1
|
Liu F, Wu M, Shao D, Zhou X, Liu Q, Sheng X, Li D, Dai M. Exposure to DDAB disinfectants promotes antimicrobial resistance to antibiotics and collateral-sensitivity to polymyxins in Salmonella enterica. Microb Pathog 2025; 203:107428. [PMID: 40021029 DOI: 10.1016/j.micpath.2025.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/08/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
SALMONELLA: as an important food-borne zoonotic pathogen, is found in soil and processing environment by human or animal feces, causing serious public health problems. Quaternary ammonium compounds (QACs) disinfectants are widely used in hospitals, livestock farms and food processing sites because of their low toxicity and broad-spectrum disinfection. However, sub-lethal levels of QACs disinfectants can induce bacteria to develop tolerance to disinfectants and cross-resistance to other antimicrobial agents. The acquired resistance will undoubtedly pose a threat to the prevention of antimicrobial resistance. In this study, Salmonella enterica SE211 was induced by the sub-inhibitory concentration and sub-lethal concentration of dodecyl dimethyl ammonium bromide (DDAB) in vitro. Following exposure to DDAB, the strains showed increased resistance to DDAB, doxycycline, amphenicols and fluoroquinolones, and increased sensitivity to colistin drugs. Phenotypic experiments showed that the induced strains exhibited changes in efflux pump activity, biofilm formation ability, motility and membrane characterization. Next-generation sequencing revealed mutations in induced strains involved in LPS-related genes (msbA, lptDE) and cationic antimicrobial peptide (CAMP) resistance-related genes (phoQ, pmrD). Transcriptome sequencing (RNA-seq) analysis revealed up-regulation of efflux pump genes and down-regulation of CAMP resistance, LPS and peptidoglycan related genes. Our study provided a theoretical basis for the potential consequences of disinfection failures and environmental residues of QACs disinfectants on the evolution of antibiotic resistance in salmonella. Furthermore, the induction of colistin sensitivity in salmonella by DDBA resulted in the emergence of collateral sensitivity, which offered a new strategy for drug combination applications to prevent the rise of colistin-resistant superbugs.
Collapse
Affiliation(s)
- Fangjia Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Menghui Wu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Shao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueya Zhou
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xijing Sheng
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Donghua Li
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Li Y, Tang S, Han Q, Xia P, Si T, Song Y, Xia Y. The investigation of molecular epidemiological characteristics and resistance mechanism of tigecycline resistant Klebsiella pneumoniae from a large teaching hospital in southwest China, Chongqing. Front Cell Infect Microbiol 2025; 15:1540967. [PMID: 40182765 PMCID: PMC11965929 DOI: 10.3389/fcimb.2025.1540967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Background Klebsiella pneumoniae is one of the main pathogens of nosocomial infection, among which carbapenems can be used for multidrug-resistant Klebsiella pneumoniae. However, in the past decade, the resistance rate of carbapenem-resistant Klebsiella pneumoniae has increased yearly. Tigecycline has good antibacterial activity in treating severe bacterial infections, but the reports of tigecycline resistance are increasing. This study aimed to investigate the mechanism of drug resistance and epidemiological characteristics of tigecycline-resistant Klebsiella pneumoniae (TRKP) in a large teaching hospital in southwest China, Chongqing. Methods We isolated 30 TRKP strains from this hospital between August 2021 and December 2023. By PCR and sequencing, we examined the presence and mutation rates of genes associated with tigecycline resistance, including acrR, oqxR, ramR, tmexC, tet(x), tet(A), tet(L), and rpsj, and performed efflux pump inhibition experiments to verify efflux pump activity. At the same time, real-time RT-PCR was used to detect the expression levels of efflux pump genes (acrB and oqxB) and ramA. To investigate the prevalence trend of TRKP in our hospital, we performed multi-site sequence typing (MLST) analysis. Results The mutation rates of ramR (73.3%) and tet(A) (63.3%) were significant. In efflux pump inhibition experiments, PaβN could reverse the resistance of 29 TRKP strains (96.7%) to tigecycline. Real-time RT-PCR results showed that acrB and ramA genes were up-regulated in 22 strains, while oqxB genes were overexpressed in only 4 strains. MLST analysis showed that these strains could be divided into 25 different ST subtypes, indicating that no outbreak of TRKP occurred in our hospital. In addition, two tmexCD-torpj positive strains, ST661 and ST1561, were identified for the first time. Conclusion The efflux pump acrB and tet(A) mutations are the primary mechanisms of resistance to tigecycline-resistant Klebsiella pneumoniae at our hospital. The ramR mutation can mediate efflux pump activity of acrB by up-regulating ramA overexpression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical
University, Chongqing, China
| |
Collapse
|
3
|
Maharramov E, Czikkely MS, Szili P, Farkas Z, Grézal G, Daruka L, Kurkó E, Mészáros L, Daraba A, Kovács T, Bognár B, Juhász S, Papp B, Lázár V, Pál C. Exploring the principles behind antibiotics with limited resistance. Nat Commun 2025; 16:1842. [PMID: 39984459 PMCID: PMC11845477 DOI: 10.1038/s41467-025-56934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
Antibiotics that target multiple cellular functions are anticipated to be less prone to bacterial resistance. Here we hypothesize that while dual targeting is crucial, it is not sufficient in preventing resistance. Only those antibiotics that simultaneously target membrane integrity and block another cellular pathway display reduced resistance development. To test the hypothesis, we focus on three antibiotic candidates, POL7306, Tridecaptin M152-P3 and SCH79797, all of which fulfill the above criteria. Here we show that resistance evolution against these antibiotics is limited in ESKAPE pathogens, including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, while dual-target topoisomerase antibiotics are prone to resistance. We discover several mechanisms restricting resistance. First, de novo mutations result in only a limited elevation in resistance, including those affecting the molecular targets and efflux pumps. Second, resistance is inaccessible through gene amplification. Third, functional metagenomics reveal that mobile resistance genes are rare in human gut, soil and clinical microbiomes. Finally, we detect rapid eradication of bacterial populations upon toxic exposure to membrane targeting antibiotics. We conclude that resistance mechanisms commonly found in natural bacterial pathogens provide only limited protection to these antibiotics. Our work provides guidelines for the future development of antibiotics.
Collapse
Grants
- This work was supported by: National Academy of Scientist Education Program of the National Biomedical Foundation under the sponsorship of the Hungarian Ministry of Culture and Innovation (CzM, LM) Cooperative Doctoral Program Scholarship of the Hungarian Ministry of Culture and Innovation (CzM, BB) The National Research, Development and Innovation Office, Hungary (NKFIH) grant FK-131961 (SJ) H2020-WIDESPREA-01-2016-2017-TeamingPhase2, GA:739593-HCEMM, EU’s Horizon 2020 research and innovation program under grant agreement No. 739593 (SJ) Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP-2021-EGA-05 funding scheme (SJ) Lendulet “Momentum” program of the Hungarian Academy of Sciences (grant agreement LP2022-12/2022) (VL) EMBO Installation Grant (grant number 5709_2024) (VL) National Laboratory for Health Security Grant RRF-2.3.1-21-2022-00006 (BP) The European Union’s Horizon 2020 Research and Innovation Programme no. 739593 (BP) National Research Development and Innovation Office grants: ‘Élvonal’ Programme KKP 129814 (BP) ERA-NET JPIAMR-ACTION (BP) National Laboratory of Biotechnology Grant 2022-2.1.1-NL-2022-00008 (CP, BP) National Research, Development and Innovation Office K146323 (CP) The European Research Council ERC-2023-ADG 101142626 FutureAntibiotics (CP)
Collapse
Affiliation(s)
- Elvin Maharramov
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
- Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Group, Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Eszter Kurkó
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Léna Mészáros
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged, Hungary
| | - Andreea Daraba
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
| | - Terézia Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Bence Bognár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Szilvia Juhász
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Group, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged, Hungary.
| |
Collapse
|
4
|
Daruka L, Czikkely MS, Szili P, Farkas Z, Balogh D, Grézal G, Maharramov E, Vu TH, Sipos L, Juhász S, Dunai A, Daraba A, Számel M, Sári T, Stirling T, Vásárhelyi BM, Ari E, Christodoulou C, Manczinger M, Enyedi MZ, Jaksa G, Kovács K, van Houte S, Pursey E, Pintér L, Haracska L, Kintses B, Papp B, Pál C. ESKAPE pathogens rapidly develop resistance against antibiotics in development in vitro. Nat Microbiol 2025; 10:313-331. [PMID: 39805953 PMCID: PMC11790497 DOI: 10.1038/s41564-024-01891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Despite ongoing antibiotic development, evolution of resistance may render candidate antibiotics ineffective. Here we studied in vitro emergence of resistance to 13 antibiotics introduced after 2017 or currently in development, compared with in-use antibiotics. Laboratory evolution showed that clinically relevant resistance arises within 60 days of antibiotic exposure in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, priority Gram-negative ESKAPE pathogens. Resistance mutations are already present in natural populations of pathogens, indicating that resistance in nature can emerge through selection of pre-existing bacterial variants. Functional metagenomics showed that mobile resistance genes to antibiotic candidates are prevalent in clinical bacterial isolates, soil and human gut microbiomes. Overall, antibiotic candidates show similar susceptibility to resistance development as antibiotics currently in use, and the corresponding resistance mechanisms overlap. However, certain combinations of antibiotics and bacterial strains were less prone to developing resistance, revealing potential narrow-spectrum antibacterial therapies that could remain effective. Finally, we develop criteria to guide efforts in developing effective antibiotic candidates.
