1
|
Singh S, Agarwal J, Das A, Trivedi M, Dubey KD, Athish Pranav KV, Dwivedi M. Leveraging molecular dynamics, physicochemical, and structural analysis to explore OMP33-36 protein as a drug target in Acinetobacter baumannii: An approach against nosocomial infection. J Mol Graph Model 2025; 136:108956. [PMID: 39862464 DOI: 10.1016/j.jmgm.2025.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
The Acinetobacter baumannii is a member of the "ESKAPE" bacteria responsible for many serious multidrug-resistant (MDR) illnesses. This bacteria swiftly adapts to environmental cues leading to the emergence of multidrug-resistant variants, particularly in hospital/medical settings. In this work, we have demonstrated the outer membrane protein 33-36 (Omp33-36) porin as a potential therapeutic target in A. baumannii and the regulatory potential of phytocompounds using an in-silico drug screening approach. Omp33-36 protein receptor was retrieved from the protein data bank and characterized as a receptor protein. The possible compounds (ligands) from three plants namely Andrographis paniculata, Cascabela thevetia, and Prosopis cineraria, were evaluated for their potential against bacterial infections based on prior investigations and selected for further analysis. Initially, seventy potential phytocompounds were identified and retrieved from IMPPAT database, followed by Physio-chemical characterizations and toxicity assessment using swissADME and ProTox server respectively. 15 compounds have shown significant drug-likeliness and were implemented for their interaction analysis with Omp33-36 using Autodock Vina. The docking study presented seven compounds with the best binding affinities, ranging from -7.2 kcal/mol to -7.9 kcal/mol and further, based on the potential of these compounds, 4 phytocompounds were introduced for molecular dynamic simulation for 200ns. During MD simulation, compounds Prosogerin, Quercitin and Tamarixetin have shown a substantial affinity for the Omp33-36 protein and binding energy ranging from -18 to -33 kcal/mol. Overall, the analysis depicted the two compounds, Quercitin and Tamarixetin, with the most consistent interactions and indicated promise as drug leads in regulating A. baumannii infection. However, in-vitro and in-vivo experimental validation are required to propose the selected phytomolecules as a therapeutic lead against A. baumannii.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow, 226028, India
| | - Jyotsna Agarwal
- Department of Microbiology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Anupam Das
- Department of Microbiology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow, 226028, India
| | - Kshatresh D Dubey
- Department of Chemistry, Shiv Nadar University, Greater Noida, 201314, India
| | - K V Athish Pranav
- Department of Chemistry, Shiv Nadar University, Greater Noida, 201314, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow Campus, India.
| |
Collapse
|
2
|
Chen L, Liu S, Huang N, Xu C, Zhou C, Wang L, Zheng X, Zhou T, Yu P. Tolerance mechanisms and molecular epidemiology of reduced susceptibility to chlorhexidine digluconate in different species of the Acinetobacter baumannii complex. Can J Microbiol 2025; 71:1-11. [PMID: 39705672 DOI: 10.1139/cjm-2024-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The objective of this study was to compare chlorhexidine digluconate and other antibiotics susceptibility of four species of theAcinetobacter baumannii complex, and further investigate the chlorhexidine digluconate (CHG) tolerance mechanisms and molecular epidemic characteristics. Of 889 A. baumannii complex isolates, A. baumannii, A. nosocomialis, A. pittii, and A. seifertii accounted for 84.2%, 10.9%, 3.4%, and 1.5%. Acinetobacter baumannii was generally resistant to all tested antibiotics, while other three species were commonly more susceptible; 92.1% (313/340) CHG-tolerant A. baumannii, 19.6% (19/97) CHG-tolerant A. nosocomialis, 3.3% (1/30) CHG-tolerant A. pittii, and 15.4% (2/13) CHG-tolerant A. seifertii were identified. Furthermore, compared to A. baumannii ATCC 19606, upregulated expression was found in qacEΔ1, fabI, and efflux pump encoding genes in CHG-tolerant A. baumannii, but the expression level of oprD was reduced. Additionally, only the expression level of fabI was increased in the CHG-tolerant A. nosocomialis, and the expression level of adeG was increased in the CHG-tolerant A. pittii and A. seifertii. Furthermore, CHG-tolerant A. baumannii may have a relatively high clonal correlation, the predominant sequence type of which was ST208 (90%, 36/40). It is rather necessary to identify specific species members among the A. baumannii complex for clinical treatment options and antibiotics resistance monitoring.
Collapse
Affiliation(s)
- Liqiong Chen
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Chunquan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Pingting Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024; 13:889. [PMID: 39452760 PMCID: PMC11510100 DOI: 10.3390/pathogens13100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, necessitating immediate actions to develop novel antimicrobial strategies and enforce strong stewardship of existing antibiotics to manage the emergence of drug-resistant strains. This issue is particularly concerning when it comes to Gram-negative bacteria, which possess an almost impenetrable outer membrane (OM) that acts as a formidable barrier to existing antimicrobial compounds. This OM is an asymmetric structure, composed of various components that confer stability, fluidity, and integrity to the bacterial cell. The maintenance and restoration of membrane integrity are regulated by envelope stress response systems (ESRs), which monitor its assembly and detect damages caused by external insults. Bacterial communities encounter a wide range of environmental niches to which they must respond and adapt for survival, sustenance, and virulence. ESRs play crucial roles in coordinating the expression of virulence factors, adaptive physiological behaviors, and antibiotic resistance determinants. Given their role in regulating bacterial cell physiology and maintaining membrane homeostasis, ESRs present promising targets for drug development. Considering numerous studies highlighting the involvement of ESRs in virulence, antibiotic resistance, and alternative resistance mechanisms in pathogens, this review aims to present these systems as potential drug targets, thereby encouraging further research in this direction.
