ijms18030501] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases.
Collapse
Affiliation(s)
- Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco (UAM-X), CdMx 04960, Mexico.
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (ESM-IPN), CdMx 11340, Mexico.
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), CdMx 70228, Mexico.
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CdMx 07360, Mexico.
| |
Collapse
|
41
|
Liu B, Huang H, Yang Z, Liu B, Gou S, Zhong C, Han X, Zhang Y, Ni J, Wang R. Design of novel antimicrobial peptide dimer analogues with enhanced antimicrobial activity in vitro and in vivo by intermolecular triazole bridge strategy. Peptides 2017; 88:115-125. [PMID: 28040477 DOI: 10.1016/j.peptides.2016.12.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Currently, antimicrobial peptides have attracted considerable attention because of their broad-sprectum activity and low prognostic to induce antibiotic resistance. In our study, for the first time, a series of side-chain hybrid dimer peptides J-AA (Anoplin-Anoplin), J-RR (RW-RW), and J-AR (Anoplin-RW) based on the wasp peptide Anoplin and the arginine- and tryptophan-rich hexapeptide RW were designed and synthesized by click chemistry, with the intent to improve the antimicrobial efficacy of peptides against bacterial pathogens. The results showed that all dimer analogues exhibited up to a 4-16 fold increase in antimicrobial activity compared to the parental peptides against bacterial strains. Furthermore, the antimicrobial activity was confirmed by time-killing kinetics assay with two strains which showed that these dimer analogues at 1, 2×MIC were rapidly bactericidal and reduced the initial inoculum significantly during the first 2-6h. Notably, dimer peptides showed synergy and additivity effects when used in combination with conventional antibiotics rifampin or penicillin respectively against the multidrug-resistant strains. In the Escherichia coli-infected mouse model, all of hybrid dimer analogues had significantly lower degree of bacterial load than the untreated control group when injected once i.p. at 5mg/kg. In addition, the infected mice by methicillin-resistant (MRSA) strain could be effectively treated with J-RR. All of dimer analogues had membrane-active action mode. And the membrane-dependent mode of action signifies that peptides functions freely and without regard to conventional resistant mechanisms. Circular dichroism analyses of all dimer analogues showed a general predominance of α-helix conformation in 50% trifluoroethanol (TFE). Additionally, the acute toxicities study indicated that J-RR or J-AR did not show the signs of toxicity when adult mice exposed to concentration up to 120mg/kg. The 50% lethal dose (LD50) of J-AA was 53.6mg/kg. In conclusion, to design and synthesize side chain-hybrid dimer analogues via click chemistry may offer a new strategy for antibacterial therapeutic option.
Collapse
Affiliation(s)
- Beijun Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Haifeng Huang
- Shaanxi Provincial People's Hospital, Shanxi 710068, China
| | - Zhibin Yang
- Key Laboratory of Entomological Biopharmaceutical R&D of Yunnan Province, Dali University, Dali 671000, China
| | - Beiyin Liu
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Zhong
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiufeng Han
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
42
|
Shi C, Zhang X, Zhao X, Meng R, Liu Z, Chen X, Guo N. Synergistic interactions of nisin in combination with cinnamaldehyde against Staphylococcus aureus in pasteurized milk. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Oh M, Lee J, Jeong Y, Kim M. Synergistic Antilisterial Effects of Mixtures of Lysozyme and Organic Acids. J Food Prot 2016; 79:2184-2189. [PMID: 28221961 DOI: 10.4315/0362-028x.jfp-16-156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the synergistic effects of lysozyme combined with organic acids to inhibit the growth of Listeria monocytogenes . The antilisterial effects of the combination of lysozyme and acetic acid, citric acid, lactic acid, malic acid, or succinic acid were evaluated using the checkerboard method and time-kill assay. The MIC was 25,000 mg/liter for lysozyme, 625 mg/liter for acetic acid, and 1,250 mg/liter for the other acids. The MBC was 10,000 mg/liter for all of the tested organic acids. The combination of lysozyme and each organic acid showed synergistic effects via the checkerboard method; however, the time-kill assay showed synergistic effects for only three combinations of 1,250 mg/liter lysozyme with succinic acid (312 and 625 mg/liter) or malic acid (625 mg/liter). The results of this study indicate that the combination of lysozyme and malic acid or succinic acid can be effectively used as a food preservative to control L. monocytogenes .
