1
|
López L, Calderón D, Salinas L, Graham JP, Blount ZD, Trueba G. A plasmid with the bla CTX-M gene enhances the fitness of Escherichia coli strains under laboratory conditions. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001525. [PMID: 39883084 PMCID: PMC11781320 DOI: 10.1099/mic.0.001525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Antimicrobial resistance (AMR) is a major threat to global public health that continues to grow owing to selective pressure caused by the use and overuse of antimicrobial drugs. Resistance spread by plasmids is of special concern, as they can mediate a wide distribution of AMR genes, including those encoding extended-spectrum β-lactamases (ESBLs). The CTX-M family of ESBLs has rapidly spread worldwide, playing a large role in the declining effectiveness of third-generation cephalosporins. This rapid spread across the planet is puzzling given that plasmids carrying AMR genes have been hypothesized to incur a fitness cost to their hosts in the absence of antibiotics. Here, we focus on a WT plasmid that carries the bla CTX-M 55 ESBL gene. We examine its conjugation rates and use head-to-head competitions to assay its associated fitness costs in both laboratory and wild Escherichia coli strains. We found that the wild strains exhibit intermediate conjugation levels, falling between two high-conjugation and two low-conjugation laboratory strains, the latter being older and more ancestral. We also show that the plasmid increases the fitness of both WT and lab strains when grown in lysogeny broth and Davis-Mingioli media without antibiotics, which might stem from metabolic benefits conferred on the host, or from interactions between the host and the rifampicin-resistant mutation we used as a selective marker. Laboratory strains displayed higher conjugation frequencies compared to WT strains. The exception was a low-passage K-12 strain, suggesting that prolonged laboratory cultivation may have compromised bacterial defences against plasmids. Despite low transfer rates among WT E. coli, the plasmid carried low fitness cost in minimal medium but conferred improved fitness in enriched medium, indicating a complex interplay between plasmids, host genetics and environmental conditions. Our findings reveal an intricate relationship between plasmid carriage and bacterial fitness. Moreover, they show that resistance plasmids can confer adaptive advantages to their hosts beyond AMR. Altogether, these results highlight that a closer study of plasmid dynamics is critical for developing a secure understanding of how they evolve and affect bacterial adaptability that is necessary for combating resistance spread.
Collapse
Affiliation(s)
- Lázaro López
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Diana Calderón
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
- Laboratorio de Biotecnología de Plantas, Universidad San Francisco de Quito, Quito, Ecuador
| | - Liseth Salinas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jay P. Graham
- Environmental Health Sciences Division, University of California, Berkeley, California, USA
| | - Zachary D. Blount
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
2
|
Harmer CJ, Hall RM. IS 26 and the IS 26 family: versatile resistance gene movers and genome reorganizers. Microbiol Mol Biol Rev 2024; 88:e0011922. [PMID: 38436262 PMCID: PMC11332343 DOI: 10.1128/mmbr.00119-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Wang Y, He J, Sun L, Jiang Y, Hu L, Leptihn S, Zhu P, Fu X, Yu Y, Hua X. IS26 mediated bla CTX-M-65 amplification in Escherichia coli increase the antibiotic resistance to cephalosporin in vivo. J Glob Antimicrob Resist 2023; 35:202-209. [PMID: 37802302 DOI: 10.1016/j.jgar.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVES To characterize two Escherichia coli strains isolated from a patient pre- and post-treatment, using β-lactams and β-lactam/β-lactamase inhibitor combinations (BLBLIs). METHODS A combination of antibiotic susceptibility testing (AST) with whole genome sequencing using Illumina and Oxford Nanopore platforms. Long-read sequencing and reverse transcription-quantitative PCR were performed to determine the copy numbers and expression levels of antibiotic resistance genes (ARGs), respectively. Effect on fitness costs were assessed by growth rate determination. RESULTS The strain obtained from the patient after the antibiotic treatment (XH989) exhibited higher resistance to cefepime, BLBLIs and quinolones compared with the pre-treatment strain (XH987). Sequencing revealed IS26-mediated duplications of a IS26-fosA3-blaCTX-M-65 plasmid-embedded element in strain XH989. Long-read sequencing (7.4 G data volume) indicated a variation in copy numbers of blaCTX-M-65 within one single culture of strain XH989. Increased copy numbers of the IS26-fosA3-blaCTX-M-65 element were correlated with higher CTX-M-65 expression level and did not impose fitness costs, while facilitating faster growth under high antibiotic concentrations. CONCLUSION Our study is an example from the clinic how BLBLIs and β-lactams exposure in vivo possibly promoted the amplification of an IS26-multiple drug resistance (MDR) region. The observation of a copy number variation seen with the blaCTX-M-65 gene in the plasmid of the post-treatment strain expands our knowledge of insertion sequence dynamics and evolution during treatment.
Collapse
Affiliation(s)
- Yinping Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Long Sun
- Department of Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou Maternity and Child Health Care Hospital, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihua Hu
- Department of Critical Care Medicine, Hangzhou General Hospital of Chinese People's Armed Police, Hangzhou, People's Republic of China
| | - Sebastian Leptihn
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; University of Edinburgh Medical School, Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Qingdao Single-Cell Biotech Co. Ltd., Qingdao, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoting Fu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China; Qingdao Single-Cell Biotech Co. Ltd., Qingdao, Shandong, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China.
| |
Collapse
|
4
|
Gao G, He W, Jiao Y, Cai Z, Lv L, Liu JH. The origin and evolution of IncF33 plasmids based on large-scale data sets. mSystems 2023; 8:e0050823. [PMID: 37750716 PMCID: PMC10654068 DOI: 10.1128/msystems.00508-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Plasmids that capture multiple antibiotic resistance genes are spreading widely, leading to the emergence and prevalence of multidrug-resistant bacteria. IncF33 plasmids are a newly emerged plasmid type highly prevalent in animal-source Enterobacterales in China, and they are important vectors for transmitting several clinically important antibiotic resistance genes. The study revealed that the IncF33 plasmid is mainly prevalent in China animal-derived Escherichia coli and has the potential for cointegration and intercontinental dissemination. Therefore, it is crucial to enhance surveillance and control measures to limit the spread of IncF33 plasmids and their associated antibiotic resistance genes.
Collapse
Affiliation(s)
- Guolong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| | - Wanyun He
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| | - Yanxiang Jiao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| | - Zhongpeng Cai
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| | - Luchao Lv
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| | - Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Zhu J, Ju Y, Zhou X, Chen T, Zhuge X, Dai J. Epidemiological characteristics of SHV, cmlv, and FosA6-producing carbapenem-resistant Klebsiella pneumoniae based on whole genome sequences in Jiangsu, China. Front Microbiol 2023; 14:1219733. [PMID: 37538843 PMCID: PMC10394843 DOI: 10.3389/fmicb.2023.1219733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP), particularly those with high virulence, cause invasive disease in clinical settings. An epidemiological investigation was conducted on the evolution, virulence, and antimicrobial resistance of CRKP isolates in two tertiary teaching hospitals in Jiangsu, China from November 2020 to December 2021. There were 31 different CRKP strains discovered. We performed whole genome sequencing (WGS) on 13 SHV, cmlv, and FosA6-producing CRKP to reveal molecular characteristics. Five ST15/ST11 isolates had CRISPR-Cas systems. By conjugation tests, KPC-2 can be transmitted horizontally to E. coil. A conjugative pHN7A8-related multi-resistance plasmid (KPC-2, blaCTX-M-65, blaTEM-1, fosA3, catII, and rmtB) was first discovered in CRKP clinical isolates. Using bacteriological testing, a serum killing assay, and an infection model with Galleria mellonella, three ST11-K64 KPC-2 generating carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) were identified. These strains harbored a virulent plasmid and an IncFII-family pKPC/pHN7A8 conjugative plasmid, which led to hypervirulence and resistance. One of these CR-hvKPs, which co-harbored KPC-2, NDM-6, SHV-182, SHV-64, and blaCTX-M-122 genes, was first discovered. Importantly, this CR-hvKP strain also produced biofilm and had non-inferior fitness. The widespread use of ceftazidime/avibactam might provide this CR-hvKP with a selective advantage; hence, immediate action is required to stop its dissemination. Another important finding is the novel ST6136 in K. pneumoniae. Finally, the sterilization efficiency rates of Fe2C nanoparticles in CRKP were more than 98%. Furthermore, our novel antibacterial Fe2C nanoparticles may also provide a therapeutic strategy for infections.
Collapse
Affiliation(s)
- Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinyu Zhou
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Taoyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiangkai Zhuge
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Lysitsas M, Chatzipanagiotidou I, Billinis C, Valiakos G. Fosfomycin Resistance in Bacteria Isolated from Companion Animals (Dogs and Cats). Vet Sci 2023; 10:vetsci10050337. [PMID: 37235420 DOI: 10.3390/vetsci10050337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Fosfomycin is an old antibacterial agent, which is currently used mainly in human medicine, in uncomplicated Urinary Tract Infections (UTIs). The purpose of this review is to investigate the presence and the characteristics of Fosfomycin resistance in bacteria isolated from canine or feline samples, estimate the possible causes of the dissemination of associated strains in pets, and underline the requirements of prospective relevant studies. Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines were used for the search of current literature in two databases. A total of 33 articles were finally included in the review. Relevant data were tracked down, assembled, and compared. Referring to the geographical distribution, Northeast Asia was the main area of origin of the studies. E. coli was the predominant species detected, followed by other Enterobacteriaceae, Staphylococci, and Pseudomonas spp. FosA and fosA3 were the more frequently encountered Antimicrobial Resistance Genes (ARGs) in the related Gram-negative isolates, while fosB was regularly encountered in Gram-positive ones. The majority of the strains were multidrug-resistant (MDR) and co-carried resistance genes against several classes of antibiotics and especially β-Lactams, such as blaCTX-M and mecA. These results demonstrate the fact that the cause of the spreading of Fosfomycin-resistant bacteria among pets could be the extended use of other antibacterial agents, that promote the prevalence of MDR, epidemic strains among an animal population. Through the circulation of these strains into a community, a public health issue could arise. Further research is essential though, for the comprehensive consideration of the issue, as the current data are limited.
Collapse
Affiliation(s)
- Marios Lysitsas
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| | | | | | - George Valiakos
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece
| |
Collapse
|
7
|
Cao G, Zhao S, Kuang D, Hsu CH, Yin L, Luo Y, Chen Z, Xu X, Strain E, McDermott P, Allard M, Brown E, Meng J, Zheng J. Geography shapes the genomics and antimicrobial resistance of Salmonella enterica Serovar Enteritidis isolated from humans. Sci Rep 2023; 13:1331. [PMID: 36693882 PMCID: PMC9873609 DOI: 10.1038/s41598-022-24150-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/10/2022] [Indexed: 01/25/2023] Open
Abstract
Multidrug-resistant (MDR) Salmonella has been a long-standing challenge in public health and food safety. The prevalence of MDR S. Enteritidis, especially isolated from humans, in China is significantly higher than those from the U.S. and other countries. A dataset of 197 S. Enteritidis genomes, including 16 sequenced clinical isolates from China and 181 downloaded genomes of human isolates from the U.S., Europe, and Africa, was analyzed for genomic diversity, virulence potential, and antimicrobial resistance (AMR). Phylogenomic analyses identified four major well-supported clades (I-IV). While AMR genotype in the majority of isolates in clades I and IV displayed as pan-susceptible, 81.8% (9/11) and 22.4% (13/58) of isolates in clades III and II were MDR, respectively. It is noted that 77% (10/13) of MDR isolates in clade II were from China. The most common antimicrobial resistance genes (ARGs) carried by the Chinese isolates were aph(3')-IIa, blaCTX-M-55, and blaTEM-1B, whereas blaTEM-1B, sul1, sul2, drfA7, aph(3")-Ib/strA, and aph(6)-Id/strB were most often identified in those from Africa (clade III). Among the 14 plasmid types identified, IncX1 and IncFII(pHN7A8) were found exclusively in the Chinese MDR isolates, while IncQ1 was highly associated with the African MDR isolates. The spvRABCD virulence operon was present in 94.9% (187/197) of isolates tested and was highly associated with both the IncF (IncFII and IncFIB) plasmids. In addition, phylogenetic differences in distribution of Salmonella pathogenicity islands (SPIs), prophages and other accessory genes were also noted. Taken together, these findings provide new insights into the molecular mechanisms underpinning diversification of MDR S. Enteritidis.
Collapse
Affiliation(s)
- Guojie Cao
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA.