Collapse
Affiliation(s)
| | | | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (R.B.); (P.D.C.); (A.P.)
| | | |
Collapse
|
4
|
Słoczyńska A, Wand ME, Bock LJ, Tyski S, Laudy AE. Efflux-Related Carbapenem Resistance in Acinetobacter baumannii Is Associated with Two-Component Regulatory Efflux Systems' Alteration and Insertion of ΔAbaR25-Type Island Fragment. Int J Mol Sci 2023; 24:ijms24119525. [PMID: 37298476 DOI: 10.3390/ijms24119525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The efflux pumps, beside the class D carbapenem-hydrolysing enzymes (CHLDs), are being increasingly investigated as a mechanism of carbapenem resistance in Acinetobacter baumannii. This study investigates the contribution of efflux mechanism to carbapenem resistance in 61 acquired blaCHDL-genes-carrying A. baumannii clinical strains isolated in Warsaw, Poland. Studies were conducted using phenotypic (susceptibility testing to carbapenems ± efflux pump inhibitors (EPIs)) and molecular (determining expression levels of efflux operon with regulatory-gene and whole genome sequencing (WGS)) methods. EPIs reduced carbapenem resistance of 14/61 isolates. Upregulation (5-67-fold) of adeB was observed together with mutations in the sequences of AdeRS local and of BaeS global regulators in all 15 selected isolates. Long-read WGS of isolate no. AB96 revealed the presence of AbaR25 resistance island and its two disrupted elements: the first contained a duplicate ISAba1-blaOXA-23, and the second was located between adeR and adeA in the efflux operon. This insert was flanked by two copies of ISAba1, and one of them provides a strong promoter for adeABC, elevating the adeB expression levels. Our study for the first time reports the involvement of the insertion of the ΔAbaR25-type resistance island fragment with ISAba1 element upstream the efflux operon in the carbapenem resistance of A. baumannii.
Collapse
Affiliation(s)
- Alicja Słoczyńska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Matthew E Wand
- UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, UK
| | - Lucy J Bock
- UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury SP4 0JG, UK
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, 00-725 Warsaw, Poland
| | - Agnieszka E Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Whole genome sequence of pan drug-resistant clinical isolate of Acinetobacter baumannii ST1890. PLoS One 2022; 17:e0264374. [PMID: 35263355 PMCID: PMC8906637 DOI: 10.1371/journal.pone.0264374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic gram-negative bacteria typically attributed to hospital-associated infection. It could also become multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan drug-resistant (PDR) during a short period. Although A. baumannii has been documented extensively, complete knowledge on the antibiotic-resistant mechanisms and virulence factors responsible for pathogenesis has not been entirely elucidated. This study investigated the drug resistance pattern and characterized the genomic sequence by de novo assembly of PDR A. baumannii strain VJR422, which was isolated from a catheter-sputum specimen. The results showed that the VJR422 strain was resistant to any existing antibiotics. Based on de novo assembly, whole-genome sequences showed a total genome size of 3,924,675-bp. In silico and conventional MLST analysis of sequence type (ST) of this strain was new ST by Oxford MLST scheme and designated as ST1890. Moreover, we found 10,915 genes that could be classified into 45 categories by Gene Ontology (GO) analysis. There were 1,687 genes mapped to 34 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The statistics from Clusters of Orthologous Genes (COG) annotation identified 3,189 genes of the VJR422 strain. Regarding the existence of virulence factors, a total of 59 virulence factors were identified in the genome of the VJR422 strain by virulence factors of pathogenic bacteria databases (VFDB). The drug-resistant genes were investigated by searching in the Comprehensive Antibiotic Resistance Database (CARD). The strain harbored antibiotic-resistant genes responsible for aminoglycoside, β-lactam-ring-containing drugs, erythromycin, and streptogramin resistance. We also identified resistance-nodulation-cell division (RND) and the major facilitator superfamily (MFS) associated with the antibiotic efflux pump. Overall, this study focused on A. baumannii strain VJR422 at the genomic level data, i.e., GO, COG, and KEGG. The antibiotic-resistant genotype and phenotype as well as the presence of potential virulence associated factors were investigated.
Collapse
|
6
|
Ho KH, Su SC, Lee KR. Molecular docking and simulation of the interaction of sulbactam with Acinetobacter baumannii BaeSR and AdeSR. Biochem Biophys Res Commun 2021; 580:81-86. [PMID: 34627000 DOI: 10.1016/j.bbrc.2021.09.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022]
Abstract
Acinetobacter baumannii infections are associated with a high mortality rate. Sulbactam, a beta-lactamase inhibitor, is commonly used to treat A. baumannii infections, but its underlying mechanisms are unclear. Two-component regulatory systems (TCSs) are important for bacterial adaptability and response ability. In this study, we focused on two TCSs, namely AdeSR and BaeSR, and identified a protein highly similar to the dimerization and histidine phosphotransfer (DHp) and catalytic ATP-binding (CA) domains of the TCSs by using Swiss-Model. Sulbactam and β-lactamase inhibitors, which are structurally similar to sulbactam, were docked with the selected sequence 4JAS using the simulation tools SwissDock and ArgusLab. Analysis with both these analytical tools showed that sulbactam can react on the active sites of 4JAS at a relatively steady level (ΔG -7 to -10 kcal/mol). Sulbactam likely interacts with the active sites of BaeSR and AdeSR, and owing to its smaller size and ability to form ionic bonds with Mg2+, it may potentially compete with ATP/ADP in BaeSR and AdeSR and consequently interfere with A. baumannii multiplication. This is the first study to investigate the association between sulbactam and TCSs in A. baumannii using molecular docking and simulation analyses.