Collapse
Grants
- The European Research Council ERC-2023-ADG: 101142626 FutureAntibiotics The National Laboratory of Biotechnology Grant: 2022-2.1.1-NL-2022-00008 National Research, Development and Innovation Office ‘Élvonal’ Programme: KKP 126506 National Research, Development and Innovation Office: K146323
- H2020-WIDESPREA-01-2016-2017-TeamingPhase2: 739593 The National Research, Development and Innovation Office, Hungary (NKFIH) grant: FK-131961 The National Research, Development and Innovation Office, Hungary (NKFIH): KIM NKFIA TKP-2021-EGA-05 The National Research, Development and Innovation Office, Hungary (NKFIH): KIM NKFIA 2022-2.1.1-NL-2022-00005
- The National Research, Development and Innovation Office, Hungary (NKFIH) grant: PD-131839
- The European Union’s Horizon 2020 research and innovation programme: 739593 The National Research, Development and Innovation Office, Hungary (NKFIH) grant: FK-142312
- The Lister Institute for Preventative Medicine
- The National Research, Development, and Innovation Office: RRF-2.3.1-21-2022-00015 The National Research, Development, and Innovation Office: TKP-31-8/PALY-2021
- The National Laboratory of Biotechnology Grant: 2022-2.1.1-NL-2022-00008 The European Union’s Horizon 2020 research and innovation programme: 739593 National Research, Development and Innovation Office grant: FK-135245 Proof of Concept grant of the Eötvös Loránd Research Network: ELKH-PoC-2022-034
Collapse
Affiliation(s)
- Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
- Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Dávid Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Elvin Maharramov
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Thu-Hien Vu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Levente Sipos
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Szilvia Juhász
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Szeged, Hungary
| | - Anett Dunai
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Andreea Daraba
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Tóbiás Sári
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Tamás Stirling
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Bálint Márk Vásárhelyi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Chryso Christodoulou
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
| | - Máté Manczinger
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
- HCEMM-BRC Systems Immunology Research Group, Szeged, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Márton Zsolt Enyedi
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | | | - Károly Kovács
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
- National Laboratory for Health Security, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Stineke van Houte
- Environment and Sustainability Institute & Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn, UK
| | - Elizabeth Pursey
- Environment and Sustainability Institute & Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn, UK
| | | | - Lajos Haracska
- Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary.
- HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary.
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary.
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary.
- National Laboratory for Health Security, HUN-REN Biological Research Centre, Szeged, Hungary.
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, National Laboratory of Biotechnology, Szeged, Hungary.
| |
Collapse
|
5
|
Chen Q, Yu Y, Xu Y, Quan H, Liu D, Li C, Liu M, Gong X. Salmonella Typhimurium alters galactitol metabolism under ciprofloxacin treatment to balance resistance and virulence. J Bacteriol 2024; 206:e0017824. [PMID: 39082861 PMCID: PMC11340313 DOI: 10.1128/jb.00178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024] Open
Abstract
Ciprofloxacin-resistant Salmonella Typhimurium (S. Typhimurium) causes a significant health burden worldwide. A wealth of studies has been published on the contributions of different mechanisms to ciprofloxacin resistance in Salmonella spp. But we still lack a deep understanding of the physiological responses and genetic changes that underlie ciprofloxacin exposure. This study aims to know how phenotypic and genotypic characteristics are impacted by ciprofloxacin exposure, from ciprofloxacin-susceptible to ciprofloxacin-resistant strains in vitro. Here, we investigated the multistep evolution of resistance in replicate populations of S. Typhimurium during 24 days of continuously increasing ciprofloxacin exposure and assessed how ciprofloxacin impacts physiology and genetics. Numerous studies have demonstrated that RamA is a global transcriptional regulator that prominently perturbs the transcriptional landscape of S. Typhimurium, resulting in a ciprofloxacin-resistant phenotype appearing first; the quinolone resistance-determining region mutation site can only be detected later. Comparing the microbial physiological changes and RNA sequencing (RNA-Seq) results of ancestral and selectable mutant strains, the selectable mutant strains had some fitness costs, such as decreased virulence, an increase of biofilm-forming ability, a change of "collateral" sensitivity to other drugs, and inability to utilize galactitol. Importantly, in the ciprofloxacin induced, RamA directly binds and activates the gatR gene responsible for the utilization of galactitol, but RamA deletion strains could not activate gatR. The elevated levels of RamA, which inhibit the galactitol metabolic pathway through the activation of gatR, can lead to a reduction in the growth rate, adhesion, and colonization resistance of S. Typhimurium. This finding is supported by studies conducted in M9 medium as well as in vivo infection models. IMPORTANCE Treatment of antibiotic resistance can significantly benefit from a deeper understanding of the interactions between drugs and genetics. The physiological responses and genetic mechanisms in antibiotic-exposed bacteria are not well understood. Traditional resistance studies, often retrospective, fail to capture the entire resistance development process and typically exhibit unpredictable dynamics. To explore how clinical isolates of S. Typhimurium respond to ciprofloxacin, we analyzed their adaptive responses. We found that S. Typhimurium RamA-mediated regulation disrupts microbial metabolism under ciprofloxacin exposure, affecting genes in the galactitol metabolic pathways. This disruption facilitates adaptive responses to drug therapy and enhances the efficiency of intracellular survival. A more comprehensive and integrated understanding of these physiological and genetic changes is crucial for improving treatment outcomes.
Collapse
Affiliation(s)
- Qiwei Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yongfeng Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yongchang Xu
- Department of Immunology and Pathogen Biology, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Heng Quan
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Donghui Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Caiyu Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mengyao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaowei Gong
- State Key Laboratory for Animal Disease Control and Prevention, College of Animal Medicine and Biosafety, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Marbun KT, Sugata M, Purnomo JS, Dikson, Mudana SO, Jan TT, Jo J. Genomic Characterization and Safety Assessment of Bifidobacterium breve BS2-PB3 as Functional Food. J Microbiol Biotechnol 2024; 34:871-879. [PMID: 38494884 DOI: 10.4014/jmb.2311.11031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/19/2024]
Abstract
Our group had isolated Bifidobacterium breve strain BS2-PB3 from human breast milk. In this study, we sequenced the whole genome of B. breve BS2-PB3, and with a focus on its safety profile, various probiotic characteristics (presence of antibiotic resistance genes, virulence factors, and mobile elements) were then determined through bioinformatic analyses. The antibiotic resistance profile of B. breve BS2-PB3 was also evaluated. The whole genome of B. breve BS2-PB3 consisted of 2,268,931 base pairs with a G-C content of 58.89% and 2,108 coding regions. The average nucleotide identity and whole-genome phylogenetic analyses supported the classification of B. breve BS2-PB3. According to our in silico assessment, B. breve BS2-PB3 possesses antioxidant and immunomodulation properties in addition to various genes related to the probiotic properties of heat, cold, and acid stress, bile tolerance, and adhesion. Antibiotic susceptibility was evaluated using the Kirby-Bauer disk-diffusion test, in which the minimum inhibitory concentrations for selected antibiotics were subsequently tested using the Epsilometer test. B. breve BS2-PB3 only exhibited selected resistance phenotypes, i.e., to mupirocin (minimum inhibitory concentration/MIC >1,024 μg/ml), sulfamethoxazole (MIC >1,024 μg/ml), and oxacillin (MIC >3 μg/ml). The resistance genes against those antibiotics, i.e., ileS, mupB, sul4, mecC and ramA, were detected within its genome as well. While no virulence factor was detected, four insertion sequences were identified within the genome but were located away from the identified antibiotic resistance genes. In conclusion, B. breve BS2-PB3 demonstrated a sufficient safety profile, making it a promising candidate for further development as a potential functional food.
Collapse
Affiliation(s)
- Kristin Talia Marbun
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Marcelia Sugata
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Jonathan Suciono Purnomo
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Dikson
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Samuel Owen Mudana
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Tan Tjie Jan
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
| | - Juandy Jo
- Department of Biology, Faculty of Science and Technology, Universitas Pelita Harapan, Tangerang 15811, Indonesia
- Mochtar Riady Institute for Nanotechnology, Tangerang 15811, Indonesia
| |
Collapse
|
7
|
Chirabhundhu N, Luk-In S, Phuadraksa T, Wichit S, Chatsuwan T, Wannigama DL, Yainoy S. Occurrence and mechanisms of tigecycline resistance in carbapenem- and colistin-resistant Klebsiella pneumoniae in Thailand. Sci Rep 2024; 14:5215. [PMID: 38433246 PMCID: PMC10909888 DOI: 10.1038/s41598-024-55705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Tigecycline has been regarded as one of the most important last-resort antibiotics for the treatment of infections caused by extensively drug-resistant (XDR) bacteria, particularly carbapenem- and colistin-resistant Klebsiella pneumoniae (C-C-RKP). However, reports on tigecycline resistance have been growing. Overall, ~ 4000 K. pneumoniae clinical isolates were collected over a five-year period (2017-2021), in which 240 isolates of C-C-RKP were investigated. Most of these isolates (91.7%) were resistant to tigecycline. Notably, a high-risk clone of ST16 was predominantly identified, which was associated with the co-harboring of blaNDM-1 and blaOXA-232 genes. Their major mechanism of tigecycline resistance was the overexpression of efflux pump acrB gene and its regulator RamA, which was caused by mutations in RamR (M184V, Y59C, I141T, A28T, C99/C100 insertion), in RamR binding site (PI) of ramA gene (C139T), in MarR (S82G), and/or in AcrR (L154R, R13Q). Interestingly, four isolates of ST147 carried the mutated tet(A) efflux pump gene. To our knowledge, this is the first report on the prevalence and mechanisms of tigecycline resistance in C-C-RKP isolated from Thailand. The high incidence of tigecycline resistance observed among C-C-RKP in this study reflects an ongoing evolution of XDR bacteria against the last-resort antibiotics, which demands urgent action.