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Dai Kuang
- Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Lanlan Yin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety & Security Systems, Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Errol Strain
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Patrick McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Eric Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety & Security Systems, Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA.
| |
Collapse
|
8
|
Coexistence of Multidrug Resistance and Virulence in a Single Conjugative Plasmid from a Hypervirulent Klebsiella pneumoniae Isolate of Sequence Type 25. mSphere 2022; 7:e0047722. [PMID: 36472445 PMCID: PMC9769751 DOI: 10.1128/msphere.00477-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) has received considerable attention. Typically, the genetic elements that confer virulence are harbored by nonconjugative plasmids. In this study, we report a CR-hvKP strain, CY814036, of high-risk sequence type 25 (ST25) and the K2 serotype, which is uncommon among K. pneumoniae isolates but caused serious lung infection in a tertiary teaching hospital in China. Whole-genome sequencing (WGS) revealed a rare conjugative plasmid, pCY814036-iucA, carrying a virulence-associated iuc operon (iucABCD-iutA) coding for aerobactin and determinants of multidrug resistance (MDR), coexisting with a conjugative blaKPC-2-bearing plasmid, pCY814036-KPC2, in the same strain. A conjugation assay showed that pCY814036-iucA and pCY814036-KPC2 could be efficiently cotransmitted from CY814036 to Escherichia coli EC600. Further phenotypic investigation, including antimicrobial susceptibility tests, serum resistance assays, and mouse infection models, confirmed that pCY814036-iucA was capable of cotransferring multidrug resistance and hypervirulence features to the recipient. pCY814036-KPC2 also conferred resistance to antibiotics, including β-lactams and aminoglycosides. Overall, the rare coexistence of a conjugative MDR-virulence plasmid and a blaKPC-2-bearing plasmid in a K. pneumoniae isolate offers a possible mechanism for the formation of CR-hvKP strains and the potential to significantly accelerate the propagation of high-risk phenotypes. IMPORTANCE The increased reporting of carbapenem-resistant hypervirulent K. pneumoniae is considered a worrisome concern to human health care and has restricted the choice of effective antibiotics for clinical treatment. Moreover, virulence plasmids with complete conjugation modules have been identified, which evolved via homologous recombination. Here, we characterize an ST25 CR-hvKP strain, CY814036, harboring both a conjugative MDR-virulence plasmid and a blaKPC-2-bearing plasmid in China. This study highlights that the cotransmission of drug resistance and virulence plasmids increases therapeutic difficulties and worsens clinical prognoses. Also, active surveillance of the conjugative MDR-virulence plasmid is necessary.
Collapse
|
9
|
Zhang TL, He DD, Liu YY, Yu LJ, Hu GZ, Pan YS. Characterization of IncI1/ST71 and IncF18:A-:B1 multidrug-resistance plasmids from an avian Escherichia coli isolate. Plasmid 2022; 123-124:102651. [PMID: 36191658 DOI: 10.1016/j.plasmid.2022.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
To characterize IncI1 and IncF18:A-:B1 multidrug-resistance plasmids from an avian Escherichia coli isolate, antibiotic susceptibility testing, conjugation assays, transformation assays, S1-PFGE, and WGS analysis were performed. The 119,457-bp plasmid pEC014-1 with a multidrug-resistance region (MRR) containing four different segments interspersed with six IS26 elements, belonged to incompatibility group I1 and sequence type 71. The 154,516-bp plasmid pEC014-2 with two replicons, typed as FII-18 and FIB-1, carried 14 resistance determinants including blaTEM-1b, blaOXA-1, oqxAB, dfrA17, aac(6')-Ib-cr, sul1, sul2, tet(A), floR, catB3, hph(aph(4)-Ia), aacC4(aac(3)-IV), aadA5, arr-3, and a merEDACPTR loci in MRR, and additionally encoded three virulence loci: iroNEDCB, sitABCD, and iucABCD-iutA. Plasmid stability assays showed that pEC014-1 and pEC014-2 were stable in recipient E. coli C600 for at least 15 days of passage. Competition assays were carried out to evaluate the fitness impact of pEC014-2 carriage in vitro, revealing a decrease in host fitness. Growth kinetics showed that the growth rate for pEC014-1 or/and pEC014-2 bearing cells was significantly slower than that of the E. coli C600 host strain in the exponential stage (p < 0.01), with only cells carrying pEC014-1 sustaining rapid growth after 6 h of exponential growth. Our findings highlight the mosaic structures of epidemic plasmid IncI1/ST71 and F18:A-:B1 lineages and contribute to a better understanding of the evolution and dissemination of these multidrug resistance and virulence plasmids.
Collapse
Affiliation(s)
- Teng-Li Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-Dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ying-Ying Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li-Jie Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
10
|
Spread and Molecular Characteristics of
Enterobacteriaceae
Carrying
fosA
-Like Genes from Farms in China. Microbiol Spectr 2022; 10:e0054522. [PMID: 35852324 PMCID: PMC9431306 DOI: 10.1128/spectrum.00545-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the widespread and complex genetic environments of
fosA
-like genes in animal-derived strains in China. The
fosA7.5
gene was identified in this study and was found to confer resistance to fosfomycin.
Collapse
|
11
|
Li C, Jiang X, Yang T, Ju Y, Yin Z, Yue L, Ma G, Wang X, Jing Y, Luo X, Li S, Yang X, Chen F, Zhou D. Genomic epidemiology of carbapenemase-producing Klebsiella pneumoniae in china. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1154-1167. [PMID: 35307590 DOI: 10.1016/j.gpb.2022.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
Abstract
The rapid spread of carbapenemase-producing Klebsiella pneumoniae (cpKP) poses serious threats to public health, however, the underlying genetic basis for its dissemination is still unknown. We conducted a comprehensive genomic epidemiology analysis on 420 cpKP isolates collected from 70 hospitals in 24 provinces of China during 2009-2017 by short-/long-read sequencing. The results showed that most cpKP isolates were categorized into clonal group 258 (CG258), in which ST11 was the dominant clone. Phylogenetic analysis revealed three major clades including the top one of Clade 3 for CG258 cpKP isolates. Additionally, carbapenemase gene analysis indicated that blaKPC was dominant in the cpKP isolates, and most blaKPC genes were located in five major incompatibility (Inc) groups of blaKPC-harboring plasmids. Importantly, three advantageous combinations of host-blaKPC-carrying plasmids (Clade 3.1 + 3.2-IncFIIpHN7A8, Clade 3.1 + 3.2-IncFIIpHN7A8:IncR, and Clade 3.3-IncFIIpHN7A8:IncpA1763-KPC) were identified to confer cpKP isolates the advantages in both genotypes (strong correlation/co-evolution) and phenotypes (resistance/growth/competition) to facilitate the nationwide spread of ST11/CG258 cpKP. Intriguingly, Bayesian skyline analysis illustrated that the three advantageous combinations might be directly associated with the strong population expansion during 2007-2008 and subsequent maintenance of the population of ST11/CG258 cpKP after 2008. We then examined drug resistance profiles of these cpKP isolates and proposed combination treatment regimens for CG258/non-CG258 cpKP infections. Thus, the findings of our systematical analysis shed light on the molecular epidemiology and genetic basis for the dissemination of ST11/CG258 cpKP in China, and much emphasis should be given to the close monitoring of advantageous cpKP-plasmid combinations.
Collapse
Affiliation(s)
- Cuidan Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Xiaoyuan Jiang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tingting Yang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjiao Ju
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Liya Yue
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Guannan Ma
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Xuebing Wang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xinhua Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shuangshuang Li
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Yang
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi 830011, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing 100101, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
12
|
Fine-Scale Reconstruction of the Evolution of FII-33 Multidrug Resistance Plasmids Enables High-Resolution Genomic Surveillance. mSystems 2022; 7:e0083121. [PMID: 35040701 PMCID: PMC8765060 DOI: 10.1128/msystems.00831-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examined 185 complete, publicly available FII-33 plasmid sequences, characterizing their backbone and various insertions. The variable characteristic insertions facilitated evolutionary reconstruction for this plasmid group, beginning with the acquisition of a primary resistance region (PRR) over 10 years ago. FII-33 plasmids have evolved by acquiring additional resistance genes in the PRR via translocatable elements and by forming cointegrates with plasmids of other types. In all cases, IS26 is suspected to have mediated cointegration. Plasmid cointegration has contributed to the accumulation of resistance genes and may have increased the transmissibility, stability, and host range of the original FII-33 lineage. A particularly important sublineage was formed by a replicative IS26 cointegration event that fused an FII-33 plasmid with a blaKPC-2-containing R-type plasmid, interrupting the FII-33 traI gene encoding the conjugative relaxase. The FII-33:R cointegrate arose in the Klebsiella pneumoniae ST11 clone and remains largely confined there due to the abolition of transfer ability by the FII-33:R cointegration event. However, in some cases FII-33:R cointegrates have fused with additional plasmids and acquired complete transfer regions or oriT sequences that might restore their ability to transfer horizontally. Cointegration events across FII-33 plasmid sublineages have involved plasmids of at least 15 different types. This suggests that plasmid cointegration occurs readily and is more common than previously appreciated, raising questions about the effects of cointegrate formation on plasmid host range, stability, and capacity for horizontal transfer. Resources are provided for detecting and characterizing FII-33 plasmid sublineages from complete or draft genome sequences. IMPORTANCE Effective genomic surveillance of antibiotic-resistant bacterial pathogens must consider plasmids, which are frequently implicated in the accumulation and transfer of resistance genes between bacterial strains or species. However, the evolution of plasmids is complex, and simple typing or comparison tools cannot accurately determine whether plasmids belong to the same sublineages. This precludes precise tracking of plasmid movement in bacterial populations. We have examined the FII-33 group, which has been associated with multidrug resistance and particularly carbapenem resistance in clinically significant members of the Enterobacterales in China. Our analysis has provided insight into the evolution of this important plasmid group, allowing us to develop resources for rapidly typing them to the sublineage level in complete or draft genome sequences. Our approach will improve detection and characterization of FII-33 plasmids and facilitate surveillance within and outside China. The approach can serve as a model for similar studies of other plasmid types.
Collapse
|
13
|
Yang Y, Yang Y, Ahmed MAEGES, Qin M, He R, Wu Y, Liang X, Zhong LL, Chen P, Deng B, Hassan RM, Wen W, Xu L, Huang X, Xu L, Tian GB. Carriage of distinct bla KPC-2 and bla OXA-48 plasmids in a single ST11 hypervirulent Klebsiella pneumoniae isolate in Egypt. BMC Genomics 2022; 23:20. [PMID: 34996351 PMCID: PMC8742346 DOI: 10.1186/s12864-021-08214-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background Carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) causes serious infections with significant morbidity and mortality. However, the epidemiology and transmission mechanisms of CR-hvKP and the corresponding carbapenem-resistant plasmids require further investigation. Herein, we have characterized an ST11 K. pneumoniae strain EBSI041 from the blood sample encoding both hypervirulence and carbapenem resistance phenotypes from a patient in Egypt. Results K. pneumoniae strain EBSI041 showed multidrug-resistance phenotypes, where it was highly resistant to almost all tested antibiotics including carbapenems. And hypervirulence phenotypes of EBSI041 was confirmed by the model of Galleria mellonella infection. Whole-genome sequencing analysis showed that the hybrid plasmid pEBSI041-1 carried a set of virulence factors rmpA, rmpA2, iucABCD and iutA, and six resistance genes aph(3′)-VI, armA, msr(E), mph(E), qnrS, and sul2. Besides, blaOXA-48 and blaSHV-12 were harboured in a novel conjugative IncL-type plasmid pEBSI041-2. The blaKPC-2-carrying plasmid pEBSI041-3, a non-conjugative plasmid lacking the conjugative transfer genes, could be transferred with the help of pEBSI041-2, and the two plasmids could fuse into a new plasmid during co-transfer. Moreover, the emergence of the p16HN-263_KPC-like plasmids is likely due to the integration of pEBSI041-3 and pEBSI041-4 via IS26-mediated rearrangement. Conclusion To the best of our knowledge, this is the first report on the complete genome sequence of KPC-2- and OXA-48-coproducing hypervirulent K. pneumoniae from Egypt. These results give new insights into the adaptation and evolution of K. pneumoniae during nosocomial infections. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08214-9.