Collapse
Affiliation(s)
- Kun-Hsuan Ho
- Department of Molecular Medicine and Institute of Life Science, National Tsing Hua University, Hsinchu, 30014, Taiwan.
| | - Shey-Chiang Su
- Division of Infectious Disease, Puli Christian Hospital, Nantou, 54546, Taiwan
| | - Kuan-Rong Lee
- Department of Molecular Medicine and Institute of Life Science, National Tsing Hua University, Hsinchu, 30014, Taiwan.
| |
Collapse
|
7
|
Conde-Pérez K, Vázquez-Ucha JC, Álvarez-Fraga L, Ageitos L, Rumbo-Feal S, Martínez-Guitián M, Trigo-Tasende N, Rodríguez J, Bou G, Jiménez C, Beceiro A, Poza M. In-Depth Analysis of the Role of the Acinetobactin Cluster in the Virulence of Acinetobacter baumannii. Front Microbiol 2021; 12:752070. [PMID: 34675911 PMCID: PMC8524058 DOI: 10.3389/fmicb.2021.752070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant pathogen that represents a serious threat to global health. A. baumannii possesses a wide range of virulence factors that contribute to the bacterial pathogenicity. Among them, the siderophore acinetobactin is one of the most important, being essential for the development of the infection. In this study we performed an in-depth analysis of the acinetobactin cluster in the strain A. baumannii ATCC 17978. For this purpose, nineteen individual isogenic mutant strains were generated, and further phenotypical analysis were performed. Individual mutants lacking the biosynthetic genes entA, basG, basC, basD, and basB showed a significant loss in virulence, due to the disruption in the acinetobactin production. Similarly, the gene bauA, coding for the acinetobactin receptor, was also found to be crucial for the bacterial pathogenesis. In addition, the analysis of the ΔbasJ/ΔfbsB double mutant strain demonstrated the high level of genetic redundancy between siderophores where the role of specific genes of the acinetobactin cluster can be fulfilled by their fimsbactin redundant genes. Overall, this study highlights the essential role of entA, basG, basC, basD, basB and bauA in the pathogenicity of A. baumannii and provides potential therapeutic targets for the design of new antivirulence agents against this microorganism.
Collapse
Affiliation(s)
- Kelly Conde-Pérez
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Juan C Vázquez-Ucha
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Laura Álvarez-Fraga
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Lucía Ageitos
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Marta Martínez-Guitián
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Noelia Trigo-Tasende
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Jaime Rodríguez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Carlos Jiménez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Margarita Poza
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| |
Collapse
|
8
|
Comparison of the Acinetobacter baumannii Reference Strains ATCC 17978 and ATCC 19606 in Antimicrobial Resistance Mediated by the AdeABC Efflux Pump. Antimicrob Agents Chemother 2021; 65:e0057021. [PMID: 34097477 DOI: 10.1128/aac.00570-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Acinetobacter baumannii RND efflux pump AdeABC is regulated by the 2-component regulator AdeRS. In this study, we compared the regulation and expression of AdeABC of the reference strains ATCC 17978 and ATCC 19606. A clearly stronger efflux activity was demonstrated for ATCC 19606. An amino acid substitution at residue 172 of adeS was identified as a potential cause for differential expression of the pump. Therefore, we recommend caution with exclusively using single reference strains for research.
Collapse
|
9
|
Uppalapati SR, Sett A, Pathania R. The Outer Membrane Proteins OmpA, CarO, and OprD of Acinetobacter baumannii Confer a Two-Pronged Defense in Facilitating Its Success as a Potent Human Pathogen. Front Microbiol 2020; 11:589234. [PMID: 33123117 PMCID: PMC7573547 DOI: 10.3389/fmicb.2020.589234] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Of all the ESKAPE pathogens, carbapenem-resistant and multidrug-resistant Acinetobacter baumannii is the leading cause of hospital-acquired and ventilator-associated pneumonia. A. baumannii infections are notoriously hard to eradicate due to its propensity to rapidly acquire multitude of resistance determinants and the virulence factor cornucopia elucidated by the bacterium that help it fend off a wide range of adverse conditions imposed upon by host and environment. One such weapon in the arsenal of A. baumannii is the outer membrane protein (OMP) compendium. OMPs in A. baumannii play distinctive roles in facilitating the bacterial acclimatization to antibiotic- and host-induced stresses, albeit following entirely different mechanisms. OMPs are major immunogenic proteins in bacteria conferring bacteria host-fitness advantages including immune evasion, stress tolerance, and resistance to antibiotics and antibacterials. In this review, we summarize the current knowledge of major A. baumannii OMPs and discuss their versatile role in antibiotic resistance and virulence. Specifically, we explore how OmpA, CarO, and OprD-like porins mediate antibiotic and amino acid shuttle and host virulence.
Collapse
Affiliation(s)
- Siva R Uppalapati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Abhiroop Sett
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
10
|
Singh M, Sykes EME, Li Y, Kumar A. MexXY RND pump of Pseudomonas aeruginosa PA7 effluxes bi-anionic β-lactams carbenicillin and sulbenicillin when it partners with the outer membrane factor OprA but not with OprM. MICROBIOLOGY-SGM 2020; 166:1095-1106. [PMID: 32909933 DOI: 10.1099/mic.0.000971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibiotic resistance in Pseudomonas aeruginosa is a serious concern in healthcare systems. Among the determinants of antibiotic resistance in P. aeruginosa, efflux pumps belonging to the resistance-nodulation-division (RND) family confer resistance to a broad range of antibacterial compounds. The MexXY efflux system is widely overexpressed in P. aeruginosa isolates from cystic fibrosis (CF) patients. MexXY can form functional complexes with two different outer membrane factors (OMFs), OprA and OprM. In this study, using state-of-the-art genetic tools, the substrate specificities of MexXY-OprA and MexXY-OprM complexes were determined. Our results show, for the first time, that the substrate profile of the MexXY system from P. aeruginosa PA7 can vary depending on which OM factor (OprM or OprA) it complexes with. While both MexXY-OprA and MexXY-OprM complexes are capable of effluxing aminoglycosides, the bi-anionic β-lactam molecules carbenicillin and sulbenicillin were found to only be the substrate of MexXY-OprA. Our study therefore shows that by partnering with different OMF proteins MexY can expand its substrate profile.