Collapse
Affiliation(s)
- Nachat Chirabhundhu
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sirirat Luk-In
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thanawat Phuadraksa
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA Receiving Countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter's Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
8
|
Abstract
Environments inhabited by Enterobacteriaceae are diverse and often stressful. This is particularly true for Escherichia coli and Salmonella during host association in the gastrointestinal systems of animals. There, E. coli and Salmonella must survive exposure to various antimicrobial compounds produced or ingested by their host. A myriad of changes to cellular physiology and metabolism are required to achieve this feat. A central regulatory network responsible for sensing and responding to intracellular chemical stressors like antibiotics are the Mar, Sox, and Rob systems found throughout the Enterobacteriaceae. Each of these distinct regulatory networks controls expression of an overlapping set of downstream genes whose collective effects result in increased resistance to a wide array of antimicrobial compounds. This collection of genes is known as the mar-sox-rob regulon. This review will provide an overview of the mar-sox-rob regulon and molecular architecture of the Mar, Sox, and Rob systems.
Collapse
Affiliation(s)
- Lon M. Chubiz
- Department of Biology, University of Missouri–St. Louis, St. Louis, Missouri, USA
- Biochemistry and Biotechnology Program, University of Missouri–St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Blair JMA, Siasat P, McNeil HE, Colclough A, Ricci V, Lawler AJ, Abdalaal H, Buckner MMC, Baylay A, Busby SJ, Piddock LJV. EnvR is a potent repressor of acrAB transcription in Salmonella. J Antimicrob Chemother 2022; 78:133-140. [PMID: 36308324 PMCID: PMC9780535 DOI: 10.1093/jac/dkac364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Resistance nodulation division (RND) family efflux pumps, including the major pump AcrAB-TolC, are important mediators of intrinsic and evolved antibiotic resistance. Expression of these pumps is carefully controlled by a network of regulators that respond to different environmental cues. EnvR is a TetR family transcriptional regulator encoded upstream of the RND efflux pump acrEF. METHODS Binding of EnvR protein upstream of acrAB was determined by electrophoretic mobility shift assays and the phenotypic consequence of envR overexpression on antimicrobial susceptibility, biofilm motility and invasion of eukaryotic cells in vitro was measured. Additionally, the global transcriptome of clinical Salmonella isolates overexpressing envR was determined by RNA-Seq. RESULTS EnvR bound to the promoter region upstream of the genes coding for the major efflux pump AcrAB in Salmonella, inhibiting transcription and preventing production of AcrAB protein. The phenotype conferred by overexpression of envR mimicked deletion of acrB as it conferred multidrug susceptibility, decreased motility and decreased invasion into intestinal cells in vitro. Importantly, we demonstrate the clinical relevance of this regulatory mechanism because RNA-Seq revealed that a drug-susceptible clinical isolate of Salmonella had low acrB expression even though expression of its major regulator RamA was very high; this was caused by very high EnvR expression. CONCLUSIONS In summary, we show that EnvR is a potent repressor of acrAB transcription in Salmonella, and can override binding by RamA so preventing MDR to clinically useful drugs. Finding novel tools to increase EnvR expression may form the basis of a new way to prevent or treat MDR infections.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen E McNeil
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Abigail Colclough
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Vito Ricci
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Amelia J Lawler
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Hind Abdalaal
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Michelle M C Buckner
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Alison Baylay
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Stephen J Busby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
10
|
Branco LAC, Souza PFN, Neto NAS, Aguiar TKB, Silva AFB, Carneiro RF, Nagano CS, Mesquita FP, Lima LB, Freitas CDT. New Insights into the Mechanism of Antibacterial Action of Synthetic Peptide Mo-CBP 3-PepI against Klebsiella pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11121753. [PMID: 36551410 PMCID: PMC9774128 DOI: 10.3390/antibiotics11121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Klebsiella pneumoniae is a multidrug-resistant opportunistic human pathogen related to various infections. As such, synthetic peptides have emerged as potential alternative molecules. Mo-CBP3-PepI has presented great activity against K. pneumoniae by presenting an MIC50 at a very low concentration (31.25 µg mL-1). Here, fluorescence microscopy and proteomic analysis revealed the alteration in cell membrane permeability, ROS overproduction, and protein profile of K. pneumoniae cells treated with Mo-CBP3-PepI. Mo-CBP3-PepI led to ROS overaccumulation and membrane pore formation in K. pneumoniae cells. Furthermore, the proteomic analysis highlighted changes in essential metabolic pathways. For example, after treatment of K. pneumoniae cells with Mo-CBP3-PepI, a reduction in the abundance of protein related to DNA and protein metabolism, cytoskeleton and cell wall organization, redox metabolism, regulation factors, ribosomal proteins, and resistance to antibiotics was seen. The reduction in proteins involved in vital processes for cell life, such as DNA repair, cell wall turnover, and protein turnover, results in the accumulation of ROS, driving the cell to death. Our findings indicated that Mo-CBP3-PepI might have mechanisms of action against K. pneumoniae cells, mitigating the development of resistance and thus being a potent molecule to be employed in producing new drugs against K. pneumoniae infections.
Collapse
Affiliation(s)
- Levi A. C. Branco
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
- Correspondence: or
| | - Nilton A. S. Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Tawanny K. B. Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Ayrles F. B. Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Rômulo F. Carneiro
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Celso S. Nagano
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Felipe P. Mesquita
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Luina B. Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| |
Collapse
|
11
|
Development of Resistance to Eravacycline by Klebsiella pneumoniae and Collateral Sensitivity-Guided Design of Combination Therapies. Microbiol Spectr 2022; 10:e0139022. [PMID: 35972286 PMCID: PMC9603973 DOI: 10.1128/spectrum.01390-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The evolution of bacterial antibiotic resistance is exhausting the list of currently used antibiotics and endangers those in the pipeline. The combination of antibiotics is a promising strategy that may suppress resistance development and/or achieve synergistic therapeutic effects. Eravacycline is a newly approved antibiotic that is effective against a variety of multidrug-resistant (MDR) pathogens. However, the evolution of resistance to eravacycline and strategies to suppress the evolution remain unexplored. Here, we demonstrated that a carbapenem-resistant Klebsiella pneumoniae clinical isolate quickly developed resistance to eravacycline, which is mainly caused by mutations in the gene encoding the Lon protease. The evolved resistant mutants display collateral sensitivities to β-lactam/β-lactamase inhibitor (BLBLI) combinations aztreonam/avibactam and ceftazidime-avibactam. Proteomic analysis revealed upregulation of the multidrug efflux system AcrA-AcrB-TolC and porin proteins OmpA and OmpU, which contributed to the increased resistance to eravacycline and susceptibility to BLBLIs, respectively. The combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam suppresses resistance development. We further demonstrated that eravacycline-resistant mutants evolved from an NDM-1-containing K. pneumoniae strain display collateral sensitivity to aztreonam/avibactam, and the combination of eravacycline with aztreonam/avibactam suppresses resistance development. In addition, the combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam displayed synergistic therapeutic effects in a murine cutaneous abscess model. Overall, our results revealed mechanisms of resistance to eravacycline and collateral sensitivities to BLBLIs and provided promising antibiotic combinations in the treatment of multidrug-resistant K. pneumoniae infections. IMPORTANCE The increasing bacterial antibiotic resistance is a serious threat to global public health, which demands novel antimicrobial medicines and treatment strategies. Eravacycline is a newly approved antibiotic that belongs to the tetracycline antibiotics. Here, we found that a multidrug-resistant Klebsiella pneumoniae clinical isolate rapidly developed resistance to eravacycline and the evolved resistant mutants displayed collateral sensitivity to antibiotics aztreonam/avibactam and ceftazidime-avibactam. We demonstrated that the combination of eravacycline with aztreonam/avibactam or ceftazidime-avibactam repressed resistance development and improved the treatment efficacies. We also elucidated the mechanisms that contribute to the increased resistance to eravacycline and susceptibility to aztreonam/avibactam and ceftazidime-avibactam. This work demonstrated the mechanisms of antibiotic resistance and collateral sensitivity and provided a new therapeutically option for effective antibiotic combinations.
Collapse
|
12
|
Transcriptional Regulation and Functional Characterization of the Plasmid-Borne oqxAB Genes in Salmonella Typhimurium. Microbiol Spectr 2022; 10:e0217021. [PMID: 35315694 PMCID: PMC9045139 DOI: 10.1128/spectrum.02170-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coexistence of oqxAB and aac(6')-Ib-cr is often associated with the expression of fluoroquinolone resistance in Salmonella. The actual role of the plasmid-borne oqxAB gene and its regulatory mechanism compared to its chromosomally encoded counterpart in Klebsiella pneumoniae remain unclear We found that cloning of oqxAB gene only or chromosomally encoded oqxABR (ABRc) locus did not lead to an increase of ciprofloxacin (CIP) minimum inhibitory concentration (MIC) in S. Typhimurium, while cloning of the plasmid-encoded oqxABR (ABRp) locus led to a 4-fold increase in CIP MIC, reaching 0.0065 μg/mL. The co-carriage of these constructs with aac(6')-Ib-cr further increased the CIP MIC to 0.25 μg/mL in S. Typhimurium carrying aac(6')-Ib-cr and ABRp. Analysis of the transcription start site sequences showed that the expression level of suppressor protein gene, oqxR, in strains carrying ABRp was lower than that of its chromosomal counterpart due to the truncated promoter region in ABRp. The lower expression of OqxR in ABRp led to the overexpression of OqxAB, which elevated CIP MIC and exhibited a synergistic antimicrobial effect with the aac(6')-Ib-cr gene product to confer intermediate CIP (MIC = 0.25 μg/mL) in S. Typhimurium. Global transcriptional regulators in S. Typhimurium did not seem to play a role in regulating the plasmid-borne oqxAB genes. In conclusion, findings in this work showed that neither aac(6')-Ib-cr nor oqxABRp, but the combination of both genes, could mediate intermediated resistance to fluoroquinolone in Salmonella. The truncated promoter region in the oqxR gene of the plasmid-encoded locus led to the constituted expression of oqxAB genes. IMPORTANCE The transferable mechanisms of quinolone resistance (TMQR) gene, oqxAB, has been widely detected in Salmonella and is commonly associated with aac(6')-Ib-cr. It is thought to be associated with fluoroquinolone resistance, while its ancestor gene from K. pneumoniae is not. This study evaluated the actual role of the plasmid-borne oqxAB genes in Salmonella and showed that it was not able to mediate intermediated resistance to fluoroquinolone and only did so when it coexisted with aac(6')-Ib-cr. Chromosomally encoded oqxABRc from K. pneumoniae was not able to mediate enhanced CIP MIC due to tight regulation by the suppressor oqxR. However, plasmid-encoded oqxABRp enabled oqxAB to be expressed constitutionally due to the truncated promoter region of oqxR, leading to lower expression of the suppressor oqxR. This study clarified the roles of oqxAB and aac(6')-Ib-cr in mediating fluoroquinolone resistance in Salmonella and provides insights into the regulation of plasmid-encoded TMQR determinant, oqxAB.