Collapse
Affiliation(s)
- Yanxian Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yongqiang Yang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, China
| | - Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo, 6th of October City, Egypt
| | - Mingyang Qin
- Department of Pathogen Biology, School of Basic Medical, Xinxiang Medical University, Xinxiang, 453003, China
| | - Ruowen He
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yiping Wu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xiaoxue Liang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Lan-Lan Zhong
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ping Chen
- Department of Pathogen Biology, School of Basic Medical, Xinxiang Medical University, Xinxiang, 453003, China
| | - Baoguo Deng
- Department of Pathogen Biology, School of Basic Medical, Xinxiang Medical University, Xinxiang, 453003, China
| | - Reem Mostafa Hassan
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Weihong Wen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Lingqing Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xubin Huang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Lin Xu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China. .,Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat⁃sen University, Guangzhou, China.
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China. .,School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi, China.
| |
Collapse
|
14
|
Hirabayashi A, Yahara K, Mitsuhashi S, Nakagawa S, Imanishi T, Ha VTT, Nguyen AV, Nguyen ST, Shibayama K, Suzuki M. Plasmid analysis of NDM metallo-β-lactamase-producing Enterobacterales isolated in Vietnam. PLoS One 2021; 16:e0231119. [PMID: 34319973 PMCID: PMC8318238 DOI: 10.1371/journal.pone.0231119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) represent a serious threat to public health due to the lack of treatment and high mortality. The rate of antimicrobial resistance of Enterobacterales isolates to major antimicrobials, including carbapenems, is much higher in Vietnam than in Western countries, but the reasons remain unknown due to the lack of genomic epidemiology research. A previous study suggested that carbapenem resistance genes, such as the carbapenemase gene blaNDM, spread via plasmids among Enterobacterales in Vietnam. In this study, we characterized blaNDM-carrying plasmids in Enterobacterales isolated in Vietnam, and identified several possible cases of horizontal transfer of plasmids both within and among species of bacteria. Twenty-five carbapenem-nonsusceptible isolates from a medical institution in Hanoi were sequenced on Illumina short-read sequencers, and 13 blaNDM-positive isolates, including isolates of Klebsiella pneumoniae, Escherichia coli, Citrobacter freundii, Morganella morganii, and Proteus mirabilis, were further sequenced on an Oxford Nanopore Technologies long-read sequencer to obtain complete plasmid sequences. Almost identical 73 kb IncFII(pSE11)::IncN hybrid plasmids carrying blaNDM-1 were found in a P. mirabilis isolate and an M. morganii isolate. A 112 kb IncFII(pRSB107)::IncN hybrid plasmid carrying blaNDM-1 in an E. coli isolate had partially identical sequences with a 39 kb IncR plasmid carrying blaNDM-1 and an 88 kb IncFII(pHN7A8)::IncN hybrid plasmid in a C. freundii isolate. 148-149 kb IncFIA(Hl1)::IncA/C2 plasmids and 75-76 kb IncFII(Yp) plasmids, both carrying blaNDM-1 were shared among three sequence type 11 (ST11) isolates and three ST395 isolates of K. pneumoniae, respectively. Most of the plasmids co-carried genes conferring resistance to clinically relevant antimicrobials, including third-generation cephalosporins, aminoglycosides, and fluoroquinolones, in addition to blaNDM-1. These results provide insight into the genetic basis of CRE in Vietnam, and could help control nosocomial infections.
Collapse
Affiliation(s)
- Aki Hirabayashi
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koji Yahara
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satomi Mitsuhashi
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Tadashi Imanishi
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Van Thi Thu Ha
- Microbiology Department, Hospital 103, Military Medical University, Hanoi, Vietnam
| | - An Van Nguyen
- Microbiology Department, Hospital 103, Military Medical University, Hanoi, Vietnam
| | - Son Thai Nguyen
- Microbiology Department, Hospital 103, Military Medical University, Hanoi, Vietnam
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
15
|
He WY, Zhang XX, Gao GL, Gao MY, Zhong FG, Lv LC, Cai ZP, Si XF, Yang J, Liu JH. Clonal spread of Escherichia coli O101: H9-ST10 and O101: H9-ST167 strains carrying fosA3 and bla CTX-M-14 among diarrheal calves in a Chinese farm, with Australian Chroicocephalus as the possible origin of E. coli O101: H9-ST10. Zool Res 2021; 42:461-468. [PMID: 34156173 PMCID: PMC8317193 DOI: 10.24272/j.issn.2095-8137.2021.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During a 2018 antimicrobial resistance surveillance of Escherichia coli isolates from diarrheal calves in Xinjiang Province, China, an unexpectedly high prevalence (48.5%) of fosfomycin resistance was observed. This study aimed to reveal the determinants of fosfomycin resistance and the underlying transmission mechanism. Polymerase chain reaction (PCR) screening showed that all fosfomycin-resistant E. coli carried the fosA3 gene. Pulsed-field gel electrophoresis (PFGE) and southern blot hybridization revealed that the 16 fosA3-positive isolates belonged to four different PFGE patterns (i.e., A, B, C, D). The fosA3 genes of 11 clonally related strains (pattern D) were located on the chromosome, while others were carried by plasmids. Whole-genome and long-read sequencing indicated that the pattern D strains were E. coli O101:H9-ST10, and the pattern C, B, and A strains were O101:H9-ST167, O8:H30-ST1431, and O101:H9 with unknown ST, respectively. Among the pattern C strains, the blaCTX-M-14 gene was co-localized with the fosA3 gene on the F18:A-:B1 plasmids. Interestingly, phylogenetic analysis based on core genome single nucleotide polymorphisms (cgSNPs) showed that the O101:H9-ST10 strains were closely related to a Australian-isolated Chroicocephalus-origin E. coli O101:H9-ST10 strain producing CTX-M-14 and FosA3, with a difference of only 11 SNPs. These results indicate possible international dissemination of the high-risk E. coli clone O101:H9-ST10 by migratory birds.
Collapse
Affiliation(s)
- Wan-Yun He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Xing-Xing Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Guo-Long Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Ming-Yi Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Fa-Gang Zhong
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, 832000, China
| | - Lu-Chao Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Zhong-Peng Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Xing-Feng Si
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jun Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China. E-mail:
| | - Jian-Hua Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China. E-mail:
| |
Collapse
|
16
|
Zhang Z, Chang J, Xu X, Zhou M, Shi C, Liu Y, Shi X. Dissemination of IncFII plasmids carrying fosA3 and bla CTX-M-55 in clinical isolates of Salmonella enteritidis. Zoonoses Public Health 2021; 68:760-768. [PMID: 34089241 DOI: 10.1111/zph.12825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
Multidrug-resistant Salmonella Enteritidis (S. Enteritidis) isolates have become a significant threat to public health, and fosfomycin has been proposed as one of the therapeutic antibiotics for serious infections by resistant pathogens. In this study, a total of 501 clinical S. Enteritidis isolates were screened and 14 (2.8%) isolates exhibited resistance to fosfomycin (MIC ≥ 1,024 μg/mL) as well as ceftriaxone (MIC ≥ 128 μg/mL). The fosA3 gene was identified in these 14 isolates. The fosA3 gene that co-transferred with blaCTX-M-55 was observed on the IncFII plasmids with sizes of ~ 78 (n = 7) or ~ 111 (n = 2) kbp in 9 transconjugants. The fosA3-bearing plasmid p12367A is 111,764 bp in length and possessed a typical IncFII backbone. A 7.6-kbp multidrug resistance region (MRR) was identified in p12367A, which was comprised of fosA3 and blaCTX-M-55 genes interspersed with ΔISEcp1 and three copies of IS26. Two typical antibiotic resistance determinants (IS26-orf3-orf2-orf1-fosA3-IS26 and IS26-orf477-blaCTX-M-55 -ΔISEcp1-IS26) shared one IS26 in the MRR. The genetic arrangement of the MRR may have resulted from the stepwise integration of IS26 mobile elements via homologous recombination. Horizontal transfer of IncFII plasmids might contribute to the dissemination of fosA3 and blaCTX-M-55 resistance genes in S. Enteritidis interspecies. These findings underline further challenges for the prevention and treatment of Enterobacteriaceae infections posed by epidemic IncFII plasmids bearing fosA3-blaCTX-M-55 .
Collapse
Affiliation(s)
- Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Chang
- Department of Food Science & Technology, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xuebin Xu
- Laboratory of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chunlei Shi
- Department of Food Science & Technology, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, ARS-USDA, PA, USA
| | - Xianming Shi
- Department of Food Science & Technology, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Yang J, Wang HH, Lu Y, Yi LX, Deng Y, Lv L, Burrus V, Liu JH. A ProQ/FinO family protein involved in plasmid copy number control favours fitness of bacteria carrying mcr-1-bearing IncI2 plasmids. Nucleic Acids Res 2021; 49:3981-3996. [PMID: 33721023 PMCID: PMC8053102 DOI: 10.1093/nar/gkab149] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/03/2023] Open
Abstract
The plasmid-encoded colistin resistance gene mcr-1 challenges the use of polymyxins and poses a threat to public health. Although IncI2-type plasmids are the most common vector for spreading the mcr-1 gene, the mechanisms by which these plasmids adapt to host bacteria and maintain resistance genes remain unclear. Herein, we investigated the regulatory mechanism for controlling the fitness cost of an IncI2 plasmid carrying mcr-1. A putative ProQ/FinO family protein encoded by the IncI2 plasmid, designated as PcnR (plasmid copy number repressor), balances the mcr-1 expression and bacteria fitness by repressing the plasmid copy number. It binds to the first stem-loop structure of the repR mRNA to repress RepA expression, which differs from any other previously reported plasmid replication control mechanism. Plasmid invasion experiments revealed that pcnR is essential for the persistence of the mcr-1-bearing IncI2 plasmid in the bacterial populations. Additionally, single-copy mcr-1 gene still exerted a fitness cost to host bacteria, and negatively affected the persistence of the IncI2 plasmid in competitive co-cultures. These findings demonstrate that maintaining mcr-1 plasmid at a single copy is essential for its persistence, and explain the significantly reduced prevalence of mcr-1 following the ban of colistin as a growth promoter in China.
Collapse
Affiliation(s)
- Jun Yang
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs,Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hai-Hong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yaoyao Lu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs,Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ling-Xian Yi
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs,Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Luchao Lv
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs,Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Jian-Hua Liu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs,Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
18
|
Delgado-Blas JF, Ovejero CM, David S, Montero N, Calero-Caceres W, Garcillan-Barcia MP, de la Cruz F, Muniesa M, Aanensen DM, Gonzalez-Zorn B. Population genomics and antimicrobial resistance dynamics of Escherichia coli in wastewater and river environments. Commun Biol 2021; 4:457. [PMID: 33846529 PMCID: PMC8041779 DOI: 10.1038/s42003-021-01949-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Aquatic environments are key niches for the emergence, evolution and dissemination of antimicrobial resistance. However, the population diversity and the genetic elements that drive the dynamics of resistant bacteria in different aquatic environments are still largely unknown. The aim of this study was to understand the population genomics and evolutionary events of Escherichia coli resistant to clinically important antibiotics including aminoglycosides, in anthropogenic and natural water ecosystems. Here we show that less different E. coli sequence types (STs) are identified in wastewater than in rivers, albeit more resistant to antibiotics, and with significantly more plasmids/cell (6.36 vs 3.72). However, the genomic diversity within E. coli STs in both aquatic environments is similar. Wastewater environments favor the selection of conserved chromosomal structures associated with diverse flexible plasmids, unraveling promiscuous interplasmidic resistance genes flux. On the contrary, the key driver for river E. coli adaptation is a mutable chromosome along with few plasmid types shared between diverse STs harboring a limited resistance gene content.