Collapse
Affiliation(s)
- Manu Singh
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
11
|
Kenney LJ, Anand GS. EnvZ/OmpR Two-Component Signaling: An Archetype System That Can Function Noncanonically. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0001-2019. [PMID: 32003321 PMCID: PMC7192543 DOI: 10.1128/ecosalplus.esp-0001-2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Indexed: 01/09/2023]
Abstract
Two-component regulatory systems represent the major paradigm for signal transduction in prokaryotes. The simplest systems are composed of a sensor kinase and a response regulator. The sensor is often a membrane protein that senses a change in environmental conditions and is autophosphorylated by ATP on a histidine residue. The phosphoryl group is transferred onto an aspartate of the response regulator, which activates the regulator and alters its output, usually resulting in a change in gene expression. In this review, we present a historical view of the archetype EnvZ/OmpR two-component signaling system, and then we provide a new view of signaling based on our recent experiments. EnvZ responds to cytoplasmic signals that arise from changes in the extracellular milieu, and OmpR acts canonically (requiring phosphorylation) to regulate the porin genes and noncanonically (without phosphorylation) to activate the acid stress response. Herein, we describe how insights gleaned from stimulus recognition and response in EnvZ are relevant to nearly all sensor kinases and response regulators.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Mechanobiology Institute, T-Lab, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
12
|
Choi JA, Kim CM, Jang SJ, Cho SS, Jang CH, Ko YJ, Kang SH, Park G. Role of Efflux Pump Gene adeIJKto Multidrug Resistance in Acinetobacter baumanniiClinical Isolates. ANNALS OF CLINICAL MICROBIOLOGY 2020. [DOI: 10.5145/acm.2020.23.1.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ji Ae Choi
- Division of Antimicrobial Resistance, Center for Infectious Diseases Research, Korea National Institute of Health, KCDC, Cheongju, Republic of Korea
| | - Choon-Mee Kim
- Premedical Science, College of Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Sook-Jin Jang
- Department of Laboratory Medicine, College of Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Seong-Sik Cho
- Department of Laboratory Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young-Jin Ko
- Department of Laboratory Medicine, College of Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Seong-Ho Kang
- Department of Laboratory Medicine, College of Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| | - Geon Park
- Department of Laboratory Medicine, College of Medicine, Chosun University Hospital, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
14
|
Novović K, Mihajlović S, Dinić M, Malešević M, Miljković M, Kojić M, Jovčić B. Acinetobacter spp. porin Omp33-36: Classification and transcriptional response to carbapenems and host cells. PLoS One 2018; 13:e0201608. [PMID: 30071077 PMCID: PMC6072067 DOI: 10.1371/journal.pone.0201608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/18/2018] [Indexed: 01/11/2023] Open
Abstract
Acinetobacter baumannii has been recognized as one of the most challeging pathogens in clinical settings worldwide. Outer membrane porins play a significant role in Acinetobacter antibiotic resistance and virulence. A. baumannii carbapenem resistance and virulence factor porin Omp33-36 was the subject of this study. We investigated the omp33-36 gene transcriptional response in the growth phase, its response to carbapenems, and the effect of contact with host cells. Additionally, the cytotoxic effect of A. baumannii towards keratinocytes was assessed, as well as correlation between omp33-36 gene transcription and cytotoxicity. Further, Acinetobacter spp. Omp33-36 was classified and its characteristics relevant for vaccine candidature were determined. The level of the omp33-36 gene transcription varied between growth phases, but a common pattern could not be established among different strains. Treatment with subinhibitory concentrations of carbapenems decreased, while contact with keratinocytes increased omp33-36 expression in the analysed A. baumannii strains. Variations in omp33-36 mRNA levels did not correlate with cytotoxicity levels. Decrease of omp33-36 mRNA during treatment with subinhibitory concentrations of carbapenems, indicated the importance of transcriptional changes in reversible resistance to carbapenems due to the absence of Omp33-36. The transcription of omp33-36 increased after contact with keratinocytes, indicating the important role of de novo transcription during the initial phase of A. baumannii infection. Primary structural analysis of Acinetobacter spp. Omp33-36 revealed three distinct groups (among four A. baumannii variants). Although we have shown that Omp33-36 was highly polymorphic, we propose a potential antigen (PLAEAAFL motif) for vaccine development. According to PROVEAN analysis, the highly polymorphic structure of Omp33-36 porin should not influence its function significantly.