Collapse
Affiliation(s)
- Myeonggeun Oh
- Department of Food Science and Nutrition, Dankook University, Gyeonggi 448-701, Korea
| | - Joongjae Lee
- Department of Food Science and Nutrition, Dankook University, Gyeonggi 448-701, Korea
| | - Yoonhwa Jeong
- Department of Food Science and Nutrition, Dankook University, Gyeonggi 448-701, Korea
| | - Misook Kim
- Department of Food Science and Nutrition, Dankook University, Gyeonggi 448-701, Korea
| |
Collapse
|
44
|
Chen R, Cole N, Dutta D, Kumar N, Willcox MDP. Antimicrobial activity of immobilized lactoferrin and lactoferricin. J Biomed Mater Res B Appl Biomater 2016; 105:2612-2617. [PMID: 27758034 DOI: 10.1002/jbm.b.33804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/18/2022]
Abstract
Lactoferrin and lactoferricin were immobilized on glass surfaces via two linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA). The resulting surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antimicrobial activity of the surfaces was determined using Pseudomonas aeruginosa and Staphylococcus aureus strains by fluorescence microscopy. Lactoferrin and lactoferricin immobilization was confirmed by XPS showing significant increases (p < 0.05) in nitrogen on the glass surface. The immobilization of both proteins slightly increased the overall hydrophobicity of the glass. Both lactoferrin and lactoferricin immobilized on glass significantly (p < 0.05) reduced the numbers of viable bacterial cells adherent to the glass. For P. aeruginosa, the immobilized proteins consistently increased the percentage of dead cells compared to the total cells adherent to the glass surfaces (p < 0.03). Lactoferrin and lactoferricin were successfully immobilized on glass surfaces and showed promising antimicrobial activity against pathogenic bacteria. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2612-2617, 2017.
Collapse
Affiliation(s)
- Renxun Chen
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,School of Chemistry, University of New South Wales, Sydney, Australia
| | - Nerida Cole
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
45
|
Bruni N, Capucchio MT, Biasibetti E, Pessione E, Cirrincione S, Giraudo L, Corona A, Dosio F. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine. Molecules 2016; 21:E752. [PMID: 27294909 PMCID: PMC6273662 DOI: 10.3390/molecules21060752] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf) is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1-11), lactoferricin (Lfcin) and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases).
Collapse
Affiliation(s)
- Natascia Bruni
- Istituto Farmaceutico Candioli, Beinasco (To) 10092, Italy.
| | | | - Elena Biasibetti
- Department of Veterinary Sciences, University of Torino, Torino 10095, Italy.
| | - Enrica Pessione
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10123, Italy.
| | - Simona Cirrincione
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10123, Italy.
| | | | | | - Franco Dosio
- Department of Drug Science and Technology, University of Torino, Torino 10125, Italy.
| |
Collapse
|
46
|
Koh JJ, Lin H, Caroline V, Chew YS, Pang LM, Aung TT, Li J, Lakshminarayanan R, Tan DTH, Verma C, Tan AL, Beuerman RW, Liu S. N-Lipidated Peptide Dimers: Effective Antibacterial Agents against Gram-Negative Pathogens through Lipopolysaccharide Permeabilization. J Med Chem 2015. [PMID: 26214729 DOI: 10.1021/acs.jmedchem.5b00628] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Treating infections caused by multidrug-resistant Gram-negative pathogens is challenging, and there is concern regarding the toxicity of the most effective antimicrobials for Gram-negative pathogens. We hypothesized that conjugating a fatty acid moiety onto a peptide dimer could maximize the interaction with lipopolysaccharide (LPS) and facilitate the permeabilization of the LPS barrier, thereby improving potency against Gram-negative pathogens. We systematically designed a series of N-lipidated peptide dimers that are active against Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae (CRE). The optimized lipid length was 6-10 carbons. At these lipid lengths, the N-lipidated peptide dimers exhibited strong LPS permeabilization. Compound 23 exhibited synergy with select antibiotics in most of the combinations tested. 23 and 32 also displayed rapid bactericidal activity. Importantly, 23 and 32 were nonhemolytic at 10 mg/mL, with no cellular or in vivo toxicity. These characteristics suggest that these compounds can overcome the limitations of current Gram-negative-targeted antimicrobials such as polymyxin B.