Collapse
Affiliation(s)
- Jose F Delgado-Blas
- Antimicrobial Resistance Unit (ARU), Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Cristina M Ovejero
- Antimicrobial Resistance Unit (ARU), Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Sophia David
- Centre for Genomic Pathogen Surveillance (CGPS), Wellcome Sanger Institute, Hinxton, UK
| | - Natalia Montero
- Antimicrobial Resistance Unit (ARU), Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - William Calero-Caceres
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- UTA RAM One Health, Faculty of Food Science, Engineering and Biotechnology, Technical University of Ambato, Ambato, Ecuador
| | - M Pilar Garcillan-Barcia
- Institute of Biomedicine and Biotechnology (IBBTEC), CSIC, University of Cantabria, Santander, Spain
| | - Fernando de la Cruz
- Institute of Biomedicine and Biotechnology (IBBTEC), CSIC, University of Cantabria, Santander, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance (CGPS), Wellcome Sanger Institute, Hinxton, UK
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
19
|
Ma Y, Chen J, Fong K, Nadya S, Allen K, Laing C, Ziebell K, Topp E, Carroll LM, Wiedmann M, Delaquis P, Wang S. Antibiotic Resistance in Shiga Toxigenic Escherichia coli Isolates from Surface Waters and Sediments in a Mixed Use Urban Agricultural Landscape. Antibiotics (Basel) 2021; 10:237. [PMID: 33652953 PMCID: PMC7996769 DOI: 10.3390/antibiotics10030237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance (AR) phenotypes and acquired resistance determinants (ARDs) detected by in silico analysis of genome sequences were examined in 55 Shiga toxin-producing Escherichia coli (STEC) isolates representing diverse serotypes recovered from surfaces waters and sediments in a mixed use urban/agricultural landscape in British Columbia, Canada. The isolates displayed decreased susceptibility to florfenicol (65.5%), chloramphenicol (7.3%), tetracycline (52.7%), ampicillin (49.1%), streptomycin (34.5%), kanamycin (20.0%), gentamycin (10.9%), amikacin (1.8%), amoxicillin/clavulanic acid (21.8%), ceftiofur (18.2%), ceftriaxone (3.6%), trimethoprim-sulfamethoxazole (12.7%), and cefoxitin (3.6%). All surface water and sediment isolates were susceptible to ciprofloxacin, nalidixic acid, ertapenem, imipenem and meropenem. Eight isolates (14.6%) were multidrug resistant. ARDs conferring resistance to phenicols (floR), trimethoprim (dfrA), sulfonamides (sul1/2), tetracyclines (tetA/B), and aminoglycosides (aadA and aph) were detected. Additionally, narrow-spectrum β-lactamase blaTEM-1b and extended-spectrum AmpC β-lactamase (cephalosporinase) blaCMY-2 were detected in the genomes, as were replicons from plasmid incompatibility groups IncFII, IncB/O/K/Z, IncQ1, IncX1, IncY and Col156. A comparison with surveillance data revealed that AR phenotypes and ARDs were comparable to those reported in generic E. coli from food animals. Aquatic environments in the region are potential reservoirs for the maintenance and transmission of antibiotic resistant STEC, associated ARDs and their plasmids.
Collapse
Affiliation(s)
- Yvonne Ma
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Jessica Chen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Karen Fong
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Stephanie Nadya
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Kevin Allen
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| | - Chad Laing
- National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada;
| | - Kim Ziebell
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada;
| | - Ed Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Laura M. Carroll
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (L.M.C.); (M.W.)
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (L.M.C.); (M.W.)
| | - Pascal Delaquis
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada;
| | - Siyun Wang
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (Y.M.); (J.C.); (K.F.); (S.N.); (K.A.)
| |
Collapse
|
20
|
Guglielmino CJD, Kakkanat A, Forde BM, Rubenach S, Merone L, Stafford R, Graham RMA, Beatson SA, Jennison AV. Outbreak of multi-drug-resistant (MDR) Shigella flexneri in northern Australia due to an endemic regional clone acquiring an IncFII plasmid. Eur J Clin Microbiol Infect Dis 2021; 40:279-286. [PMID: 32888117 PMCID: PMC7473701 DOI: 10.1007/s10096-020-04029-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/27/2020] [Indexed: 11/12/2022]
Abstract
Epidemiological surveillance of Shigella spp. in Australia is conducted to inform public health response. Multi-drug resistance has recently emerged as a contributing factor to sustained local transmission of Shigella spp. All data were collected as part of routine public health surveillance, and strains were whole-genome sequenced for further molecular characterisation. 108 patients with an endemic regional Shigella flexneri strain were identified between 2016 and 2019. The S. flexneri phylogroup 3 strain endemic to northern Australia acquired a multi-drug resistance conferring blaDHA plasmid, which has an IncFII plasmid backbone with virulence and resistance elements typically found in IncR plasmids. This is the first report of multi-drug resistance in Shigella sp. in Australia that is not associated with men who have sex with men. This strain caused an outbreak of multi-drug-resistant S. flexneri in northern Australia that disproportionality affects Aboriginal and Torres Strait Islander children. Community controlled public health action is recommended.
Collapse
Affiliation(s)
- Christine J D Guglielmino
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Brisbane, Australia.
| | - Asha Kakkanat
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Brisbane, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Sally Rubenach
- Tropical Public Health Services, Queensland Health, Cairns, Australia
| | - Lea Merone
- Rural and Remote Clinical Support Unit, Apunipima Cape York Health Council, Cairns, Australia
| | - Russell Stafford
- Communicable Diseases Unit, Queensland Health, Brisbane, Australia
| | - Rikki M A Graham
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Brisbane, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Amy V Jennison
- Public Health Microbiology, Queensland Health Forensic and Scientific Services, Brisbane, Australia
| |
Collapse
|
21
|
Complete sequences of two new KPC-harbouring plasmids in Klebsiella pneumoniae ST11 strains in China. J Glob Antimicrob Resist 2020; 24:114-120. [PMID: 33321214 DOI: 10.1016/j.jgar.2020.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Klebsiella pneumoniae carbapenemase (KPC) has spread across the world. The present study focused on exploring the sequences of two new KPC-harbouring plasmids in K. pneumoniae. METHODS Eighteen KPC-harbouring K. pneumoniae isolates were collected from a tertiary teaching hospital in 2014 in Fujian, China, among which two new KPC-harbouring plasmids (pF77 and pF5) we identified. The characteristics of the plasmids and the isolates carrying them were investigated in detail. RESULTS The two KPC-harbouring plasmids (pF5 and pF77) carried the antimicrobial resistance genes blaKPC-2, blaCTX-M-65, blaSHV-12, catA2 and fosA3. Detailed sequence comparison revealed that the two plasmids might have evolved from recombination of the previously reported plasmids pKP1034 and pCT-KPC, which were considered to evolve from ancestor plasmids pHN7A8, pKPC-LK30 and pKPHS2. Plasmids pF5 and pF77 were non-conjugative and were mainly identified in sequence type 11 (ST11) K. pneumoniae isolates. Additionally, 4-55 core single nucleotide polymorphisms (SNPs) were identified in each pair of sequenced isolates that carried the identified plasmids. CONCLUSION Plasmids pF5 and pF77 as well as the previously reported plasmids pKP1034 and pCT-KPC were all detected in 2013-2014 in South China and were carried by ST11 K. pneumoniae isolates. SNP analysis indicated high similarity of the sequenced isolates. Therefore, spread of the group of plasmids may be due to an outbreak of clonal dissemination of ST11 KPC-producing K. pneumoniae. This study also highlights the importance of plasmid analysis in the surveillance and control of antibiotic resistance spread in clinical isolates.
Collapse
|
22
|
Co-existence of mphA, oqxAB and blaCTX-M-65 on the IncHI2 Plasmid in highly drug-resistant Salmonella enterica serovar Indiana ST17 isolated from retail foods and humans in China. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Hua X, Zhang L, Moran RA, Xu Q, Sun L, van Schaik W, Yu Y. Cointegration as a mechanism for the evolution of a KPC-producing multidrug resistance plasmid in Proteus mirabilis. Emerg Microbes Infect 2020; 9:1206-1218. [PMID: 32438864 PMCID: PMC7448864 DOI: 10.1080/22221751.2020.1773322] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/19/2020] [Indexed: 11/26/2022]
Abstract
The incidence and transmission of Klebsiella pneumoniae carbapenemase (KPC) producing plasmids have been well documented. However, the evolutionary dynamics of KPC plasmids and their fitness costs are not well characterized. Here, two carbapenemase-producing plasmids from Proteus mirabilis, pT18 and pT211 (both carrying bla KPC-2), were characterized through whole genome sequencing. pT211 is a 24.2 kbp N-type plasmid that contains bla KPC-2 and a single copy of the IS6-family insertion sequence IS26. pT18 is a 59 kbp cointegrate plasmid comprised of sequences derived from three different plasmids: a close relative of pT211 (containing bla KPC-2), an FII-33 plasmid (bla TEM-1B, bla CTX-M-65, rmtB and fosA3) and a rolling-circle plasmid. The segments of pT18 derived from each of the different plasmids are separated by copies of IS26, and sequence analysis indicated that pT18 was likely generated by both conservative and replicative IS26-mediated cointegrate formation. pT18 and pT211 were transferred into Escherichia coli DH5α separately to assess the impact of plasmids on host fitness. Only DH5α harbouring pT18 grew slower than the wild type in antibiotic-free media. However, in sub-inhibitory concentrations of fosfomycin and amikacin, cells containing pT18 grew faster than the wild type, and the minimum concentrations of fosfomycin and amikacin required to observe an advantage for plasmid-carrying cells were 1/3 and 1/20 the DH5α MIC, respectively. This study highlights the importance of the role of cointegrate plasmids in the dissemination of antibiotic resistance genes between pathogenic bacterial species, and highlights the importance of sub-inhibitory concentrations of antibiotics to the persistence of such plasmids.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Robert A. Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Long Sun
- Department of Clinical Laboratory, Hangzhou Women’ s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, People’s Republic of China
- Department of Clinical Laboratory, Hangzhou Hospital of Zhejiang Provincial Corps, Chinese People’s Armed Police Forces, Hangzhou, People’s Republic of China
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
24
|
Lü Y, Kang H, Fan J. A Novel bla CTX-M-65-Harboring IncHI2 Plasmid pE648CTX-M-65 Isolated from a Clinical Extensively-Drug-Resistant Escherichia coli ST648. Infect Drug Resist 2020; 13:3383-3391. [PMID: 33061485 PMCID: PMC7533269 DOI: 10.2147/idr.s269766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background An ESBL, carbapenemase- and MCR-1-producing Escherichia coli ST648 strain was isolated from the urine sample of a patient in a Chinese tertiary hospital in 2016. Methods The strain was fully sequenced by GridION X5 platform of Oxford Nanopore Technology. Results The sequence analysis showed that the extended-spectrum β-lactamases CTX-M-65 and OXA-1, the carbapenemase NDM-5, the MCR-1 were encoded, respectively, by three different resistance plasmids. The pE648CTX-M-65-carrying blaCTX-M-65 was a novel conjugative plasmid belonging to IncHI2 type; except for the blaCTX-M-65, it also carried resistance genes ble, floR, sul1, aph(4)-Ia, aac(3)-VI, aac(6ʹ)-II, blaOXA-1, catB, arr3 and tetA. Besides, an IncX4 plasmid pE648MCR-1-carrying mcr-1 and an IncX3 plasmid pE648NDM-5-carrying blaNDM-5 were also identified. Conclusion The three transferable resistance plasmids coexisting in the E. coli ST648 isolate indicated the high risk to disseminate the extensively-drug-resistance among Enterobacteriaceae.