Collapse
Affiliation(s)
- Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sanja Mihajlović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milka Malešević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
15
|
Han L, Lei J, Xu J, Han S. blaOXA-23-like and blaTEM rather than blaOXA-51-like contributed to a high level of carbapenem resistance in Acinetobacter baumannii strains from a teaching hospital in Xi'an, China. Medicine (Baltimore) 2017; 96:e8965. [PMID: 29310399 PMCID: PMC5728800 DOI: 10.1097/md.0000000000008965] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Acinetobacter baumannii is one of the major threats in clinical infections due to its antibiotic resistance ability. It shows increasing resistance to carbapenems, mainly due to β-lactamase mediated mechanisms. The aim of this study was to investigate carbapenem resistance (CR) profiles and analyze β-lactamases genes composition of clinical A. baumannii strains from a teaching hospital in Xi'an. The resistance patterns to imipenem and meropenem were checked for 51 clinical A. baumannii strains. The existence of 15 β-lactamases genes was detected by polymerase chain reaction (PCR), and the positive genes were sequenced. The correlation between PCR-positive genes and CR phenotype was analyzed using Chi-square test and contingency coefficient. The expressions of PCR-positive genes were investigated. Forty-five out of 51 strains were resistant to imipenem and meropenem. blaTEM, blaOXA-23-like, and blaOXA-51-like were positive among 15 β-lactamases genes, and TEM-1, OXA-23, and OXA-66/69 were their subtypes. TEM and OXA-23-like only showed up in CR isolates, with the occurrence rate of 91.1% and 97.8%, respectively, whereas OXA-51-like appeared in all strains. ISAba1 was present in the upstream of OXA-23-like, but absent from that of OXA-51-like in our strains. OXA-23-like had highest relationship with CR, followed by TEM, but OXA-51-like had no correlation. This was verified by RT-qPCR that the expression was positive for OXA-23 and TEM-1, but negative for OXA-66/-69. A high rate of CR A. baumannii was detected in this study. Coexistence of TEM, OXA-23-like, and OXA-51-like was the primary resistance profile. The expressions of OXA-23-like and TEM genes were closely related with CR, while OXA-51-like had no contribution to the CR phenotype.
Collapse
Affiliation(s)
- Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education
| | - Jine Lei
- Department of Microbiology and Immunology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education
- Department of Laboratory Medicine
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
16
|
Lin F, Xu Y, Chang Y, Liu C, Jia X, Ling B. Molecular Characterization of Reduced Susceptibility to Biocides in Clinical Isolates of Acinetobacter baumannii. Front Microbiol 2017; 8:1836. [PMID: 29018420 PMCID: PMC5622949 DOI: 10.3389/fmicb.2017.01836] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022] Open
Abstract
Active efflux is regarded as a common mechanism for antibiotic and biocide resistance. However, the role of many drug efflux pumps in biocide resistance in Acinetobacter baumannii remains unknown. Using biocide-resistant A. baumannii clinical isolates, we investigated the incidence of 11 known/putative antimicrobial resistance efflux pump genes (adeB, adeG, adeJ, adeT1, adeT2, amvA, abeD, abeM, qacE, qacEΔ1, and aceI) and triclosan target gene fabI through PCR and DNA sequencing. Reverse transcriptase quantitative PCR was conducted to assess the correlation between the efflux pump gene expression and the reduced susceptibility to triclosan or chlorhexidine. The A. baumannii isolates displayed high levels of reduced susceptibility to triclosan, chlorhexidine, benzalkonium, hydrogen peroxide, and ethanol. Most tested isolates were resistant to multiple antibiotics. Efflux resistance genes were widely distributed and generally expressed in A. baumannii. Although no clear relation was established between efflux pump gene expression and antibiotic resistance or reduced biocide susceptibility, triclosan non-susceptible isolates displayed relatively increased expression of adeB and adeJ whereas chlorhexidine non-susceptible isolates had increased abeM and fabI gene expression. Increased expression of adeJ and abeM was also demonstrated in multiple antibiotic resistant isolates. Exposure of isolates to subinhibitory concentrations of triclosan or chlorhexidine induced gene expression of adeB, adeG, adeJ and fabI, and adeB, respectively. A point mutation in FabI, Gly95Ser, was observed in only one triclosan-resistant isolate. Multiple sequence types with the major clone complex, CC92, were identified in high level triclosan-resistant isolates. Overall, this study showed the high prevalence of antibiotic and biocide resistance as well as the complexity of intertwined resistance mechanisms in clinical isolates of A. baumannii, which highlights the importance of antimicrobial stewardship and resistance surveillance in clinics.
Collapse
Affiliation(s)
- Fei Lin
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China.,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ying Xu
- Clinical Laboratory, the First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yaowen Chang
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China.,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chao Liu
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China.,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Baodong Ling
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Singh M, Yau YCW, Wang S, Waters V, Kumar A. MexXY efflux pump overexpression and aminoglycoside resistance in cystic fibrosis isolates of Pseudomonas aeruginosa from chronic infections. Can J Microbiol 2017; 63:929-938. [PMID: 28922614 DOI: 10.1139/cjm-2017-0380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we analyzed 15 multidrug-resistant cystic fibrosis isolates of Pseudomonas aeruginosa from chronic lung infections for expression of 4 different multidrug efflux systems (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY), using quantitative reverse transcriptase PCR. Overexpression of MexXY pump was observed in all of the isolates tested. Analysis of regulatory genes that control the expression of these 4 efflux pumps revealed a number of previously uncharacterized mutations. Our work shows that MexXY pump overexpression is common in cystic fibrosis isolates and could be contributing to their reduced aminoglycoside susceptibility. Further, we also identified novel mutations in the regulatory genes of the 4 abovementioned Resistance-Nodulation-Division superfamily pumps that may be involved in the overexpression of these pumps.