Collapse
|
13
|
Staphylococcal Bacterial Persister Cells, Biofilms, and Intracellular Infection Are Disrupted by JD1, a Membrane-Damaging Small Molecule. mBio 2021; 12:e0180121. [PMID: 34634935 PMCID: PMC8510524 DOI: 10.1128/mbio.01801-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rates of antibiotic and multidrug resistance are rapidly rising, leaving fewer options for successful treatment of bacterial infections. In addition to acquiring genetic resistance, many pathogens form persister cells, form biofilms, and/or cause intracellular infections that enable bacteria to withstand antibiotic treatment and serve as a source of recurring infections. JD1 is a small molecule previously shown to kill Gram-negative bacteria under conditions where the outer membrane and/or efflux pumps are disrupted. We show here that JD1 rapidly disrupts membrane potential and kills Gram-positive bacteria. Further investigation revealed that treatment with JD1 disrupts membrane barrier function and causes aberrant membranous structures to form. Additionally, exposure to JD1 reduced the number of Staphylococcus aureus and Staphylococcus epidermidis viable persister cells within broth culture by up to 1,000-fold and reduced the matrix and cell volume of biofilms that had been established for 24 h. Finally, we show that JD1 reduced the number of recoverable methicillin-resistant S. aureus organisms from infected cells. These observations indicate that JD1 inhibits staphylococcal cells in difficult-to-treat growth stages as well as, or better than, current clinical antibiotics. Thus, JD1 shows the importance of testing compounds under conditions that are relevant to infection, demonstrates the utility that membrane-targeting compounds have against multidrug-resistant bacteria, and indicates that small molecules that target bacterial cell membranes may serve as potent broad-spectrum antibacterials.
Collapse
|
14
|
Ma Y, Zhang Y, Chen K, Zhang L, Zhang Y, Wang X, Xia X. The role of PhoP/PhoQ two component system in regulating stress adaptation in Cronobacter sakazakii. Food Microbiol 2021; 100:103851. [PMID: 34416955 DOI: 10.1016/j.fm.2021.103851] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023]
Abstract
Cronobacter sakazakii is an opportunistic foodborne bacterial pathogen that shows resistance to multiple stress conditions. The PhoP/PhoQ two component system is a key regulatory mechanism of stress response and virulence in various bacteria, but its role in C. sakazakii has not been thoroughly studied. In this study, we found the PhoP/PhoQ system in C. sakazakii ATCC BAA-894 enhanced bacterial growth in conditions with low Mg2+, acid pH, and the presence of polymyxin B. Moreover, the ΔphoPQ strain significantly reduced survival following exposure to heat, high osmotic pressure, oxidative or bile salts compared with WT strain. Furthermore, the RNA-seq analysis indicated that 1029 genes were upregulated and 979 genes were downregulated in ΔphoPQ strain. The bacterial secretion system, flagella assembly, beta-Lactam resistance and two-component system pathways were significantly downregulated, while the ABC transporters and microbial metabolism in diverse environments pathways were upregulated. qRT-PCR analysis further confirmed that twelve genes associated with stress tolerance were positively regulated by the PhoP/PhoQ system. Therefore, these findings suggest that the PhoP/PhoQ system is an important regulatory mechanism for C. sakazakii to resist various environmental stress.
Collapse
Affiliation(s)
- Yan Ma
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Yingying Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Lingzhu Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Yibei Zhang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Sino-US Joint Research Center, Northwest A&F University, Shaanxi, 712100, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, 1 Qinggongyuan, Ganjingzi District, Dalian, Liaoning, 116034, China.
| |
Collapse
|
15
|
Serratia marcescens RamA Expression Is under PhoP-Dependent Control and Modulates Lipid A-Related Gene Transcription and Antibiotic Resistance Phenotypes. J Bacteriol 2021; 203:e0052320. [PMID: 33927048 DOI: 10.1128/jb.00523-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Serratia marcescens is an enteric bacterium that can function as an opportunistic pathogen with increasing incidence in clinical settings. This is mainly due to the ability to express a wide range of virulence factors and the acquisition of antibiotic resistance mechanisms. For these reasons, S. marcescens has been declared by the World Health Organization (WHO) as a research priority to develop alternative antimicrobial strategies. In this study, we found a PhoP-binding motif in the promoter region of transcriptional regulator RamA of S. marcescens RM66262. We demonstrated that the expression of ramA is autoregulated and that ramA is also part of the PhoP/PhoQ regulon. We have also shown that PhoP binds directly and specifically to ramA, mgtE1, mgtE2, lpxO1, and lpxO2 promoter regions and that RamA binds to ramA and lpxO1 but not to mgtE1 and lpxO2, suggesting an indirect control for the latter genes. Finally, we have demonstrated that in S. marcescens, RamA overexpression induces the AcrAB-TolC efflux pump, required to reduce the susceptibility of the bacteria to tetracycline and nalidixic acid. In sum, we here provide the first report describing the regulation of ramA under the control of the PhoP/PhoQ regulon and the regulatory role of RamA in S. marcescens. IMPORTANCE We demonstrate that in S. marcescens, the transcriptional regulator RamA is autoregulated and also controlled by the PhoP/PhoQ signal transduction system. We show that PhoP is able to directly and specifically bind to ramA, mgtE1, mgtE2, lpxO1, and lpxO2 promoter regions. In addition, RamA is able to directly interact with the promoter regions of ramA and lpxO1 but indirectly regulates mgtE1 and lpxO2. Finally, we found that in S. marcescens, RamA overexpression induces the AcrAB-TolC efflux pump, required to reduce susceptibility to tetracycline and nalidixic acid. Collectively, these results further our understanding of the PhoP/PhoQ regulon in S. marcescens and demonstrate the involvement of RamA in the protection against antibiotic challenges.
Collapse
|
16
|
Liu YY, He DD, Zhang MK, Pan YS, Wu H, Yuan L, Liu JH, Hu GZ. The Formation of Two Hybrid Plasmids Mediated by IS 26 and Tn 6952 in Salmonella enterica Serotype Enteritidis. Front Microbiol 2021; 12:676574. [PMID: 34122390 PMCID: PMC8193513 DOI: 10.3389/fmicb.2021.676574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022] Open
Abstract
To characterize the formation mechanism and characteristics of two cointegrate plasmids in Salmonella enterica serotype Enteritidis strain S13, plasmids from strain S13 and three corresponding transconjugants were subjected to whole genome sequencing and analyzed using bioinformatics tools. The traits of two fusion plasmids in transconjugants were characterized by stability and conjugation experiments. Sequence analysis indicated that strain S13 contained four plasmids, including mcr-1-bearing pS13-1, bla CTX-M-55-carrying pS13-2, tet(M)-bearing pS13-3, and floR-carrying pS13-4. IncN1-F33:A-:B- plasmid pS13-2, respectively, fused with IncFI:A-:B- plasmid pS13-3 and IncX1 plasmid pS13-4, which generated two cointegrate plasmids, designated pS13D and pS13F, which involved in two intermolecular replicative mechanisms mediated by IS26 and the novel transposon Tn6952 (ΔTnAS3-IS26-ΔISEcp1-ramA-ΔIS26-ΔTnAS1), respectively. This is the first report of the fusion of the IncN1-F33:A-:B- plasmid and IncFI:A-:B- plasmid mediated by IS26, and with IncX1 plasmid mediated by Tn6952. The formation and evolution of cointegrate plasmids could expand the resistance and host spectrum of fusion plasmids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian-hua Liu
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Gong-zheng Hu
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
17
|
Chang MX, Zhang JF, Sun YH, Li RS, Lin XL, Yang L, Webber MA, Jiang HX. Contribution of Different Mechanisms to Ciprofloxacin Resistance in Salmonella spp. Front Microbiol 2021; 12:663731. [PMID: 34025618 PMCID: PMC8137344 DOI: 10.3389/fmicb.2021.663731] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Development of fluoroquinolone resistance can involve several mechanisms that include chromosomal mutations in genes (gyrAB and parCE) encoding the target bacterial topoisomerase enzymes, increased expression of the AcrAB-TolC efflux system, and acquisition of transmissible quinolone-resistance genes. In this study, 176 Salmonella isolates from animals with a broad range of ciprofloxacin MICs were collected to analyze the contribution of these different mechanisms to different phenotypes. All isolates were classified according to their ciprofloxacin susceptibility pattern into five groups as follows: highly resistant (HR), resistant (R), intermediate (I), reduced susceptibility (RS), and susceptible (S). We found that the ParC T57S substitution was common in strains exhibiting lowest MICs of ciprofloxacin while increased MICs depended on the type of GyrA mutation. The ParC T57S substitution appeared to incur little cost to bacterial fitness on its own. The presence of PMQR genes represented an route for resistance development in the absence of target-site mutations. Switching of the plasmid-mediated quinolone resistance (PMQR) gene location from a plasmid to the chromosome was observed and resulted in decreased ciprofloxacin susceptibility; this also correlated with increased fitness and a stable resistance phenotype. The overexpression of AcrAB-TolC played an important role in isolates with small decreases in susceptibility and expression was upregulated by MarA more often than by RamA. This study increases our understanding of the relative importance of several resistance mechanisms in the development of fluoroquinolone resistance in Salmonella from the food chain.