Collapse
Affiliation(s)
- Yang Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Haiquan Kang
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, People's Republic of China
| | - Jianming Fan
- The Laboratory of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
25
|
Zhang LJ, Gu XX, Zhang J, Yang L, Lu YW, Fang LX, Jiang HX. Characterization of a fosA3 Carrying IncC-IncN Plasmid From a Multidrug-Resistant ST17 Salmonella Indiana Isolate. Front Microbiol 2020; 11:1582. [PMID: 32793137 PMCID: PMC7385254 DOI: 10.3389/fmicb.2020.01582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the characteristics of a fosA3 carrying IncC-IncN plasmid from a multidrug-resistant Salmonella isolate HNK130. HNK130 was isolated from a chicken and identified as ST17 Salmonella enterica serovar Indiana and exhibited resistance to 13 antibiotics including the cephalosporins and fosfomycin. S1 nuclease pulsed-field gel electrophoresis and Southern blot assays revealed that HNK130 harbored only one ∼180-kb plasmid carrying fosA3 and bla CTX-M-14, which was not transferable via conjugation. We further examined 107 Escherichia coli electro-transformants and identified 3 different plasmid variants, pT-HNK130-1 (69), pT-HNK130-2 (15), and pT-HNK130-3 (23), in which pT-HNK130-1 seemed to be the same as the plasmid harbored in HNK130. We completely sequenced an example of each of these variants, and all three variants were IncC-IncN multi-incompatible plasmid and showed a mosaic structure. The fosA3 gene was present in all three and bounded by IS26 elements in the same orientation (IS26-322bp-fosA3-1758bp-IS26) that could form a minicircle containing fosA3. The bla CTX-M-14 gene was located within an IS15DI-ΔIS15DI-iroN-IS903B-bla CTX-M-14 -ΔISEcp1-IS26 structure separated from the fosA3 gene in pT-HNK130-1, but was adjacent to fosA3 in pT-HNK130-3 in an inverted orientation. Linear comparison of the three variants showed that pT-HNK130-2 and pT-HNK130-3 resulted from the sequence deletion and inversion of pT-HNK130-1. Stability tests demonstrated that pT-HNK130-1 and pT-HNK130-3 could be stably maintained in the transformants without antibiotic selection but pT-HNK130-2 was unstable. This is the first description of an IncC-IncN hybrid plasmid from an ST17 S. Indiana strain and indicates that this plasmid may further facilitate dissemination of fosfomycin and cephalosporin resistance in Salmonella.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xi-Xi Gu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue-Wei Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong-Xia Jiang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
26
|
Zhang H, Chang M, Zhang X, Cai P, Dai Y, Song T, Wu Z, Xu H, Qiao M. Functional Identification and Evolutionary Analysis of Two Novel Plasmids Mediating Quinolone Resistance in Proteus vulgaris. Microorganisms 2020; 8:microorganisms8071074. [PMID: 32708454 PMCID: PMC7409132 DOI: 10.3390/microorganisms8071074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) remains one of the main mechanisms of bacterial quinolone resistance and plays an important role in the transmission of antibiotic resistance genes (ARGs). In this study, two novel plasmids, p3M-2A and p3M-2B, which mediate quinolone resistance in Proteus vulgaris strain 3M (P3M) were identified. Of these, only p3M-2B appeared to be a qnrD-carrying plasmid. Both p3M-2A and p3M-2B could be transferred into Escherichia coli, and the latter caused a twofold change in ciprofloxacin resistance, according to the measured minimum inhibitory concentration (MIC). Plasmid curing/complementation and qRT-PCR results showed that p3M-2A can directly regulate the expression of qnrD in p3M-2B under treatment with ciprofloxacin, in which process, ORF1 was found to play an important role. Sequence alignments and phylogenetic analysis revealed the evolutionary relationships of all reported qnrD-carrying plasmids and showed that ORF1–4 in p3M-2B is the most conserved backbone for the normal function of qnrD-carrying plasmids. The identified direct repeats (DR) suggested that, from an evolutionary perspective, p3M-2B may have originated from the 2683-bp qnrD-carrying plasmid and may increase the possibility of plasmid recombination and then of qnrD transfer. To the best of our knowledge, this is the first identification of a novel qnrD-carrying plasmid isolated from a P. vulgaris strain of shrimp origin and a plasmid that plays a regulatory role in qnrD expression. This study also sheds new light on plasmid evolution and on the mechanism of horizontal transfer of ARGs encoded by plasmids.
Collapse
Affiliation(s)
- Hongyang Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.Z.); (X.Z.); (P.C.); (Y.D.); (T.S.); (Z.W.); (H.X.)
| | - Mingding Chang
- Zhengzhou University Industrial Technology Institute Co. Ltd., Zhengzhou 450000, China;
| | - Xiaochen Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.Z.); (X.Z.); (P.C.); (Y.D.); (T.S.); (Z.W.); (H.X.)
| | - Peiyan Cai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.Z.); (X.Z.); (P.C.); (Y.D.); (T.S.); (Z.W.); (H.X.)
| | - Yixin Dai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.Z.); (X.Z.); (P.C.); (Y.D.); (T.S.); (Z.W.); (H.X.)
| | - Tongzhen Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.Z.); (X.Z.); (P.C.); (Y.D.); (T.S.); (Z.W.); (H.X.)
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.Z.); (X.Z.); (P.C.); (Y.D.); (T.S.); (Z.W.); (H.X.)
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.Z.); (X.Z.); (P.C.); (Y.D.); (T.S.); (Z.W.); (H.X.)
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (H.Z.); (X.Z.); (P.C.); (Y.D.); (T.S.); (Z.W.); (H.X.)
- Correspondence:
| |
Collapse
|
27
|
He DD, Zhao SY, Wu H, Hu GZ, Zhao JF, Zong ZY, Pan YS. Antimicrobial resistance-encoding plasmid clusters with heterogeneous MDR regions driven by IS26 in a single Escherichia coli isolate. J Antimicrob Chemother 2020; 74:1511-1516. [PMID: 30820562 DOI: 10.1093/jac/dkz044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/27/2018] [Accepted: 01/08/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND IS26-flanked transposons played an increasingly important part in the mobilization and development of resistance determinants. Heterogeneous resistance-encoding plasmid clusters with polymorphic MDR regions (MRRs) conferred by IS26 in an individual Escherichia coli isolate have not yet been detected. OBJECTIVES To characterize the complete sequence of a novel blaCTX-M-65- and fosA3-carrying IncZ-7 plasmid with dynamic MRRs from an E. coli isolate, and to depict the mechanism underlying the spread of resistance determinants and genetic polymorphisms. METHODS The molecular characterization of a strain carrying blaCTX-M-65 and fosA3 was analysed by antimicrobial susceptibility testing and MLST. The transferability of a plasmid bearing blaCTX-M-65 and fosA3 was determined by conjugation assays, and the complete structure of the plasmid was obtained by Illumina, PacBio and conventional PCR mapping, respectively. The circular forms derived from IS26-flanked transposons were detected by reverse PCR and sequencing. RESULTS A novel IncZ-7 plasmid pEC013 (∼118kb) harbouring the blaCTX-M-65 and fosA3 genes was recovered from E. coli isolate EC013 belonging to D-ST117. The plasmid was found to have heterogeneous and dynamic MRRs in an individual strain and the IS26-flanked composite transposon-derived circular intermediates were identified and characterized in pEC013. CONCLUSIONS The heterogeneous MRRs suggested that a single plasmid may actually be a cluster of plasmids with the same backbone but varied MRRs, reflecting the plasmid's heterogeneity and the survival benefits of having a response to antimicrobial-related threatening conditions in an individual strain.
Collapse
Affiliation(s)
- Dan Dan He
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shi Yu Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Wu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong Zheng Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jin Feng Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhi Yong Zong
- West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
28
|
Multiple Plasmid Vectors Mediate the Spread of fosA3 in Extended-Spectrum-β-Lactamase-Producing Enterobacterales Isolates from Retail Vegetables in China. mSphere 2020; 5:5/4/e00507-20. [PMID: 32669475 PMCID: PMC7364219 DOI: 10.1128/msphere.00507-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The plasmid-mediated fosfomycin resistance gene fosA3 has been detected in Enterobacterales from various sources but has rarely been reported in vegetables. In this study, the aim was to investigate the prevalence of and, subsequently, to characterize fosA3-positive Enterobacterales isolates from retail vegetables. Seventeen (7.3%) fosA3-carrying strains were identified from 233 extended-spectrum-β-lactamase-producing Enterobacterales isolates from vegetables. All 17 isolates, including six Escherichia coli, seven Klebsiella pneumoniae, two Raoultella ornithinolytica, and two Citrobacter freundii isolates, carried bla CTX-M S1-nuclease pulsed-field gel electrophoresis (S1-PFGE) and hybridization confirmed that the fosA3 genes in 16 isolates were located on plasmids ranging in size from ∼40 kb to ∼250 kb, except one located on chromosome of C. freundii All the fosA3-carrying plasmids from 16 fosA3-positive isolates were successfully transferred into the recipient bacteria by transformation or conjugation. In agreement with data determined with isolates from food animals, the IncHI2/ST3 and IncN-F33:A-:B-/F33:A-:B plasmids were the main vectors of fosA3 in E. coli Additionally, F24:A-:B1, IncFIIK-IncR, IncFIIS, IncR, and two untypeable plasmids were found for the first time to be vectors for fosA3 in Enterobacterales The genetic contexts of fosA3 in 15 Enterobacterales isolates differed due to insertion and/or loss of molecular modules mediated by mobile elements. However, all fosA3 genes were flanked by IS26, as commonly observed in other fosA3-carrying plasmids. Here, we report a high rate of detection of fosA3 genes, mediated by multiple plasmid vectors, in ESBL-producing Enterobacterales from retail vegetables. FosA3-producing Enterobacterales could be transmitted to the human body by direct contact or consumption of vegetables, which might pose a potential threat to public health.IMPORTANCE This report provides important information on the transmission and epidemiology of fosA3 among Enterobacterales isolates from vegetables. The rate of occurrence of fosA3 in ESBL-producing Enterobacterales from retail vegetables is high, and fosA3 was found to be carried by diverse plasmids. Some novel genetic contexts of fosA3 and novel fosA3-carrying plasmids, including several plasmid types common in K. pneumoniae, were identified, increasing the number of known transfer vectors for the fosA3 gene and reflecting the complexity of fosA3 transmission in Enterobacterales The capture of fosA3 by the resident plasmid of K. pneumoniae will accelerate the spread of fosA3 in K. pneumoniae, one of the most pathogenic species in clinical medicine. Considering the clinical importance of fosfomycin, and the fact that vegetables are directly consumed, the fosfomycin resistance genes present a risk of transmission to the human body through the food chain and thus pose a threat to public health.
Collapse
|
29
|
Wang L, Wang J, Wang J, Zhu L, Conkle JL, Yang R. Soil types influence the characteristic of antibiotic resistance genes in greenhouse soil with long-term manure application. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122334. [PMID: 32092657 DOI: 10.1016/j.jhazmat.2020.122334] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Composted livestock and poultry manure, which may contain antibiotic resistance genes (ARGs), is widely used as natural fertilizer in China. But the influence of soil types on ARGs is not well characterized, particularly at greenhouse sites with long-term manure application. We investigated the distribution of ARGs in the cinnamon, fluvo-aquic and saline-alkali soils in greenhouse of Yellow River Delta region, China. A total of 193 ARGs subtypes were detected, with multidrug and aminoglycoside resistance genes as the most universal ARGs subtypes. Soil types influenced the ARGs distribution, where higher levels of diversity and relative abundance of ARGs in the fluvo-aquic and saline-alkali soils compared with those in the cinnamon soils. Among abiotic factors, sand, pH and Zn contributed more to the pattern of ARGs in the cinnamon soils, whereas sand and Cd, clay and Pb contributed the most in the fluvo-aquic and saline-alkali soils respectively. Furthermore, positive correlations between the relative abundances of ARGs and mobile genetic elements (MGEs) in the fluvo-aquic soils, suggesting higher dissemination potential of ARGs in this type of soil. Overall, MGEs played a positive primary role in the ARGs distribution in greenhouse soil than heavy metal co-selection and soil physicochemical properties.
Collapse
Affiliation(s)
- Lanjun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jinhua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lusheng Zhu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jeremy L Conkle
- Department of Physical & Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, United States.
| | - Rui Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
30
|
Zhao J, Liu C, Liu Y, Zhang Y, Xiong Z, Fan Y, Zou X, Lu B, Cao B. Genomic characteristics of clinically important ST11 Klebsiella pneumoniae strains worldwide. J Glob Antimicrob Resist 2020; 22:519-526. [PMID: 32278068 DOI: 10.1016/j.jgar.2020.03.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES ST11 Klebsiella pneumoniae is among the most important clinical pathogens in China, and KL47 and KL64 are the dominant K types of these strains. Understanding the genomic characteristics of these strains would be critical to their anti-infection treatment. METHODS There were 364 genome sequences of ST11 K. pneumoniae strains isolated and collected from 13 countries from 2003 to 2018. These genome sequences included 338 downloaded from the National Center for Biotechnology Information (NCBI) database and 26 newly sequenced. Phylogenetic analyses of pan-genome and unique genes, and resistance and virulence gene analyses, were carried out to elucidate the molecular characteristics of these strains. RESULTS A total of 19 732 genes were identified from the 364 ST11 strains, and the pan-genome was open, indicating the genetic diversity of ST11 K. pneumoniae. These strains were clustered into three clades. Clade 1 contained the most various K types (14/15, 93.3%) and unique genes. KL47 and KL64 were the dominant K types of clades 2 and 3, accounting for 100% and 99.4% of strains in each clade, respectively. KL64 strains contained the most virulence genes, including iucA and rmpA, and the two genes tend to coexist. In addition, strains in clade 1 were isolated from all 13 countries; the strains in clades 2 and 3 were isolated mainly from China. CONCLUSIONS The ST11 K. pneumoniae strain of KL64 is a newly emerging superbug, with more resistance and virulence genes in China; this was significantly different from other countries, and we should be alert to the dissemination of this subclone.