Collapse
Affiliation(s)
- Manu Singh
- a Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yvonne C W Yau
- b Division of Microbiology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shirley Wang
- a Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Valerie Waters
- c Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayush Kumar
- a Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,d Manitoba Chemosensory Biology Group, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, Cha CJ, Jeong BC, Lee SH. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol 2017; 7:55. [PMID: 28348979 PMCID: PMC5346588 DOI: 10.3389/fcimb.2017.00055] [Citation(s) in RCA: 549] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Moonhee Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji UniversityYongin, South Korea; DNA Analysis Division, Seoul Institute, National Forensic ServiceSeoul, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Il Kwon Bae
- Department of Dental Hygiene, College of Health and Welfare, Silla University Busan, South Korea
| | - Young Bae Kim
- Biotechnology Program, North Shore Community College Danvers, MA, USA
| | - Chang-Jun Cha
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University Anseong, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
19
|
Fernando DM, Khan IUH, Patidar R, Lapen DR, Talbot G, Topp E, Kumar A. Isolation and Characterization of Acinetobacter baumannii Recovered from Campylobacter Selective Medium. Front Microbiol 2016; 7:1871. [PMID: 27917170 PMCID: PMC5114274 DOI: 10.3389/fmicb.2016.01871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/07/2016] [Indexed: 11/29/2022] Open
Abstract
Acinetobacter baumannii, a Gram-negative opportunistic pathogen, is known to cause multidrug resistant infections. This organism has primarily been isolated from clinical environments and its environmental reservoirs remain largely unknown. In the present study, we recovered seven isolates of A. baumannii growing under conditions selective for Campylobacter spp. (microaerophilic at 42°C and in the presence of antibiotics) from dairy cattle manure storage tank or surface water impacted by livestock effluents. Antibiotic susceptibility tests revealed that all of these isolates were less susceptible to at least two different clinically relevant antibiotics, compared to the type strain A. baumannii ATCC17978. Expression of resistance-nodulation-division efflux pumps, an important mechanism of intrinsic resistance in these organisms, was analyzed, and adeB was found to be overexpressed in one and adeJ was overexpressed in three isolates. Comparison of these isolates using genomic DNA Macro-Restriction Fragment Pattern Analysis (MRFPA) revealed relatively low relatedness among themselves or with some of the clinical isolates from previous studies. This study suggests that A. baumannii isolates are capable of growing under selective conditions for Campylobacter spp. and that this organism can be present in manure and water.
Collapse
Affiliation(s)
- Dinesh M Fernando
- Department of Microbiology, University of Manitoba , Winnipeg, MB, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, ON, Canada
| | - Rakesh Patidar
- Department of Microbiology, University of Manitoba , Winnipeg, MB, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, ON, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada , Sherbrooke, QC, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada , London, ON, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Nowak J, Seifert H, Higgins PG. Prevalence of eight resistance-nodulation-division efflux pump genes in epidemiologically characterized Acinetobacter baumannii of worldwide origin. J Med Microbiol 2015; 64:630-635. [PMID: 25873581 DOI: 10.1099/jmm.0.000069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The increasing emergence of multidrug-resistant Acinetobacter baumannii constitutes a worldwide threat in hospital settings. Efflux-mediated resistance, particularly the resistance-nodulation-division (RND)-type efflux pumps, contributes significantly to decreased susceptibility to multiple antibiotics when overexpressed. Using PCR-based detection, the prevalence of genes encoding the RND efflux pumps AdeB, AdeJ and AdeG was investigated amongst 144 epidemiologically characterized and geographically diverse A. baumannii isolates of worldwide origin, representing International Clones 1-8 and genotypically unique isolates. Furthermore, five putative RND-type efflux genes identified via an in silico approach were included. Five of the eight investigated efflux pump genes were present in all isolates, including adeJ and adeG; the prevalence of the others varied between 65 and 97%. No association between the presence of one or multiple pumps to a specific clonal lineage was detected. The high prevalence of the efflux pump genes supports a fixed function of each individual pump that is not yet fully understood.
Collapse
Affiliation(s)
- Jennifer Nowak
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Harald Seifert
- German Centre for Infection Research, Bonn-Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstraße 19-21, 50935 Cologne, Germany
| |
Collapse
|
21
|
Lin MF, Lan CY. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J Clin Cases 2014; 2:787-814. [PMID: 25516853 PMCID: PMC4266826 DOI: 10.12998/wjcc.v2.i12.787] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 08/25/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is undoubtedly one of the most successful pathogens in the modern healthcare system. With invasive procedures, antibiotic use and immunocompromised hosts increasing in recent years, A. baumannii has become endemic in hospitals due to its versatile genetic machinery, which allows it to quickly evolve resistance factors, and to its remarkable ability to tolerate harsh environments. Infections and outbreaks caused by multidrug-resistant A. baumannii (MDRAB) are prevalent and have been reported worldwide over the past twenty or more years. To address this problem effectively, knowledge of species identification, typing methods, clinical manifestations, risk factors, and virulence factors is essential. The global epidemiology of MDRAB is monitored by persistent surveillance programs. Because few effective antibiotics are available, clinicians often face serious challenges when treating patients with MDRAB. Therefore, a deep understanding of the resistance mechanisms used by MDRAB can shed light on two possible strategies to combat the dissemination of antimicrobial resistance: stringent infection control and antibiotic treatments, of which colistin-based combination therapy is the mainstream strategy. However, due to the current unsatisfying therapeutic outcomes, there is a great need to develop and evaluate the efficacy of new antibiotics and to understand the role of other potential alternatives, such as antimicrobial peptides, in the treatment of MDRAB infections.