Collapse
Affiliation(s)
- Man-Xia Chang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jin-Fei Zhang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yin-Huan Sun
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rong-Sheng Li
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ling Lin
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Yang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Hong-Xia Jiang
- Guangdong Key Laboratory of Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
18
|
Youlden GH, Ricci V, Wang-Kan X, Piddock LJV, Jabbari S, King JR. Time dependent asymptotic analysis of the gene regulatory network of the AcrAB-TolC efflux pump system in gram-negative bacteria. J Math Biol 2021; 82:31. [PMID: 33694073 PMCID: PMC7946726 DOI: 10.1007/s00285-021-01576-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/27/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Efflux pumps are a mechanism of intrinsic and evolved resistance in bacteria. If an efflux pump can expel an antibiotic so that its concentration within the cell is below a killing threshold the bacteria are resistant to the antibiotic. Efflux pumps may be specific or they may pump various different substances. This is why many efflux pumps confer multi drug resistance (MDR). In particular over expression of the AcrAB−TolC efflux pump system confers MDR in both Salmonella and Escherichia coli. We consider the complex gene regulation network that controls expression of genes central to controlling the efflux associated genes acrAB and acrEF in Salmonella. We present the first mathematical model of this gene regulatory network in the form of a system of ordinary differential equations. Using a time dependent asymptotic analysis, we examine in detail the behaviour of the efflux system on various different timescales. Asymptotic approximations of the steady states provide an analytical comparison of targets for efflux inhibition.
Collapse
Affiliation(s)
- George H Youlden
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK. .,School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK. .,Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xuan Wang-Kan
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK.,Gyrd-Hansen Group, Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sara Jabbari
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - John R King
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
19
|
Park Y, Choi Q, Kwon GC, Koo SH. Molecular epidemiology and mechanisms of tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae isolates. J Clin Lab Anal 2020; 34:e23506. [PMID: 32815626 PMCID: PMC7755817 DOI: 10.1002/jcla.23506] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The emergence and transmission of tigecycline- and carbapenem-resistant Klebsiella pneumoniae (TCRKP) have become a major concern to public health globally. Here, we investigated the molecular epidemiology and mechanisms of tigecycline resistance in carbapenem-resistant K pneumoniae (CRKP) isolates. METHODS Forty-five non-duplicate CRKP isolates were collected from January 2017 to June 2019. We performed antimicrobial susceptibility tests, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). PCR and DNA sequencing were performed for the detection and mutation analysis of acrR, oqxR, ramR, rpsJ, tet(A), and tet(X) genes, which are related to tigecycline resistance. The expression levels of efflux pump genes acrB and oqxB and their regulator genes rarA, ramA, soxS, and marA were assessed by quantitative real-time PCR. RESULTS The resistance rate to tigecycline in CRKP isolates was 37.8% (17/45). K pneumoniae ST307 was a predominant clone type (70.6%, 12/17) among the TCRKP isolates. The expression levels of acrB (P < .001) and marA (P = .009) were significantly higher in the tigecycline-resistant group than in the tigecycline-intermediate and tigecycline-susceptible groups. Increased expression of acrB was associated with marA expression (r = 0.59, P = .013). CONCLUSIONS We found that the activated MarA-induced overexpression of AcrAB efflux pump plays an important role in the emergence of tigecycline resistance in CRKP isolates.
Collapse
Affiliation(s)
- Yumi Park
- Department of Laboratory MedicineChungnam National University HospitalDaejeonSouth Korea
- Department of Laboratory MedicineKonyang University College of MedicineDaejeonSouth Korea
- Department of Laboratory MedicineKonyang University HospitalDaejeonSouth Korea
| | - Qute Choi
- Department of Laboratory MedicineChungnam National University HospitalDaejeonSouth Korea
| | - Gye Cheol Kwon
- Department of Laboratory MedicineChungnam National University HospitalDaejeonSouth Korea
| | - Sun Hoe Koo
- Department of Laboratory MedicineChungnam National University HospitalDaejeonSouth Korea
| |
Collapse
|
20
|
Hennessen F, Miethke M, Zaburannyi N, Loose M, Lukežič T, Bernecker S, Hüttel S, Jansen R, Schmiedel J, Fritzenwanker M, Imirzalioglu C, Vogel J, Westermann AJ, Hesterkamp T, Stadler M, Wagenlehner F, Petković H, Herrmann J, Müller R. Amidochelocardin Overcomes Resistance Mechanisms Exerted on Tetracyclines and Natural Chelocardin. Antibiotics (Basel) 2020; 9:antibiotics9090619. [PMID: 32962088 PMCID: PMC7559539 DOI: 10.3390/antibiotics9090619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.
Collapse
Affiliation(s)
- Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Marcus Miethke
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Nestor Zaburannyi
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Maria Loose
- Clinic for Urology, Paediatric Urology & Andrology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Gießen, Germany; (M.L.); (F.W.)
| | - Tadeja Lukežič
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Steffen Bernecker
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stephan Hüttel
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Rolf Jansen
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Judith Schmiedel
- Institute of Medical Microbiology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35390 Gießen, Germany; (J.S.); (M.F.); (C.I.)
| | - Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35390 Gießen, Germany; (J.S.); (M.F.); (C.I.)
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35390 Gießen, Germany; (J.S.); (M.F.); (C.I.)
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI) and Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; (J.V.); (A.J.W.)
| | - Alexander J. Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI) and Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; (J.V.); (A.J.W.)
| | - Thomas Hesterkamp
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Marc Stadler
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Florian Wagenlehner
- Clinic for Urology, Paediatric Urology & Andrology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Gießen, Germany; (M.L.); (F.W.)
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Correspondence: (J.H.); (R.M.); Tel.: +49-681-98806-3101 (J.H.); +49-681-98806-3000 (R.M.)
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Correspondence: (J.H.); (R.M.); Tel.: +49-681-98806-3101 (J.H.); +49-681-98806-3000 (R.M.)
| |
Collapse
|
21
|
Grimsey EM, Piddock LJV. Do phenothiazines possess antimicrobial and efflux inhibitory properties? FEMS Microbiol Rev 2020; 43:577-590. [PMID: 31216574 DOI: 10.1093/femsre/fuz017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is a global health concern; the rise of drug-resistant bacterial infections is compromising the medical advances that resulted from the introduction of antibiotics at the beginning of the 20th century. Considering that the presence of mutations within individuals in a bacterial population may allow a subsection to survive and propagate in response to selective pressure, as long as antibiotics are used in the treatment of bacterial infections, development of resistance is an inevitable evolutionary outcome. This, combined with the lack of novel antibiotics being released to the clinical market, means the need to develop alternative strategies to treat these resistant infections is critical. We discuss how the use of antibiotic adjuvants can minimise the appearance and impact of resistance. To this effect, several phenothiazine-derived drugs have been shown to potentiate the activities of antibiotics used to treat infections caused by Gram-positive and Gram-negative bacteria. Outside of their role as antipsychotic medications, we review the evidence to suggest that phenothiazines possess inherent antibacterial and efflux inhibitory properties enabling them to potentially combat drug resistance. We also discuss that understanding their mode of action is essential to facilitate the design of new phenothiazine derivatives or novel agents for use as antibiotic adjuvants.
Collapse
Affiliation(s)
- Elizabeth M Grimsey
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
22
|
Effect of rpoE on the Non-coding RNA Expression Profiles of Salmonella enterica serovar Typhi under the Stress of Ampicillin. Curr Microbiol 2020; 77:2405-2412. [DOI: 10.1007/s00284-020-02055-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
|
23
|
Abstract
Efflux is an important mechanism in Gram-negative bacteria conferring multidrug resistance. Inhibition of efflux is an encouraging strategy to restore the antibacterial activity of antibiotics. Chlorpromazine and amitriptyline have been shown to behave as efflux inhibitors. However, their mode of action is poorly understood. Exposure of Salmonella enterica serovar Typhimurium and Escherichia coli to chlorpromazine selected for mutations within genes encoding RamR and MarR, regulators of the multidrug tripartite efflux pump AcrAB-TolC. Further experiments with S. Typhimurium containing AcrB D408A (a nonfunctional efflux pump) and chlorpromazine or amitriptyline resulted in the reversion of the mutant acrB allele to the wild type. Together, this suggests these drugs are AcrB efflux substrates. Subsequent docking studies with AcrB from S. Typhimurium and E. coli, followed by molecular dynamics simulations and free energy calculations showed that chlorpromazine and amitriptyline bind at the hydrophobic trap, a preferred binding site for substrates and inhibitors within the distal binding pocket of AcrB. Based on these simulations, we suggest that chlorpromazine and amitriptyline inhibit AcrB-mediated efflux by interfering with substrate binding. Our findings provide evidence that these drugs are substrates and inhibitors of AcrB, yielding molecular details of their mechanism of action and informing drug discovery of new efflux inhibitors.IMPORTANCE Efflux pumps of the resistance nodulation-cell division (RND) superfamily are major contributors to multidrug resistance for most of the Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. The development of inhibitors of these pumps would be highly desirable; however, several issues have thus far hindered all efforts at designing new efflux inhibitory compounds devoid of adverse effects. An alternative route to de novo design relies on the use of marketed drugs, for which side effects on human health have been already assessed. In this work, we provide experimental evidence that the antipsychotic drugs chlorpromazine and amitriptyline are inhibitors of the AcrB transporter, the engine of the major RND efflux pumps in Escherichia coli and Salmonella enterica serovar Typhimurium. Furthermore, in silico calculations have provided a molecular-level picture of the inhibition mechanism, allowing rationalization of experimental data and paving the way for similar studies with other classes of marketed compounds.