Collapse
Affiliation(s)
- Jiankang Zhao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Liu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingmei Liu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yulin Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhujia Xiong
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanyan Fan
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
31
|
Mc Carlie S, Boucher CE, Bragg RR. Molecular basis of bacterial disinfectant resistance. Drug Resist Updat 2019; 48:100672. [PMID: 31830738 DOI: 10.1016/j.drup.2019.100672] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
Antibiotic resistance could accelerate humanity towards an already fast-approaching post-antibiotic era, where disinfectants and effective biosecurity measures will be critically important to control microbial diseases. Disinfectant resistance has the potential to change our way of life from compromising food security to threatening our medical health systems. Resistance to antimicrobial agents occurs through either intrinsic or acquired resistance mechanisms. Acquired resistance occurs through the efficient transfer of mobile genetic elements, which can carry single, or multiple resistance determinants. Drug resistance genes may form part of integrons, transposons and insertions sequences which are capable of intracellular transfer onto plasmids or gene cassettes. Thereafter, resistance plasmids and gene cassettes mobilize by self-transmission between bacteria, increasing the prevalence of drug resistance determinants in a bacterial population. An accumulation of drug resistance genes through these mechanisms gives rise to multidrug resistant (MDR) bacteria. The study of this mobility is integral to safeguard current antibiotics, disinfectants and other antimicrobials. Literature evidence, however, indicates that knowledge regarding disinfectant resistance is severly limited. Genome engineering such as the CRISPR-Cas system, has identified disinfectant resistance genes, and reversed resistance altogether in certain prokaryotes. Demonstrating that these techniques could prove invaluable in the combat against disinfectant resistance by uncovering the secrets of MDR bacteria.
Collapse
|
32
|
Characterization of a Multidrug-Resistant Porcine Klebsiella pneumoniae Sequence Type 11 Strain Coharboring bla KPC-2 and fosA3 on Two Novel Hybrid Plasmids. mSphere 2019; 4:4/5/e00590-19. [PMID: 31511369 PMCID: PMC6739495 DOI: 10.1128/msphere.00590-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The global dissemination of carbapenem resistance genes is of great concern. Animals are usually considered a reservoir of resistance genes and an important source of human infection. Although carbapenemase-producing Enterobacteriaceae strains of animal origin have been reported increasingly, blaKPC-2-positive strains from food-producing animals are still rare. In this study, we first describe the isolation and characterization of a carbapenem-resistant Klebsiella pneumoniae ST11 isolate, strain K15, which is of pig origin and coproduces KPC-2 and FosA3 via two novel hybrid plasmids. Furthermore, our findings highlight that this ST11 Klebsiella pneumoniae strain K15 is most likely of human origin and could be easily transmitted back to humans via direct contact or food intake. In light of our findings, significant attention must be paid to monitoring the prevalence and further evolution of blaKPC-2-carrying plasmids among the Enterobacteriaceae strains of animal origin. The occurrence of carbapenemase-producing Enterobacteriaceae (CPE) poses a considerable risk for public health. The gene for Klebsiella pneumoniae carbapenemase-2 (KPC-2) has been reported in many countries worldwide, and KPC-2-producing strains are mainly of human origin. In this study, we identified two novel hybrid plasmids that carry either blaKPC-2 or the fosfomycin resistance gene fosA3 in the multiresistant K. pneumoniae isolate K15 of swine origin in China. The blaKPC-2-bearing plasmid pK15-KPC was a fusion derivative of an IncF33:A−:B− incompatibility group (Inc) plasmid and chromosomal sequences of K. pneumoniae (CSKP). A 5-bp direct target sequence duplication (GACTA) was identified at the boundaries of the CSKP, suggesting that the integration might have been due to a transposition event. The blaKPC-2 gene on pK15-KPC was in a derivative of ΔTn6296-1. The multireplicon fosA3-carrying IncN-IncR plasmid pK15-FOS also showed a mosaic structure, possibly originating from a recombination between an epidemic fosA3-carrying pHN7A8-like plasmid and a pKPC-LK30-like IncR plasmid. Stability tests demonstrated that both novel hybrid plasmids were stably maintained in the original host without antibiotic selection but were lost from the transformants after approximately 200 generations. This is apparently the first description of a porcine sequence type 11 (ST11) K. pneumoniae isolate coproducing KPC-2 and FosA3 via pK15-KPC and pK15-FOS, respectively. The multidrug resistance (MDR) phenotype of this high-risk K. pneumoniae isolate may contribute to its spread and its persistence. IMPORTANCE The global dissemination of carbapenem resistance genes is of great concern. Animals are usually considered a reservoir of resistance genes and an important source of human infection. Although carbapenemase-producing Enterobacteriaceae strains of animal origin have been reported increasingly, blaKPC-2-positive strains from food-producing animals are still rare. In this study, we first describe the isolation and characterization of a carbapenem-resistant Klebsiella pneumoniae ST11 isolate, strain K15, which is of pig origin and coproduces KPC-2 and FosA3 via two novel hybrid plasmids. Furthermore, our findings highlight that this ST11 Klebsiella pneumoniae strain K15 is most likely of human origin and could be easily transmitted back to humans via direct contact or food intake. In light of our findings, significant attention must be paid to monitoring the prevalence and further evolution of blaKPC-2-carrying plasmids among the Enterobacteriaceae strains of animal origin.
Collapse
|
33
|
Qu D, Shen Y, Hu L, Jiang X, Yin Z, Gao B, Zhao Y, Yang W, Yang H, Han J, Zhou D. Comparative analysis of KPC-2-encoding chimera plasmids with multi-replicon IncR:Inc pA1763-KPC:IncN1 or IncFII pHN7A8:Inc pA1763-KPC:IncN1. Infect Drug Resist 2019; 12:285-296. [PMID: 30774396 PMCID: PMC6353027 DOI: 10.2147/idr.s189168] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background IncR, IncFII, IncpA1763-KPC, and IncN1 plasmids have been increasingly found among Enterobacteriaceae species, but plasmids with hybrid structures derived from the above-mentioned incompatibility groups have not yet been described. Methods Plasmids p721005-KPC, p504051-KPC, and pA3295-KPC were fully sequenced and compared with previously sequenced related plasmids pHN84KPC (IncR), pKPHS2 (IncFIIK), pKOX_NDM1 (IncFIIY), pHN7A8 (IncFIIpHN7A8), and R46 (IncN1). Results The backbone of p721005-KPC/p504051-KPC was a hybrid of the entire 10-kb IncR-type backbone from pHN84KPC, the entire 64.3-kb IncFIIK-type maintenance, and conjugal transfer regions from pKPHS2, a 15.5-kb IncFIIY-type maintenance region from pKOX_NDM1 and a 5.6-kb IncpA1763-KPC-type backbone region from pA1763-KPC, and it contained a primary IncR replicon and two auxiliary IncpA1763-KPC and IncN1 replicons. The backbone of pA3295-KPC was a hybrid of a 7.2-kb IncFIIpHN7A8-type backbone region from pHN7A8, the almost entire 33.3-kb IncN1-type maintenance and conjugal transfer regions highly similar to R46, a 26.2-kb IncFIIK-type maintenance regions from pKPHS2, the above 15.5-kb IncFIIY-type maintenance region, and the above 5.6-kb IncpA1763-KPC-type backbone region, and it contained a primary Inc-FIIpHN7A8 replicon and two auxiliary IncpA1763-KPC and IncN1 replicons. Each of p721005-KPC, p504051-KPC, and pA3295-KPC acquired a wealth of accessory modules, carrying a range of intact and residue mobile elements (such as insertion sequences, unit transposons, and integrons) and resistance markers (such as blaKPC, tetA, dfrA, and qnr). Conclusion In each of p721005-KPC, p504051-KPC, and pA3295-KPC, multiple replicons in coordination with maintenance and conjugation regions of various origins would maintain a broad host range and a stable replication at a steady-state plasmid copy number.
Collapse
Affiliation(s)
- Daofeng Qu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China, .,School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China,
| | - Yang Shen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China,
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,
| | - Bo Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China,
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China,
| |
Collapse
|
34
|
Cassu-Corsi D, Martins WM, Nicoletti AG, Almeida LG, Vasconcelos AT, Gales AC. Characterisation of plasmid-mediated rmtB-1 in Enterobacteriaceae clinical isolates from São Paulo, Brazil. Mem Inst Oswaldo Cruz 2018; 113:e180392. [PMID: 30540076 PMCID: PMC6287189 DOI: 10.1590/0074-02760180392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/14/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The emergence of 16S rRNA methyltranferases (16 RMTAses) has jeopardised the clinical use of aminoglycosides. RmtB is one of the most frequently reported in Gram-negatives worldwide. In this study, we aimed to estimate the frequency of 16S RMTAses encoding genes in Enterobacteriaceae isolated in a three-month period from a tertiary Brazilian hospital. METHODS All Gram-negatives classified as resistant to amikacin, gentamicin, and tobramycin by agar screening were selected for analysis. The presence of 16SRMTases encoding genes was verified by polymerase chain reaction (PCR). Antimicrobial susceptible profile was determined by broth microdilution. The genetic relationship among these isolates was accessed by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Selected RmtB-producing isolates were characterised by whole genome sequencing (WGS) analysis. RESULTS Twenty-two of 1,052 (2.1%) Enterobacteriaceae were detected as producers of RmtB-1 [Klebsiella pneumoniae (n = 21) and Proteus mirabilis (n = 1)]. blaKPC-2 was identified among 20 RmtB-1-producing K. pneumoniae isolates that exhibited an identical PFGE and MLST (ST258) patterns. Two K. pneumoniae isolates, the A64216 (not harboring blaKPC-2), A64477 (harboring blaKPC-2) and one P. mirabilis isolate (A64421) were selected for WGS. rmtB-1 and blaKPC-2 genes were carried by distinct plasmids. While a plasmid belonging to the IncFIIk group harbored rmtB-1 in K. pneumoniae, this gene was carried by a non-typable plasmid in P. mirabilis. In the three analysed plasmids, rmtB-1 was inserted on a transposon, downstream a Tn2. CONCLUSION Our findings suggested that the rmtB-1 was harbored by plasmids distinct from those previously reported in Bolivia and China. It suggests that multiple mobilization events might have occurred in South America.
Collapse
Affiliation(s)
- Dandara Cassu-Corsi
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brasil
| | - Willames Mbs Martins
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brasil
| | - Adriana G Nicoletti
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brasil
| | - Luiz Gp Almeida
- Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brasil
| | | | - Ana C Gales
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Interna, Divisão de Doenças Infecciosas, Laboratório Alerta, São Paulo, SP, Brasil
| |
Collapse
|
35
|
Shi L, Feng J, Zhan Z, Zhao Y, Zhou H, Mao H, Gao Y, Zhang Y, Yin Z, Gao B, Tong Y, Luo Y, Zhang D, Zhou D. Comparative analysis of bla KPC-2- and rmtB-carrying IncFII-family pKPC-LK30/pHN7A8 hybrid plasmids from Klebsiella pneumoniae CG258 strains disseminated among multiple Chinese hospitals. Infect Drug Resist 2018; 11:1783-1793. [PMID: 30349335 PMCID: PMC6188201 DOI: 10.2147/idr.s171953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background We recently reported the complete sequence of a blaKPC-2- and rmtB-carrying IncFII-family plasmid p675920-1 with the pKPC-LK30/pHN7A8 hybrid structure. Comparative genomics of additional sequenced plasmids with similar hybrid structures and their prevalence in blaKPC-carrying Klebsiella pneumoniae strains from China were investigated in this follow-up study. Methods A total of 51 blaKPC-carrying K. pneumoniae strains were isolated from 2012 to 2016 from five Chinese hospitals and genotyped by multilocus sequence typing. The blaKPC-carrying plasmids from four representative strains were sequenced and compared with p675920-1 and pCT-KPC. Plasmid transfer, carbapenemase activity determination, and bacterial antimicrobial susceptibility test were performed to characterize resistance phenotypes mediated by these plasmids. The prevalence of pCT-KPC-like plasmids in these blaKPC-carrying K. pneumoniae strains was screened by PCR. Result The six KPC-encoding plasmids p1068-KPC, p20049-KPC, p12139-KPC and p64917-KPC (sequenced in this study) and p675920-1 and pCT-KPC slightly differed from one another due to deletion and acquisition of various backbone and accessory regions. Two major accessory resistance regions, which included the blaKPC-2 region harboring blaKPC-2 (carbapenem resistance) and blaSHV-12 (β-lactam resistance), and the MDR region carrying rmtB (aminoglycoside resistance), fosA3 (fosfomycin resistance), blaTEM-1B (β-lactam resistance) and blaCTX-M-65 (β-lactam resistance), were found in each of these six plasmids and exhibited several parallel evolution routes. The pCT-KPC-like plasmids were present in all the 51 K. pneumoniae isolates, all of which belonged to CG258. Conclusion There was clonal dissemination of K. pneumoniae CG258 strains, harboring blaKPC-2- and rmtB-carrying IncFII-family pKPC-LK30/pHN7A8 hybrid plasmids, among multiple Chinese hospitals.