Collapse
|
22
|
Asai S, Umezawa K, Iwashita H, Ohshima T, Ohashi M, Sasaki M, Hayashi H, Matsui M, Shibayama K, Inokuchi S, Miyachi H. An outbreak of blaOXA-51-like- and blaOXA-66-positive Acinetobacter baumannii ST208 in the emergency intensive care unit. J Med Microbiol 2014; 63:1517-1523. [PMID: 25142965 PMCID: PMC4209737 DOI: 10.1099/jmm.0.077503-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A series of clinical isolates of drug-resistant (DR) Acinetobacter baumannii with diverse drug susceptibility was detected from eight patients in the emergency intensive care unit of Tokai University Hospital. The initial isolate was obtained in March 2010 (A. baumannii Tokai strain 1); subsequently, seven isolates were obtained from patients (A. baumannii Tokai strains 2–8) and one isolate was obtained from an air-fluidized bed used by five of the patients during the 3 months from August to November 2011. The isolates were classified into three types of antimicrobial drug resistance patterns (RRR, SRR and SSR) according to their susceptibility (S) or resistance (R) to imipenem, amikacin and ciprofloxacin, respectively. Genotyping of these isolates by multilocus sequence typing revealed one sequence type, ST208, whilst that by a DiversiLab analysis revealed two subtypes. All the isolates were positive for blaOXA-51-like and blaOXA-66, as assessed by PCR and DNA sequencing. A. baumannii Tokai strains 1–8 and 10 (RRR, SRR and SSR) had quinolone resistance-associated mutations in gyrA/parC, as revealed by DNA sequencing. The ISAba1 upstream of blaOXA-51-like and aminoglycoside resistance-associated gene, armA, were detected in A. baumannii Tokai strains 1–7 and 10 (RRR and SRR) as assessed by PCR. Among the genes encoding resistance–nodulation–division family pumps (adeB, adeG and adeJ) and outer-membrane porins (oprD and carO), overexpression of adeB and adeJ and suppression of oprD and carO were seen in isolates of A. baumannii Tokai strain 2 (RRR), as assessed by real-time PCR. Thus, the molecular characterization of a series of isolates of DR A. baumannii revealed the outbreak of ST208 and diverse antimicrobial drug susceptibilities, which almost correlated with differential gene alterations responsible for each type of drug resistance.
Collapse
Affiliation(s)
- Satomi Asai
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan.,Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Kazuo Umezawa
- Department of Critical Care and Emergency Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hideo Iwashita
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Toshio Ohshima
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Maya Ohashi
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Mika Sasaki
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Mari Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sadaki Inokuchi
- Department of Critical Care and Emergency Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hayato Miyachi
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan.,Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
23
|
Triclosan can select for an AdeIJK-overexpressing mutant of Acinetobacter baumannii ATCC 17978 that displays reduced susceptibility to multiple antibiotics. Antimicrob Agents Chemother 2014; 58:6424-31. [PMID: 25136007 DOI: 10.1128/aac.03074-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a (116)G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump.
Collapse
|
24
|
Bonnington KE, Kuehn MJ. Protein selection and export via outer membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1612-9. [PMID: 24370777 PMCID: PMC4317292 DOI: 10.1016/j.bbamcr.2013.12.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 12/24/2022]
Abstract
Outer membrane vesicles (OMVs) are constitutively produced by all Gram-negative bacteria. OMVs form when buds from the outer membrane (OM) of cells encapsulate periplasmic material and pinch off from the OM to form spheroid particles approximately 10 to 300nm in diameter. OMVs accomplish a diversity of functional roles yet the OMV's utility is ultimately determined by its unique composition. Inclusion into OMVs may impart a variety of benefits to the protein cargo, including: protection from proteolytic degradation, enhancement of long-distance delivery, specificity in host-cell targeting, modulation of the immune response, coordinated secretion with other bacterial effectors, and/or exposure to a unique function-promoting environment. Many enriched OMV-associated components are virulence factors, aiding in host cell destruction, immune system evasion, host cell invasion, or antibiotic resistance. Although the mechanistic details of how proteins become enriched as OMV cargo remain elusive, recent data on OM biogenesis and relationships between LPS structure and OMV-cargo inclusion rates shed light on potential models for OM organization and consequent OMV budding. In this review, mechanisms based on pre-existing OM microdomains are proposed to explain how cargo may experience differing levels of enrichment in OMVs and degrees of association with OMVs during extracellular export. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- K E Bonnington
- Department of Biochemistry, Duke University Medical Center, USA
| | - M J Kuehn
- Department of Biochemistry, Duke University Medical Center, USA.
| |
Collapse
|
25
|
Bazyleu A, Kumar A. Incubation temperature, osmolarity, and salicylate affect the expression of resistance-nodulation-division efflux pumps and outer membrane porins in Acinetobacter baumannii ATCC19606T. FEMS Microbiol Lett 2014; 357:136-43. [PMID: 25039371 DOI: 10.1111/1574-6968.12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/20/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022] Open
Abstract
In this study, we examined the impact of various environmental conditions on the expression of resistance-nodulation-division (RND) efflux pumps and outer membrane (OM) porins, two key determinants of Acinetobacter baumannii's intrinsic resistance, an organism known to cause various multidrug resistant infections in immunocompromised individuals. Quantitative RT-PCR was used to analyze the expression of adeB, adeG, and adeJ (genes encoding RND pumps) and 33 kDa, carO, and oprD (genes encoding OM porins) of A. baumannii ATCC19606(T) under different incubation temperatures (30, 37, and 42 °C) and in the presence of high osmolarity and salicylate. Downregulation of all three RND pumps was observed at 30 °C, while downregulation of all three porins tested was observed at increased osmolarity. Downregulation of RND efflux pumps, particularly AdeABC, was consistent with increased susceptibility to antibiotics that are substrates of this pump. Expression of the adeR response regulator gene of the AdeRS system, the activator of the AdeABC pump, was also analyzed. Our work shows that various environmental stress conditions can influence the expression of RND pumps and porins in A. baumannii ATCC19606(T) and thus may play a role in the modulation of its antibiotic resistance.