Collapse
|
24
|
Ferrand A, Vergalli J, Pagès JM, Davin-Regli A. An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae. Microorganisms 2020; 8:E833. [PMID: 32492979 PMCID: PMC7355843 DOI: 10.3390/microorganisms8060833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille University, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; (A.F.); (J.V.); (J.-M.P.)
| |
Collapse
|
25
|
Holden ER, Webber MA. MarA, RamA, and SoxS as Mediators of the Stress Response: Survival at a Cost. Front Microbiol 2020. [PMID: 32431683 DOI: 10.3389/fmicb.2020.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
To survive and adapt to changing environments, bacteria have evolved mechanisms to express appropriate genes at appropriate times. Exposure to antimicrobials triggers a global stress response in Enterobacteriaceae, underpinned by activation of a family of transcriptional regulators, including MarA, RamA, and SoxS. These control a program of altered gene expression allowing a rapid and measured response to improve fitness in the presence of toxic drugs. Increased expression of marA, ramA, and soxS up regulates efflux activity to allow detoxification of the cell. However, this also results in trade-offs in other phenotypes, such as impaired growth rates, biofilm formation and virulence. Here, we review the current knowledge regarding the trade-offs that exist between drug survival and other phenotypes that result from induction of marA, ramA, and soxS. Additionally, we present some new findings linking expression of these regulators and biofilm formation in Enterobacteriaceae, thereby demonstrating the interconnected nature of regulatory networks within the cell and explaining how trade-offs can exist between important phenotypes. This has important implications for our understanding of how bacterial virulence and biofilms can be influenced by exposure to antimicrobials.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Biosciences, Norwich, United Kingdom
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
26
|
Holden ER, Webber MA. MarA, RamA, and SoxS as Mediators of the Stress Response: Survival at a Cost. Front Microbiol 2020; 11:828. [PMID: 32431683 PMCID: PMC7216687 DOI: 10.3389/fmicb.2020.00828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023] Open
Abstract
To survive and adapt to changing environments, bacteria have evolved mechanisms to express appropriate genes at appropriate times. Exposure to antimicrobials triggers a global stress response in Enterobacteriaceae, underpinned by activation of a family of transcriptional regulators, including MarA, RamA, and SoxS. These control a program of altered gene expression allowing a rapid and measured response to improve fitness in the presence of toxic drugs. Increased expression of marA, ramA, and soxS up regulates efflux activity to allow detoxification of the cell. However, this also results in trade-offs in other phenotypes, such as impaired growth rates, biofilm formation and virulence. Here, we review the current knowledge regarding the trade-offs that exist between drug survival and other phenotypes that result from induction of marA, ramA, and soxS. Additionally, we present some new findings linking expression of these regulators and biofilm formation in Enterobacteriaceae, thereby demonstrating the interconnected nature of regulatory networks within the cell and explaining how trade-offs can exist between important phenotypes. This has important implications for our understanding of how bacterial virulence and biofilms can be influenced by exposure to antimicrobials.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Biosciences, Norwich, United Kingdom
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
27
|
Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM, Legood SW, McNeil HE, Blair JM. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15:143-157. [PMID: 32073314 DOI: 10.2217/fmb-2019-0235] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rresistance-nodulation-division (RND) efflux pumps in Gram-negative bacteria remove multiple, structurally distinct classes of antimicrobials from inside bacterial cells therefore directly contributing to multidrug resistance. There is also emerging evidence that many other mechanisms of antibiotic resistance rely on the intrinsic resistance conferred by RND efflux. In addition to their role in antibiotic resistance, new information has become available about the natural role of RND pumps including their established role in virulence of many Gram-negative organisms. This review also discusses the recent advances in understanding the regulation and structure of RND efflux pumps.
Collapse
Affiliation(s)
- Abigail L Colclough
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emily E Whittle
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah L Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elizabeth M Darby
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Simon W Legood
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Helen E McNeil
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
28
|
Piddock LJV. The 2019 Garrod Lecture: MDR efflux in Gram-negative bacteria-how understanding resistance led to a new tool for drug discovery. J Antimicrob Chemother 2019; 74:3128-3134. [PMID: 31626705 DOI: 10.1093/jac/dkz370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The AcrAB-TolC MDR efflux system confers intrinsic MDR and overproduction confers clinically relevant resistance to some antibiotics active against Gram-negative bacteria. The system is made up of three components, namely AcrA, AcrB and TolC, otherwise known as the AcrAB-TolC tripartite system. Inactivation or deletion of a gene encoding one of the constituent proteins, or substitution of a single amino acid in the efflux pump component AcrB that results in loss of efflux function, confers increased antibiotic susceptibility. Clinically relevant resistance can be mediated by a mutation in acrB that changes the way AcrB substrates are transported. However, it is more common that resistant clinical and veterinary isolates overproduce the AcrAB-TolC MDR efflux system. This is due to mutations in genes such as marR and ramR that encode repressors of transcription factors (MarA and RamA, respectively) that when produced activate expression of the acrAB and tolC genes thereby increasing efflux. The Lon protease degrades MarA and RamA to return the level of efflux to that of the WT. Furthermore, the levels of AcrAB-TolC are regulated by CsrA. Studies with fluorescent reporters that report levels of acrAB and regulatory factors allowed the development of a new tool for discovering efflux inhibitors. Screens of the Prestwick Chemical Library and a large library from a collaborating pharmaceutical company have generated a number of candidate compounds for further research.
Collapse
Affiliation(s)
- Laura J V Piddock
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
29
|
Villagra NA, Valenzuela LM, Mora AY, Millanao AR, Saavedra CP, Mora GC, Hidalgo AA. Cysteine auxotrophy drives reduced susceptibility to quinolones and paraquat by inducing the expression of efflux-pump systems and detoxifying enzymes in S. Typhimurium. Biochem Biophys Res Commun 2019; 515:339-344. [PMID: 31151825 DOI: 10.1016/j.bbrc.2019.05.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Abstract
Currently, Salmonella enterica serovar Typhimurium (S. Typhimurium), is a major global public health problem, which has caused food-borne illnesses in many countries. Today, with the extensive use of antimicrobials, antimicrobial resistance is increasing at a serious rate in S. Typhimurium isolates. The present study sought the role of cysteine (Cys) auxotrophy on the resistance to quinolones and paraquat in S. Typhimurium. Cys auxotrophy was achieved by deleting either the cysDNC, cysJIH or cysQ loci. Deletion of these loci resulted in loss of susceptibility against nalidixic acid, levofloxacin, ciprofloxacin (CIP) and paraquat. Further studies with cysJIH mutant indicated increased expression of multi-antibiotic resistance genes marA and ramA, and consequently increased expression of efflux-pump systems. The cysJIH mutant presented a smaller increase of reactive oxygen species (ROS) in presence of paraquat or CIP. Expression of katG and sodA (expressing for a catalase and a superoxide dismutase, respectively) genes was increased in presence of paraquat in the cysJIH mutant; while expression of the superoxide dismutase gene sodB was decreased. These results indicate that deletion of cysDNC, cysJIH or cysQ genes of S. Typhimurium renders Cys auxotrophy along with decreased susceptibility in response to quinolone and paraquat. Overexpression of efflux-pump systems AcrB-TolC and SmvA-OmpD and antioxidant enzymes KatG and SodA could explain the mechanisms of antimicrobial resistance in the Cys auxotrophic mutants.
Collapse
Affiliation(s)
| | | | - Aracely Y Mora
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile
| | - Ana R Millanao
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile; Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Guido C Mora
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK (I3CBSEK), Facultad de Ciencias de la Salud, Universidad SEK, Santiago, Chile
| | | |
Collapse
|
30
|
Iyer R, Moussa SH, Tommasi R, Miller AA. Role of the Klebsiella pneumoniae TolC porin in antibiotic efflux. Res Microbiol 2019; 170:112-116. [DOI: 10.1016/j.resmic.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
|
31
|
Wang Q, Zhang P, Zhao D, Jiang Y, Zhao F, Wang Y, Li X, Du X, Yu Y. Emergence of tigecycline resistance in Escherichia coli co-producing MCR-1 and NDM-5 during tigecycline salvage treatment. Infect Drug Resist 2018; 11:2241-2248. [PMID: 30519062 PMCID: PMC6239116 DOI: 10.2147/idr.s179618] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective Here, we report a case of severe infection caused by Escherichia coli that harbored mcr-1, blaNDM-5, and acquired resistance to tigecycline during tigecycline salvage therapy. Methods Antimicrobial susceptibility testing, Southern blot hybridization, and complete genome sequence of the strains were carried out. The genetic characteristics of the mcr-1 and blaNDM-5 plasmids were analyzed. The whole genome sequencing of mcr-1-containing plasmid was completed. Finally, putative single nucleotide polymorphisms and deletion mutations in the tigecycline-resistant strain were predicted. Results Three E. coli isolates were obtained from ascites, pleural effusion, and stool of a patient; they were resistant to almost all the tested antibiotics. The first two strains separated from ascites (E-FQ) and hydrothorax (E-XS) were susceptible to amikacin and tigecycline; however, the third strain from stool (E-DB) was resistant to tigecycline after nearly 3 weeks’ treatment with tigecycline. All three isolates possessed both mcr-1 and blaNDM-5. The blaNDM-5 gene was found on the IncX3 plasmid, whereas the mcr-1, fosA3 and blaCTX-M-14 were located on the IncHI2 plasmid. Mutations in acrB and lon were the reason for the resistance to tigecycline. Conclusion This is the first report of a colistin-, carbapenem-, and tigecycline-resistant E. coli in China. Tigecycline resistance acquired during tigecycline therapy is of great concern for us because tigecycline is a drug of last resort to treat carbapenem-resistant Gram-negative bacterial infections. Furthermore, the transmission of such extensively drug-resistant isolates may pose a great threat to public health.