Collapse
Affiliation(s)
- Lining Shi
- Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
| | - Jiao Feng
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China, ,
| | - Zhe Zhan
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China, ,
| | - Yuzong Zhao
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China, , .,College of Food Science & Project Engineering, Bohai University, Jinzhou 121013, China,
| | - Haijian Zhou
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Haifeng Mao
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Yingjie Gao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ying Zhang
- Medical Laboratory Center, Chinese People's Liberation Army General Hospital, Beijing 100085, China
| | - Zhe Yin
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China, ,
| | - Bo Gao
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China, ,
| | - Yigang Tong
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China, ,
| | - Yanping Luo
- Medical Laboratory Center, Chinese People's Liberation Army General Hospital, Beijing 100085, China
| | - Defu Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China, , .,College of Food Science & Project Engineering, Bohai University, Jinzhou 121013, China,
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China, ,
| |
Collapse
|
36
|
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 2018; 31:e00088-17. [PMID: 30068738 PMCID: PMC6148190 DOI: 10.1128/cmr.00088-17] [Citation(s) in RCA: 1345] [Impact Index Per Article: 192.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephen M Kwong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Neville Firth
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Slade O Jensen
- Microbiology and Infectious Diseases, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
- Antibiotic Resistance & Mobile Elements Group, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Madec JY, Haenni M. Antimicrobial resistance plasmid reservoir in food and food-producing animals. Plasmid 2018; 99:72-81. [PMID: 30194944 DOI: 10.1016/j.plasmid.2018.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance (AMR) plasmids have been recognized as important vectors for efficient spread of AMR phenotypes. The food reservoir includes both food-producing animals and food products, and a huge diversity of AMR plasmids have been reported in this sector. Based on molecular typing methods and/or whole genome sequencing approaches, certain AMR genes/plasmids combinations were found more frequently in food compared to other settings. However, the food source of a definite AMR plasmid is highly complex to confirm due to cross-sectorial transfers and international spread of AMR plasmids. For risk assessment purposes related to human health, AMR plasmids found in food and bearing genes conferring resistances to critically important antibiotics in human medicine - such as to extended-spectrum cephalosporins, carbapenems or colistin - have been under specific scrutiny these last years. Those plasmids are often multidrug resistant and their dissemination can be driven by the selective pressure exerted by any of the antibiotics concerned. Also, AMR plasmids carry numerous other genes conferring vital properties to the bacterial cell and are recurrently subjected to evolutionary steps such as hybrid plasmids, making the epidemiology of AMR plasmids in food a moving picture.
Collapse
Affiliation(s)
- Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon - Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon - Université de Lyon, Lyon, France.
| |
Collapse
|
38
|
Fu L, Tang L, Wang S, Liu Q, Liu Y, Zhang Z, Zhang L, Li Y, Chen W, Wang G, Zhou Y. Co-location of the bla KPC-2, bla CTX-M-65, rmtB and virulence relevant factors in an IncFII plasmid from a hypermucoviscous Klebsiella pneumoniae isolate. Microb Pathog 2018; 124:301-304. [PMID: 30165112 DOI: 10.1016/j.micpath.2018.08.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/24/2018] [Accepted: 08/25/2018] [Indexed: 01/05/2023]
Abstract
Hypervirulent variants of klebsiella pneumoniae (hvKP), which cause serious infections not only healthy individuals, but also the immunocompromised patients, have been increasingly reported recently. One conjugation of a hypermucoviscous strian SWU01 co-carried the resistance gene blaKPC-2 and virulence gene iroN by the PCR detection from three carbapenem-resistance hvKP. To know the genetic context of this plasmid. The whole genome of this strain was sequenced. We got a 162,552-bp plasmid (pSWU01) which co-carried the resistance gene blaKPC-2 and virulence gene iroN. It is composed of a typical IncFII-type backbone, five resistance genes including blaCTX-M-65, blaKPC-2, blaSHV-12, blaTEM-1 and rmtB, and several virulence relevant factors including iroN, traT and toxin-antitoxin systems. The plasmid pSWU01 co-carrying the multidrug resistance determinants and virulence relevant factors from the hypermucoviscous K. pneumoniae represents a novel therapeutic challenge.
Collapse
Affiliation(s)
- Li Fu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lingtong Tang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; The First People's Hospital of Yibin, Yibin, 644000, Sichuan, China
| | - Shanmei Wang
- The People's Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Qingye Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China; Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yao Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - LuHua Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yin Li
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenbi Chen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - GuangXi Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - YingShun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
39
|
Evolution and Comparative Genomics of F33:A-:B- Plasmids Carrying blaCTX-M-55 or blaCTX-M-65 in Escherichia coli and Klebsiella pneumoniae Isolated from Animals, Food Products, and Humans in China. mSphere 2018; 3:3/4/e00137-18. [PMID: 30021873 PMCID: PMC6052338 DOI: 10.1128/msphere.00137-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A−:B− plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A−:B− plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A−:B− plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes. To understand the underlying evolution process of F33:A−:B− plasmids among Enterobacteriaceae isolates of various origins in China, the complete sequences of 17 blaCTX-M-harboring F33:A−:B− plasmids obtained from Escherichia coli and Klebsiella pneumoniae isolates from different sources (animals, animal-derived food, and human clinics) in China were determined. F33:A−:B− plasmids shared similar plasmid backbones comprising replication, leading, and conjugative transfer regions and differed by the numbers of repeats in yddA and traD and by the presence of group II intron, except that pHNAH9 lacked a large segment of the leading and transfer regions. The variable regions of F33:A−B− plasmids were distinct and were inserted downstream of the addiction system pemI/pemK, identified as the integration hot spot among F33:A−B− plasmids. The variable region contained resistance genes and mobile elements or contained segments from other types of plasmids, such as IncI1, IncN1, and IncX1. Three plasmids encoding CTX-M-65 were very similar to our previously described pHN7A8 plasmid. Four CTX-M-55-producing plasmids contained multidrug resistance regions related to that of F2:A−B− plasmid pHK23a from Hong Kong. Five plasmids with IncN and/or IncX replication regions and IncI1-backbone fragments had variable regions related to those of pE80 and p42-2. The remaining five plasmids with IncN replicons and an IncI1 segment also possessed closely related variable regions. The diversity in variable regions was presumably associated with rearrangements, insertions, and/or deletions mediated by mobile elements, such as IS26 and IS1294. IMPORTANCE Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A−:B− plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A−:B− plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A−:B− plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes.
Collapse
|
40
|
Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0026-2017. [PMID: 30003866 PMCID: PMC11633601 DOI: 10.1128/microbiolspec.arba-0026-2017] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance in Escherichia coli has become a worrying issue that is increasingly observed in human but also in veterinary medicine worldwide. E. coli is intrinsically susceptible to almost all clinically relevant antimicrobial agents, but this bacterial species has a great capacity to accumulate resistance genes, mostly through horizontal gene transfer. The most problematic mechanisms in E. coli correspond to the acquisition of genes coding for extended-spectrum β-lactamases (conferring resistance to broad-spectrum cephalosporins), carbapenemases (conferring resistance to carbapenems), 16S rRNA methylases (conferring pan-resistance to aminoglycosides), plasmid-mediated quinolone resistance (PMQR) genes (conferring resistance to [fluoro]quinolones), and mcr genes (conferring resistance to polymyxins). Although the spread of carbapenemase genes has been mainly recognized in the human sector but poorly recognized in animals, colistin resistance in E. coli seems rather to be related to the use of colistin in veterinary medicine on a global scale. For the other resistance traits, their cross-transfer between the human and animal sectors still remains controversial even though genomic investigations indicate that extended-spectrum β-lactamase producers encountered in animals are distinct from those affecting humans. In addition, E. coli of animal origin often also show resistances to other-mostly older-antimicrobial agents, including tetracyclines, phenicols, sulfonamides, trimethoprim, and fosfomycin. Plasmids, especially multiresistance plasmids, but also other mobile genetic elements, such as transposons and gene cassettes in class 1 and class 2 integrons, seem to play a major role in the dissemination of resistance genes. Of note, coselection and persistence of resistances to critically important antimicrobial agents in human medicine also occurs through the massive use of antimicrobial agents in veterinary medicine, such as tetracyclines or sulfonamides, as long as all those determinants are located on the same genetic elements.
Collapse
Affiliation(s)
- Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Jean-Yves Madec
- Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Agnese Lupo
- Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Anne-Kathrin Schink
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Kieffer
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
41
|
Liu J, Xie J, Yang L, Chen D, Peters BM, Xu Z, Shirtliff ME. Identification of the KPC plasmid pCT-KPC334: New insights on the evolutionary pathway of epidemic plasmids harboring fosA3-bla KPC-2 genes. Int J Antimicrob Agents 2018; 52:510-511. [PMID: 29684435 DOI: 10.1016/j.ijantimicag.2018.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 11/24/2022]
Affiliation(s)
- Junyan Liu
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Jinhong Xie
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Ling Yang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Brian M Peters
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Zhenbo Xu
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China; Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, MD 21201, USA; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, MD 21201, USA
| |
Collapse
|
42
|
Yang TY, Lu PL, Tseng SP. Update on fosfomycin-modified genes in Enterobacteriaceae. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 52:9-21. [PMID: 29198952 DOI: 10.1016/j.jmii.2017.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/17/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
Abstract
The long-used antibiotic fosfomycin has recently been re-evaluated as a potential regimen for treating extended-spectrum β-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE). Fosfomycin is known for its robust bactericidal effect against ESBL-producing Enterobacteriaceae and CRE. However, fosfomycin-modified genes have been reported in transposon elements and conjugative plasmids, resulting in fosfomycin resistance in parts of East Asia. Here we review reports of fosfomycin-modified (fos) genes in Enterobacteriaceae and assess the efficacy of fosfomycin against multidrug-resistant Enterobacteriaceae infections. At least 10 kinds of fos genes have been identified in the past decade; of these, fosA (and fosA subtypes) and fosC2 are primarily found in Enterobacteriaceae. All fosA subtypes except fosA2 are found in plasmids and transposons, nearby insertion sequence elements, or integrons, indicating that mobilizing elements also play an important role in plasmid-mediated fos genes in Enterobacteriaceae. fosA3, which is prevalent in East Asia, has been transmitted (mostly by animals) within and across continents via IS26 mobile elements. The acquisition of multiple antibiotic resistance genes via plasmids and mobile elements has resulted in a need for combined treatments for Enterobacteriaceae cases. The combination of fosfomycin and carbapenem has been the focus of many in vitro studies, but there is a clear need for additional in vivo investigations involving pharmacokinetics.
Collapse
Affiliation(s)
- Tsung-Ying Yang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
43
|
Varela Y, Millán B, Araque M. [Genetic diversity of extraintestinal Escherichia coli strains producers of beta-lactamases TEM, SHV and CTX-M associated with healthcare]. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2017; 37:209-217. [PMID: 28527285 DOI: 10.7705/biomedica.v37i3.3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/21/2016] [Indexed: 06/07/2023]
Abstract
INTRODUCTION There are few reports from Venezuela describing the genetic basis that sustains the pathogenic potential and phylogenetics of Escherichia coli extraintestinal strains isolated in health care units. OBJECTIVE To establish the genetic diversity of extraintestinal E. coli strains producers of betalactamases TEM, SHV and CTX-M associated with healthcare. MATERIALS AND METHODS We studied a collection of 12 strains of extraintestinal E. coli with diminished sensitivity to broad-spectrum cephalosporins. Antimicrobial susceptibility was determined by minimum inhibitory concentration. We determined the phylogenetic groups, virulence factors and genes encoding antimicrobial resistance using PCR, and clonal characterization by repetitive element palindromic-PCR rep-PCR. RESULTS All strains showed resistance to cephalosporins and joint resistance to quinolones and aminoglycosides. The phylogenetic distribution showed that the A and B1 groups were the most frequent, followed by D and B2. We found all the virulence factors analyzed in the B2 group, and fimH gene was the most frequent among them. We found blaCTX-M in all strains,with a higher prevalence of blaCTX-M-8; two of these strains showed coproduction of blaCTX-M-9 and were genetically identified as blaCTXM-65 and blaCTX-M-147 by sequencing. CONCLUSION The strains under study showed genetic diversity, hosting a variety of virulence genes, as well as antimicrobial resistance with no particular phylogroup prevalence. This is the first report of blaCTX-M alleles in Venezuela and in the world associated to non-genetically related strains isolated in health care units, a situation that deserves attention, as well as the rationalization of antimicrobials use.