Collapse
Affiliation(s)
- Andrei Bazyleu
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
26
|
Lin MF, Lin YY, Yeh HW, Lan CY. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol 2014; 14:119. [PMID: 24885279 PMCID: PMC4101873 DOI: 10.1186/1471-2180-14-119] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Background Tigecycline resistance in Acinetobacter baumannii is primarily acquired through overexpression of the AdeABC efflux pump. Besides AdeRS, other two-component regulatory systems (TCSs) involving the regulation of this transporter have not been clarified. Results In this study, we found that the TCS genes baeR and baeS are co-transcribed and function as stress responders under high osmotic conditions. The baeSR and adeAB genes showed increased transcription in both the laboratory-induced and clinical tigecycline-resistant strains compared with the wild-type strain. The deletion of baeR in the ATCC 17978 strain led to 67–73% and 68% reduction in adeA and adeB expression, respectively, with a resultant 2-fold decrease in the tigecycline minimal inhibition concentration (MIC). In contrast, the overexpression of baeR resulted in a doubled tigecycline MIC, with a more than 2-fold increase in adeA and adeB expression. The influence of baeR knockout on adeAB gene expression can also be observed in the laboratory-induced tigecycline-resistant strain. A time-kill assay showed that the baeR deletion mutant showed an approximate 1-log10 reduction in colony forming units (CFUs) relative to the wild-type strain when the tigecycline concentration was 0.25 μg/mL throughout the assay period. The wild-type phenotype could be restored by trans-complementation with pWH1266-kanr-baeR. Increasing the tigecycline concentration to 0.5 μg/mL produced an even more marked 4.7-log10 reduction in CFUs of the baeR deletion mutant at 8 h, while only a 2.1-log10 reduction was observed for the wild-type strain. Conclusions Taken together, these data show for the first time that the BaeSR TCS influences the tigecycline susceptibility of A. baumannii through the positive regulation of the resistance-nodulation-division efflux pump genes adeA and adeB.
Collapse
Affiliation(s)
| | | | | | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsin-Chu City, Taiwan.
| |
Collapse
|
27
|
Antibiotic resistance and expression of resistance-nodulation-division pump- and outer membrane porin-encoding genes in Acinetobacter species isolated from Canadian hospitals. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2014; 24:17-21. [PMID: 24421787 DOI: 10.1155/2013/696043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bacterial pathogens belonging to the genus Acinetobacter cause serious infections in immunocompromised individuals that are very difficult to treat due to their extremely high resistance to many antibiotics. OBJECTIVE To investigate the role of resistance-nodulation-division (RND) pumps and porins in the antibiotic resistance of Acinetobacter species collected from Canadian hospitals. METHODS Clinical isolates of Acinetobacter species collected from Canadian hospitals were analyzed for the expression of genes encoding RND pumps (adeB, adeG, adeJ, AciBau_2746 and AciBau_2436) and outer membrane porins (carO, 33 kDa porin and oprD) using quantitative reverse transcription (qRT) polymerase chain reaction. Species identification of the isolates was performed using a multiplex polymerase chain reaction method for gyrB. RESULTS The expression of RND pump-encoding genes was widespread in the clinical isolates of Acinetobacter species, with each of the isolates expressing at least one RND pump. adeG was found to be overexpressed in all of the isolates, while adeB was found to be overexpressed in only two isolates. Among the porin-encoding genes, the expression of carO was considerably downregulated among the majority of isolates. CONCLUSION The present study was the first to analyze the expression of RND pump- and porin-encoding genes in the clinical isolates of Acinetobacter species from Canadian hospitals. The overexpression of genes encoding RND pumps and the downregulation of genes encoding porins was common in clinical isolates of Acinetobacter species from Canadian hospitals, with the AdeFGH pump being the most commonly expressed RND pump.
Collapse
|
28
|
Lima TB, Pinto MFS, Ribeiro SM, de Lima LA, Viana JC, Gomes Júnior N, Cândido EDS, Dias SC, Franco OL. Bacterial resistance mechanism: what proteomics can elucidate. FASEB J 2013; 27:1291-303. [PMID: 23349550 DOI: 10.1096/fj.12-221127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antibiotics are important therapeutic agents commonly used for the control of bacterial infectious diseases; however, resistance to antibiotics has become a global public health problem. Therefore, effective therapy in the treatment of resistant bacteria is necessary and, to achieve this, a detailed understanding of mechanisms that underlie drug resistance must be sought. To fill the multiple gaps that remain in understanding bacterial resistance, proteomic tools have been used to study bacterial physiology in response to antibiotic stress. In general, the global analysis of changes in the protein composition of bacterial cells in response to treatment with antibiotic agents has made it possible to construct a database of proteins involved in the process of resistance to drugs with similar mechanisms of action. In the past few years, progress in using proteomic tools has provided the most realistic picture of the infective process, since these tools detect the end products of gene biosynthetic pathways, which may eventually determine a biological phenotype. In most bacterial species, alterations occur in energy and nitrogen metabolism regulation; glucan biosynthesis is up-regulated; amino acid, protein, and nucleotide synthesis is affected; and various proteins show a stress response after exposing these microorganisms to antibiotics. These issues have been useful in identifying targets for the development of novel antibiotics and also in understanding, at the molecular level, how bacteria resist antibiotics.
Collapse
Affiliation(s)
- Thais Bergamin Lima
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dal T, Aksu B, Pages JM, Over-Hasdemir U. Expression of the adeB gene and responsiveness to 1-(1-naphthylmethyl)-piperazine and phenylalanyl-arginyl- -naphthylamide in clinical isolates of Acinetobacter baumannii. J Antimicrob Chemother 2013; 68:1200-2. [DOI: 10.1093/jac/dks511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|