Collapse
Affiliation(s)
- Qian Wang
- Department of General Practice, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China,
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China,
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China,
| | - Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China,
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaoxing Du
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China,
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China, .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China,
| |
Collapse
|
32
|
He L, Luo D, Yang F, Li C, Zhang X, Deng H, Zhang JR. Multiple domains of bacterial and human Lon proteases define substrate selectivity. Emerg Microbes Infect 2018; 7:149. [PMID: 30120231 PMCID: PMC6098112 DOI: 10.1038/s41426-018-0148-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/16/2018] [Accepted: 06/23/2018] [Indexed: 02/05/2023]
Abstract
The Lon protease selectively degrades abnormal proteins or certain normal proteins in response to environmental and cellular conditions in many prokaryotic and eukaryotic organisms. However, the mechanism(s) behind the substrate selection of normal proteins remains largely unknown. In this study, we identified 10 new substrates of F. tularensis Lon from a total of 21 candidate substrates identified in our previous work, the largest number of novel Lon substrates from a single study. Cross-species degradation of these and other known Lon substrates revealed that human Lon is unable to degrade many bacterial Lon substrates, suggestive of a “organism-adapted” substrate selection mechanism for the natural Lon variants. However, individually replacing the N, A, and P domains of human Lon with the counterparts of bacterial Lon did not enable the human protease to degrade the same bacterial Lon substrates. This result showed that the “organism-adapted” substrate selection depends on multiple domains of the Lon proteases. Further in vitro proteolysis and mass spectrometry analysis revealed a similar substrate cleavage pattern between the bacterial and human Lon variants, which was exemplified by predominant representation of leucine, alanine, and other hydrophobic amino acids at the P(−1) site within the substrates. These observations suggest that the Lon proteases select their substrates at least in part by fine structural matching with the proteins in the same organisms.
Collapse
Affiliation(s)
- Lihong He
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Dongyang Luo
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Fan Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Chunhao Li
- Philip Research Institute for Oral Health, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China. .,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Abstract
Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS) to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.IMPORTANCE Type III secretion systems (T3SS) are an essential virulence trait of many bacterial pathogens because of their indispensable role in the delivery of virulence factors. However, expression of T3SS in the noninfection stage is energy consuming. Here, we established a model to explain the differential regulation of T3SS in host and nonhost environments. When Xanthomonas cells are grown in rich medium, the T3SS regulator HrpG is targeted by Lon protease for proteolysis. The degradation of HrpG leads to downregulated expression of HrpX and the hrp/hrc genes. When Xanthomonas cells infect the host, specific plant stimuli can be perceived and induce Lon phosphorylation at serine 654. Phosphorylation on Lon attenuates its proteolytic activity and protects HrpG from degradation. Consequently, enhanced stability of HrpG activates HrpX and turns on bacterial T3SS in the host. Our work provides a novel molecular mechanism underlying host-dependent activation of bacterial T3SS.
Collapse
|
34
|
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2017; 169:425-431. [PMID: 29128373 DOI: 10.1016/j.resmic.2017.10.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.
Collapse
Affiliation(s)
- Natasha Weston
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
35
|
Miao M, Cao W, Wang H, Yan J, Wang M, Zheng Y, Xie X, Zhang X, Zhang H, Du H. ramR is not involved in the regulation of ramA associated antibiotic resistance in Salmonella enterica serovar Typhi. Microb Pathog 2017; 111:198-202. [DOI: 10.1016/j.micpath.2017.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/20/2017] [Accepted: 08/30/2017] [Indexed: 11/16/2022]
|
36
|
Osei Sekyere J, Amoako DG. Carbonyl Cyanide m-Chlorophenylhydrazine (CCCP) Reverses Resistance to Colistin, but Not to Carbapenems and Tigecycline in Multidrug-Resistant Enterobacteriaceae. Front Microbiol 2017; 8:228. [PMID: 28261184 PMCID: PMC5306282 DOI: 10.3389/fmicb.2017.00228] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/01/2017] [Indexed: 01/11/2023] Open
Abstract
Background: Carbapenems (CAR), colistin (CST), and tigecycline (TGC) alone or in combination therapy has become the last-resort antibiotics for treating infections caused by multidrug resistant (MDR) bacteria. However, resistance to these reserve antibiotics are increasingly being reported worldwide. Hence, the quest to find other agents that will synergistically restore the efficacy of these antibiotics have increased. Methods: Sixty-three clinical Enterobacteriaceae isolates comprising of Klebsiella pneumoniae (n = 24), Enterobacter spp. (n = 15), Serratia marcescens (n = 12), Citrobacter freundii (n = 8), Escherichia coli (n = 2), and K. oxytoca/michiganensis (n = 2) with known carbapenem resistance mechanisms and undescribed CST and TGC resistance mechanisms were subjected to broth microdilution and meropenem (MEM) disc synergy test in the presence and absence of carbonyl cyanide m-chlorophenylhydrazine (CCCP), a H+ conductor (protonophore). Results and conclusions: Susceptibility to MEM, imipenem (IMP), CST, and TGC was found in only 2, 0, 17, and 9 isolates respectively. Addition of CCCP reversed resistance to CST, TGC, IMP, and MEM in 44, 3, 0, and 0 isolates respectively; CST had the highest mean minimum inhibitory concentration (MIC) fold change (193.12; p < 0.0001) post CCCP compared to that of MEM (1.70), IMP (1.49) and TGC (1.16). Eight isolates tested positive for the MEM-CCCP disc synergy test. We concluded that CCCP reverse CST resistance in CST-resistant Enterobacteriaceae. Although CCCP is an experimental agent with no therapeutic value clinically, further studies are necessary to decipher the mechanisms underlying the CST-CCCP synergy to inform the development of adjuvants that could be therapeutically effective in CST-resistant infections.
Collapse
Affiliation(s)
- John Osei Sekyere
- Division of Microbiology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kwame Nkrumah University of Science and TechnologyKumasi, Ghana; Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-NatalDurban, South Africa
| | - Daniel G Amoako
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-NatalDurban, South Africa; Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurban, South Africa
| |
Collapse
|
37
|
Pietsch F, Bergman JM, Brandis G, Marcusson LL, Zorzet A, Huseby DL, Hughes D. Ciprofloxacin selects for RNA polymerase mutations with pleiotropic antibiotic resistance effects. J Antimicrob Chemother 2016; 72:75-84. [PMID: 27621175 DOI: 10.1093/jac/dkw364] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Resistance to the fluoroquinolone drug ciprofloxacin is commonly linked to mutations that alter the drug target or increase drug efflux via the major AcrAB-TolC transporter. Very little is known about other mutations that might also reduce susceptibility to ciprofloxacin. We discovered that an Escherichia coli strain experimentally evolved for resistance to ciprofloxacin had acquired a mutation in rpoB, the gene coding for the β-subunit of RNA polymerase. The aim of this work was to determine whether this mutation, and other mutations in rpoB, contribute to ciprofloxacin resistance and, if so, by which mechanism. METHODS Independent lineages of E. coli were evolved in the presence of ciprofloxacin and clones from endpoint cultures were screened for mutations in rpoB. Ciprofloxacin-selected rpoB mutations were identified and characterized in terms of effects on susceptibility and mode of action. RESULTS Mutations in rpoB were selected at a high frequency in 3 out of 10 evolved lineages, in each case arising after the occurrence of mutations affecting topoisomerases and drug efflux. All ciprofloxacin-selected rpoB mutations had a high fitness cost in the absence of drug, but conferred a competitive advantage in the presence of ciprofloxacin. RNA sequencing and quantitative RT-PCR analysis showed that expression of mdtK, encoding a multidrug efflux transporter, was significantly increased by the ciprofloxacin-selected rpoB mutations. The susceptibility phenotype was shown to depend on the presence of an active mdtK and a mutant rpoB allele. CONCLUSIONS These data identify mutations in RNA polymerase as novel contributors to the evolution of resistance to ciprofloxacin and show that the phenotype is mediated by increased MdtK-dependent drug efflux.
Collapse
Affiliation(s)
- Franziska Pietsch
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jessica M Bergman
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Linda L Marcusson
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Anna Zorzet
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582 Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance. Int J Antimicrob Agents 2016; 48:11-18. [DOI: 10.1016/j.ijantimicag.2016.04.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 11/23/2022]
|
39
|
The Protease Locus of Francisella tularensis LVS Is Required for Stress Tolerance and Infection in the Mammalian Host. Infect Immun 2016; 84:1387-1402. [PMID: 26902724 DOI: 10.1128/iai.00076-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/12/2016] [Indexed: 02/05/2023] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a category A potential agent of bioterrorism, but the pathogenic mechanisms of F. tularensis are largely unknown. Our previous transposon mutagenesis screen identified 95 lung infectivity-associated F. tularensis genes, including those encoding the Lon and ClpP proteases. The present study validates the importance of Lon and ClpP in intramacrophage growth and infection of the mammalian host by using unmarked deletion mutants of the F. tularensis live vaccine strain (LVS). Further experiments revealed that lon and clpP are also required for F. tularensis tolerance to stressful conditions. A quantitative proteomic comparison between heat-stressed LVS and the isogenic Lon-deficient mutant identified 29 putative Lon substrate proteins. The follow-up protein degradation experiments identified five substrates of the F. tularensis Lon protease (FTL578, FTL663, FTL1217, FTL1228, and FTL1957). FTL578 (ornithine cyclodeaminase), FTL663 (heat shock protein), and FTL1228 (iron-sulfur activator complex subunit SufD) have been previously described as virulence-associated factors in F. tularensis Identification of these Lon substrates has thus provided important clues for further understanding of the F. tularensis stress response and pathogenesis. The high-throughput approach developed in this study can be used for systematic identification of the Lon substrates in other prokaryotic and eukaryotic organisms.
Collapse
|
40
|
Abstract
Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.