Collapse
Affiliation(s)
- Yasmin Varela
- Laboratorio de Microbiología Molecular, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela Posgrado de Microbiología Clínica, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela.
| | | | | |
Collapse
|
44
|
Frequent Tn 2 Misannotation in the Genetic Background of rmtB. Antimicrob Agents Chemother 2017; 61:AAC.00811-17. [PMID: 28559251 DOI: 10.1128/aac.00811-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Jiang W, Men S, Kong L, Ma S, Yang Y, Wang Y, Yuan Q, Cheng G, Zou W, Wang H. Prevalence of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 Among CTX-M-Producing Escherichia coli Isolates from Chickens in China. Foodborne Pathog Dis 2017; 14:210-218. [PMID: 28379732 DOI: 10.1089/fpd.2016.2230] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the prevalence of fosfomycin resistance gene fosA3 and characterize plasmids harboring fosA3 among CTX-M-producing Escherichia coli from chickens in China. A total of 234 CTX-M-producing E. coli isolates collected from chickens from 2014 to 2016 were screened for the presence of plasmid-mediated fosfomycin resistance genes (fosA, fosA3, and fosC2). Clonal relatedness of fosA3-positive isolates was determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The genetic environment of fosA3 was analyzed by polymerase chain reaction (PCR) mapping. Plasmids were studied by using conjugation experiments, PCR-based replicon typing and plasmid MLST. Sixty-four (27.4%) fosA3-positive E. coli isolates were identified in this study. The gene blaCTX-M-55 (31/64) was predominant among these strains, followed by blaCTX-M-14 (18/64) and blaCTX-M-65 (14/64). Various PFGE patterns and sequence types (STs) indicated that these isolates were clonally unrelated. Seven different genetic environments of fosA3 were identified and two new combinations (ISEcp1-blaCTX-M-65-ΔIS903D-IS26-fosA3-orf1-orf2-Δorf3-IS26 and IS26-ISEcp1-blaCTX-M-3-orf477-blaTEM-1-IS26-fosA3-orf1-orf2-Δorf3-IS26) were discovered for the first time. Conjugation experiments were successful for 47 isolates and 33 transconjugants harbored a single plasmid. Plasmids carrying fosA3 belonged to incompatibility group IncFII (17/33), IncI1 (2/33), IncHI2 (3/33), and IncB/O (1/33). F33:A-:B- plasmids carrying blaCTX-M-55, IncHI2/ST3 plasmids carrying blaCTX-M-65, and F2:A-:B-plasmids carrying blaCTX-M-55 were found in E. coli isolates from different provinces. Our results revealed a considerable prevalence of fosA3 gene among CTX-M-producing E. coli with clonal diversity from chickens in China. The transmission of different kinds of plasmids is responsible for the dissemination of fosA3 in chicken farms in China.
Collapse
Affiliation(s)
- Wei Jiang
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Shuai Men
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Linghan Kong
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Suzhen Ma
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Yongqiang Yang
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Yongxiang Wang
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Qiwu Yuan
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Guangyang Cheng
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Wencheng Zou
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China
| | - Hongning Wang
- 1 Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University , Chengdu, China .,2 Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province , Chengdu, China .,3 "985 Project" Science Innovative Platform for Resource and Environment Protection of Southwestern China, Sichuan University , Chengdu, China
| |
Collapse
|
46
|
IncFII Conjugative Plasmid-Mediated Transmission of blaNDM-1 Elements among Animal-Borne Escherichia coli Strains. Antimicrob Agents Chemother 2016; 61:AAC.02285-16. [PMID: 27821455 DOI: 10.1128/aac.02285-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023] Open
Abstract
This study aims to investigate the prevalence and transmission dynamics of the blaNDM-1 gene in animal Escherichia coli strains. Two IncFII blaNDM-1-encoding plasmids with only minor structural variation in the MDR region, pHNEC46-NDM and pHNEC55-NDM, were found to be responsible for the transmission of blaNDM-1 in these strains. The blaNDM-1 gene can be incorporated into plasmids and stably inherited in animal-borne E. coli strains that can be maintained in animal gut microflora even without carbapenem selection pressure.
Collapse
|
47
|
High prevalence of fosfomycin resistance gene fosA3 in bla CTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010-2014. Epidemiol Infect 2016; 145:818-824. [PMID: 27938421 DOI: 10.1017/s0950268816002879] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Fosfomycin has become a therapeutic option in urinary tract infections. We identified 57 fosfomycin-resistant Escherichia coli from 465 urine-derived extended-spectrum β-lactamase (ESBL)-producing isolates from a Chinese hospital during 2010-2014. Of the 57 fosfomycin-resistant isolates, 51 (89·5%) carried fosA3, and one carried fosA1. Divergent pulsed-field gel electrophoresis profiles and multi-locus sequence typing results revealed high clonal diversity in the fosA3-positive isolates. Conjugation experiments showed that the fosA3 genes from 50 isolates were transferable, with IncFII or IncI1 being the most prevalent types of plasmids. The high prevalence of fosA3 was closely associated with that of bla CTX-M. Horizontal transfer, rather than clonal expansion, might play a central role in dissemination. Such strains may constitute an important reservoir of fosA3 and bla CTX-M, which may well be readily disseminated to other potential human pathogens. Since most ESBL-producing E. coli have acquired resistance to fluoroquinolones worldwide, further spread of fosA3 in such E. coli isolates should be monitored closely.
Collapse
|
48
|
Whole-Genome Sequencing Identifies In Vivo Acquisition of a blaCTX-M-27-Carrying IncFII Transmissible Plasmid as the Cause of Ceftriaxone Treatment Failure for an Invasive Salmonella enterica Serovar Typhimurium Infection. Antimicrob Agents Chemother 2016; 60:7224-7235. [PMID: 27671066 DOI: 10.1128/aac.01649-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022] Open
Abstract
We report a case of ceftriaxone treatment failure for bacteremia caused by Salmonella enterica subsp. enterica serovar Typhimurium, due to the in vivo acquisition of a blaCTX-M-27-encoding IncFII group transmissible plasmid. The original β-lactamase-susceptible isolate ST882S was replaced by the resistant isolate ST931R during ceftriaxone treatment. After relapse, treatment was changed to ciprofloxacin, and the patient recovered. Isolate ST931R could transfer resistance to Escherichia coli at 37°C. We used whole-genome sequencing of ST882S and ST931R, the E. coli transconjugant, and isolated plasmid DNA to unequivocally show that ST882S and ST931R had identical chromosomes, both having 206 identical single-nucleotide polymorphisms (SNPs) versus S Typhimurium 14028s. We assembled a complete circular genome for ST931R, to which ST882S reads mapped with no SNPs. ST882S and ST931R were isogenic except for the presence of three additional plasmids in ST931R. ST931R and the E. coli transconjugant were ceftriaxone resistant due to the presence of a 60.5-kb IS26-flanked, blaCTX-M-27-encoding IncFII plasmid. Compared to 14082s, ST931R has almost identical Gifsy-1, Gifsy-2, and ST64B prophages, lacks Gifsy-3, and instead carries a unique Fels-2 prophage related to that found in LT2. ST882S and ST931R both had a 94-kb virulence plasmid showing >99% identity with pSLT14028s and a cryptic 3,904-bp replicon; ST931R also has cryptic 93-kb IncI1 and 62-kb IncI2 group plasmids. To the best of our knowledge, in vivo acquisition of extended-spectrum β-lactamase resistance by S Typhimurium and blaCTX-M-27 genes in U.S. isolates of Salmonella have not previously been reported.
Collapse
|
49
|
Wong MH, Xie M, Xie L, Lin D, Li R, Zhou Y, Chan EW, Chen S. Complete Sequence of a F33:A-:B- Conjugative Plasmid Carrying the oqxAB, fosA3, and blaCTX-M-55 Elements from a Foodborne Escherichia coli Strain. Front Microbiol 2016; 7:1729. [PMID: 27833607 PMCID: PMC5081371 DOI: 10.3389/fmicb.2016.01729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/17/2016] [Indexed: 11/13/2022] Open
Abstract
This study reports the complete sequence of pE80, a conjugative IncFII plasmid recovered from an Escherichia coli strain isolated from chicken meat. This plasmid harbors multiple resistance determinants including oqxAB, fosA3, blaCTX-M-55, and blaTEM-1, and is a close variant of the recently reported p42-2 element, which was recovered from E. coli of veterinary source. Recovery of pE80 constitutes evidence that evolution or genetic re-arrangement of IncFII type plasmids residing in animal-borne organisms is an active event, which involves acquisition and integration of foreign resistance elements into the plasmid backbone. Dissemination of these plasmids may further compromise the effectiveness of current antimicrobial strategies.
Collapse
Affiliation(s)
- Marcus H Wong
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, Shenzhen Research Institute, The Hong Kong Polytechnic UniversityShenzhen, China; State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic UniversityKowloon, Hong Kong
| | - Miaomiao Xie
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, Shenzhen Research Institute, The Hong Kong Polytechnic University Shenzhen, China
| | - Liqi Xie
- Division of Food Inspection and Supervision, Shenzhen Entry-Exit Inspection and Quarantine Bureau Shenzhen, China
| | - Dachuan Lin
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, Shenzhen Research Institute, The Hong Kong Polytechnic UniversityShenzhen, China; State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic UniversityKowloon, Hong Kong
| | - Ruichao Li
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, Shenzhen Research Institute, The Hong Kong Polytechnic UniversityShenzhen, China; State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic UniversityKowloon, Hong Kong
| | - Yuanjie Zhou
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, Shenzhen Research Institute, The Hong Kong Polytechnic UniversityShenzhen, China; State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic UniversityKowloon, Hong Kong
| | - Edward W Chan
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, Shenzhen Research Institute, The Hong Kong Polytechnic UniversityShenzhen, China; State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic UniversityKowloon, Hong Kong
| | - Sheng Chen
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, Shenzhen Research Institute, The Hong Kong Polytechnic UniversityShenzhen, China; State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic UniversityKowloon, Hong Kong
| |
Collapse
|
50
|
Pan YS, Zong ZY, Yuan L, Du XD, Huang H, Zhong XH, Hu GZ. Complete Sequence of pEC012, a Multidrug-Resistant IncI1 ST71 Plasmid Carrying bla CTX-M-65, rmtB, fosA3, floR, and oqxAB in an Avian Escherichia coli ST117 Strain. Front Microbiol 2016; 7:1117. [PMID: 27486449 PMCID: PMC4947595 DOI: 10.3389/fmicb.2016.01117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/05/2016] [Indexed: 02/05/2023] Open
Abstract
A 139,622-bp IncI1 ST71 conjugative plasmid pEC012 from an avian Escherichia coli D-ST117 strain was sequenced, which carried five IS26-bracketed resistance modules: IS26-fosA3-orf1-orf2-Δorf3-IS26, IS26-fip-ΔISEcp1-blaCTX-M-65-IS903D-iroN-IS26, IS26-ΔtnpR-blaTEM-1-rmtB-IS26, IS26-oqxAB-IS26, and IS26-floR-aac(3)-IV-IS26. The backbone of pEC012 was similar to that of several other IncI1 ST71 plasmids: pV408, pM105, and pC271, but these plasmids had different arrangements of multidrug resistance region. In addition, the novel ISEc57 element was identified, which is in the IS21 family. The stepwise emergence of multi-resistance regions demonstrated the accumulation of different resistance determinants through homologous recombination. To the best of our knowledge, this is the first study to identify a multidrug-resistant IncI1 ST71 plasmid carrying blaCTX-M-65, rmtB, fosA3, floR, and oqxAB in an avian E. coli ST117 strain.
Collapse
Affiliation(s)
- Yu-Shan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| | - Zhi-Yong Zong
- West China Hospital, Sichuan University Chengdu, China
| | - Li Yuan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| | - Hui Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| | - Xing-Hao Zhong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| | - Gong-Zheng Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| |
Collapse
|