Collapse
Affiliation(s)
- Jun-Jie Koh
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 119074, Singapore
| | - Huifen Lin
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Vonny Caroline
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Yu Siang Chew
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Li Mei Pang
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Thet Tun Aung
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Jianguo Li
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,Bioinformatics Institute (A*STAR) , 30 Biopolis Street, 07-01 matrix, 138671, Singapore
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,SRP Neuroscience and Behavioural Disorders, Duke-NUS Medical School , 169857, Singapore
| | - Donald T H Tan
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 119074, Singapore.,Singapore National Eye Centre , 11 Third Hospital Avenue, 168751, Singapore
| | - Chandra Verma
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,Bioinformatics Institute (A*STAR) , 30 Biopolis Street, 07-01 matrix, 138671, Singapore.,School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, 637551, Singapore.,Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, 117543, Singapore
| | - Ai Ling Tan
- Department of Pathology, Singapore General Hospital , 169608, Singapore
| | - Roger W Beuerman
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,SRP Neuroscience and Behavioural Disorders, Duke-NUS Medical School , 169857, Singapore
| | - Shouping Liu
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,SRP Neuroscience and Behavioural Disorders, Duke-NUS Medical School , 169857, Singapore
| |
Collapse
|
47
|
Guo N, Zhao X, Li W, Shi C, Meng R, Liu Z, Yu L. The synergy of berberine chloride and totarol against Staphylococcus aureus grown in planktonic and biofilm cultures. J Med Microbiol 2015; 64:891-900. [DOI: 10.1099/jmm.0.000106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Na Guo
- Department of Food Quality and Safety, College of Quartermaster Technology, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, 130062 Changchun, PR China
| | - Xingchen Zhao
- Department of Food Quality and Safety, College of Quartermaster Technology, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, 130062 Changchun, PR China
| | - Wenli Li
- Department of Food Quality and Safety, College of Quartermaster Technology, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, 130062 Changchun, PR China
| | - Ce Shi
- Department of Food Quality and Safety, College of Quartermaster Technology, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, 130062 Changchun, PR China
| | - Rizeng Meng
- Jilin Entry-Exit Inspection and Quarantine Bureau, 130062 Changchun, PR China
| | - Zonghui Liu
- Department of Food Quality and Safety, College of Quartermaster Technology, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, 130062 Changchun, PR China
| | - Lu Yu
- Department of Food Quality and Safety, College of Quartermaster Technology, Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, 130062 Changchun, PR China
| |
Collapse
|
48
|
Subramenium GA, Vijayakumar K, Pandian SK. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors. J Med Microbiol 2015; 64:879-890. [DOI: 10.1099/jmm.0.000105] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
| | - Karuppiah Vijayakumar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 004, Tamil Nadu, India
| | | |
Collapse
|
49
|
Tan X, Qin N, Wu C, Sheng J, Yang R, Zheng B, Ma Z, Liu L, Peng X, Jia A. Transcriptome analysis of the biofilm formed by methicillin-susceptible Staphylococcus aureus. Sci Rep 2015; 5:11997. [PMID: 26149474 PMCID: PMC4493712 DOI: 10.1038/srep11997] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 06/08/2015] [Indexed: 11/23/2022] Open
Abstract
Biofilm formation is regarded as one of the major determinants in the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) as pathogens of medical device-related infection. However, methicillin-susceptible S. aureus (MSSA) can also form biofilm in vitro and such biofilms are resistant to vancomycin. Hence, researching the possible mechanisms of MSSA biofilm formation is urgent and necessary. Here, we used S. aureus ATCC25923 as the model strain, and studied gene expression profiles in biofilms after the treatment of ursolic acid and resveratrol using RNA-seq technology. The results showed that only ursolic acid could inhibit biofilm formation, which differed from their applied on the multiple clinical drugs resistant MRSA biofilm. RNA-seq data was validated by examining the expression of six genes involved in biofilm formation by qRT-PCR. These data analysis indicated that the mechanism of the MSSA biofilm formation was different from that of the MRSA, due to absence of accessory gene regulator (agr) function. These findings suggest that biofilms of S. aureus with agr dysfunction may be more resistant than those with agr function. Therefore, the infection from clinical MSSA may be recalcitrant once forming biofilm. Further study is necessary to uncover the mechanisms of biofilm formation in other clinical S. aureus.
Collapse
Affiliation(s)
- Xiaojuan Tan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Nan Qin
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Chunyan Wu
- Realbio Genomics Institute, Shanghai 200050, China
| | - Jiyang Sheng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rui Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Zhanshan Ma
- Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China
| | - Lin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Xinhua Peng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Aiqun Jia
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
50
|
Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212. BIOMED RESEARCH INTERNATIONAL 2015; 2015:453826. [PMID: 25815317 PMCID: PMC4359834 DOI: 10.1155/2015/453826] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022]
Abstract
Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.
Collapse
|