Collapse
|
41
|
Xie X, Zhang H, Zheng Y, Li A, Wang M, Zhou H, Zhu X, Schneider Z, Chen L, Kreiswirth BN, Du H. RpoE is a Putative Antibiotic Resistance Regulator of Salmonella enteric Serovar Typhi. Curr Microbiol 2016; 72:457-64. [PMID: 26742769 DOI: 10.1007/s00284-015-0983-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/02/2015] [Indexed: 11/27/2022]
Abstract
Bacterial antimicrobial resistance has been associated with the up regulation of genes encoding efflux pumps and the down regulation of genes encoding outer membrane proteins (OMPs). Gene expression in bacteria is primarily initiated by sigma factors (σ factors) such as RpoE, which plays an important role in responding to many environmental stresses. Here, we report the first observation that RpoE serves as an antibiotic resistance regulator in Salmonella enteric serovar Typhi (S. Typhi). In this study, we found that the rpoE mutant (ΔrpoE) of S. Typhi GIFU10007 has elevated resistance to several antimicrobial agents, including β-lactams, quinolones, and aminoglycosides. Genomic DNA microarray analysis was used to investigate the differential gene expression profiles between a wild type and rpoE mutant in response to ampicillin. The results showed that a total of 57 genes displayed differential expression (two-fold increase or decrease) in ΔrpoE versus the wild-type strain. The expressions of two outer membrane protein genes, ompF and ompC, were significantly down-regulated in ΔrpoE (six and seven-fold lower in comparison to wild-type strain) and RamA, a member of the efflux pump AraC/XylS family, was up-regulated about four-fold in the ΔrpoE. Our results suggest RpoE is a potential antimicrobial regulator in S. Typhi, controlling both the down regulation of the OMP genes and up-regulating the efflux system.
Collapse
Affiliation(s)
- Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Aiqing Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Huiqin Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Xueming Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Zachary Schneider
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Liang Chen
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Barry N Kreiswirth
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
42
|
Buffet-Bataillon S, Tattevin P, Maillard JY, Bonnaure-Mallet M, Jolivet-Gougeon A. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Future Microbiol 2016; 11:81-92. [DOI: 10.2217/fmb.15.131] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biocides, primarily those containing quaternary ammonium compounds (QAC), are heavily used in hospital environments and various industries (e.g., food, water, cosmetic). To date, little attention has been paid to potential implications of QAC use in the emergence of antibiotic resistance, especially fluoroquinolone-resistant bacteria in patients and in the environment. QAC-induced overexpression of efflux pumps can lead to: cross resistance with fluoroquinolones mediated by multidrug efflux pumps; stress response facilitating mutation in the Quinolone Resistance Determining Region; and biofilm formation increasing the risk of transfer of mobile genetic elements carrying fluoroquinolone or QAC resistance determinants. By following the European Biocidal Product Regulation, manufacturers of QAC are required to ensure that their QAC-based biocidal products are safe and will not contribute to emerging bacterial resistance.
Collapse
Affiliation(s)
| | - Pierre Tattevin
- Service des Maladies Infectieuses, Pontchaillou, 35043 Rennes, France
- INSERM U835, Université de Rennes 1, 35000 Rennes, France
| | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Martine Bonnaure-Mallet
- EA 1254 Microbiologie, Université de Rennes 1, 35000 Rennes, France
- Pôle Odontologie, Teaching Hospital, 35043 Rennes, France
| | - Anne Jolivet-Gougeon
- Pôle Biologie, Teaching Hospital Pontchaillou, 35043 Rennes, France
- EA 1254 Microbiologie, Université de Rennes 1, 35000 Rennes, France
| |
Collapse
|
43
|
Zhang WH, Ren SQ, Gu XX, Li W, Yang L, Zeng ZL, Liu YH, Jiang HX. High frequency of virulence genes among Escherichia coli with the bla CTX-M genotype from diarrheic piglets in China. Vet Microbiol 2015; 180:260-7. [DOI: 10.1016/j.vetmic.2015.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/12/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
|
44
|
Webber MA, Whitehead RN, Mount M, Loman NJ, Pallen MJ, Piddock LJV. Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. J Antimicrob Chemother 2015; 70:2241-8. [PMID: 25953808 PMCID: PMC4500774 DOI: 10.1093/jac/dkv109] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/01/2015] [Indexed: 11/30/2022] Open
Abstract
Objectives Biocides are widely used to prevent infection. We aimed to determine whether exposure of Salmonella to various biocides could act as a driver of antibiotic resistance. Methods Salmonella enterica serovar Typhimurium was exposed to four biocides with differing modes of action. Antibiotic-resistant mutants were selected during exposure to all biocides and characterized phenotypically and genotypically to identify mechanisms of resistance. Results All biocides tested selected MDR mutants with decreased antibiotic susceptibility; these occurred randomly throughout the experiments. Mutations that resulted in de-repression of the multidrug efflux pump AcrAB-TolC were seen in MDR mutants. A novel mutation in rpoA was also selected and contributed to the MDR phenotype. Other mutants were highly resistant to both quinolone antibiotics and the biocide triclosan. Conclusions This study shows that exposure of bacteria to biocides can select for antibiotic-resistant mutants and this is mediated by clinically relevant mechanisms of resistance prevalent in human pathogens.
Collapse
Affiliation(s)
- Mark A Webber
- Antimicrobials Research Group, School of Immunity and Infection and Institute for Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rebekah N Whitehead
- Antimicrobials Research Group, School of Immunity and Infection and Institute for Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Manuella Mount
- Antimicrobials Research Group, School of Immunity and Infection and Institute for Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Nick J Loman
- School of Bioscience and Institute for Microbiology & Infection, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark J Pallen
- Division of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Laura J V Piddock
- Antimicrobials Research Group, School of Immunity and Infection and Institute for Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
45
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1005] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
46
|
He F, Fu Y, Chen Q, Ruan Z, Hua X, Zhou H, Yu Y. Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae. PLoS One 2015; 10:e0119064. [PMID: 25734903 PMCID: PMC4348519 DOI: 10.1371/journal.pone.0119064] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/17/2015] [Indexed: 01/08/2023] Open
Abstract
KPC-producing Klebsiella pneumoniae isolates have emerged as important pathogens of nosocomial infections, and tigecycline is one of the antibiotics recommended for severe infections caused by KPC-producing K. pneumoniae. To identify the susceptibility profile of KPC-producing K. pneumoniae to tigecycline and investigate the role of efflux pumps in tigecycline resistance, a total of 215 KPC-producing K. pneumoniae isolates were collected. The minimum inhibitory concentration (MIC) of tigecycline was determined by standard broth microdilution tests. Isolates showing resistance to tigecycline underwent susceptibility test with efflux pump inhibitors. Expression levels of efflux pump genes (acrB and oqxB) and their regulators (ramA, marA, soxS and rarA) were examined by real-time PCR, and the correlation between tigecycline MICs and gene expression levels were analysed. Our results show that the tigecycline resistance rate in these isolates was 11.2%. Exposure of the tigecycline-resistant isolates to the efflux pump inhibitor NMP resulted in an obvious decrease in MICs and restored susceptibility to tigecycline in 91.7% of the isolates. A statistically significant association between acrB expression and tigecycline MICs was observed, and overexpression of ramA was found in three tigecycline-resistant isolates, further analysis confirmed ramR mutations existed in these isolates. Transformation of one mutant with wild-type ramR restored susceptibility to tigecycline and repressed overexpression of ramA and acrB. These data indicate that efflux pump AcrAB, which can be up-regulated by ramR mutations and subsequent ramA activation, contributed to tigecycline resistance in K. pneumoniae clinical isolates.
Collapse
Affiliation(s)
- Fang He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Ying Fu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Qiong Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Zhi Ruan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Hua Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- * E-mail:
| |
Collapse
|
47
|
Blair JMA, Richmond GE, Piddock LJV. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 2014; 9:1165-77. [DOI: 10.2217/fmb.14.66] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT Gram-negative bacteria express a plethora of efflux pumps that are capable of transporting structurally varied molecules, including antibiotics, out of the bacterial cell. This efflux lowers the intracellular antibiotic concentration, allowing bacteria to survive at higher antibiotic concentrations. Overexpression of some efflux pumps can cause clinically relevant levels of antibiotic resistance in Gram-negative pathogens. This review discusses the role of efflux in resistance of clinical isolates of Gram-negative bacteria, the regulatory mechanisms that control efflux pump expression, the recent advances in our understanding of efflux pump structure and how inhibition of efflux is a promising future strategy for tackling multidrug resistance in Gram-negative pathogens.
Collapse
Affiliation(s)
- Jessica MA Blair
- Antimicrobials Research Group, Institute of Microbiology & Infection, School of Immunity & Infection, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Grace E Richmond
- Antimicrobials Research Group, Institute of Microbiology & Infection, School of Immunity & Infection, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laura JV Piddock
- Antimicrobials Research Group, Institute of Microbiology & Infection, School of Immunity & Infection, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
48
|
Piddock LJV. Understanding the basis of antibiotic resistance: a platform for drug discovery. MICROBIOLOGY-SGM 2014; 160:2366-2373. [PMID: 25122880 DOI: 10.1099/mic.0.082412-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There are numerous genes in Salmonella enterica serovar Typhimurium that can confer resistance to fluoroquinolone antibiotics, including those that encode topoisomerase proteins, the primary targets of this class of drugs. However, resistance is often multifactorial in clinical isolates and it is not uncommon to also detect mutations in genes that affect the expression of proteins involved in permeability and multi-drug efflux. The latter mechanism, mediated by tripartite efflux systems, such as that formed by the AcrAB-TolC system, confers inherent resistance to many antibiotics, detergents and biocides. Genetic inactivation of efflux genes gives multi-drug hyper-susceptibility, and in the absence of an intact AcrAB-TolC system some chromosomal and transmissible antibiotic resistance genes no longer confer clinically relevant levels of resistance. Furthermore, a functional multi-drug resistance efflux pump, such as AcrAB-TolC, is required for virulence and the ability to form a biofilm. In part, this is due to altered expression of virulence and biofilm genes being sensitive to efflux status. Efflux pump expression can be increased, usually due to mutations in regulatory genes, and this confers resistance to clinically useful drugs such as fluoroquinolones and β-lactams. Here, I discuss some of the work my team has carried out characterizing the mechanisms of antibiotic resistance in Salmonella enterica serovar Typhimurium from the late 1980s to 2014. A video of this Prize Lecture, presented at the Society for General Microbiology Annual Conference 2014, can be viewed via this link: https://www.youtube.com/watch?v=MCRumMV99Yw.
Collapse
Affiliation(s)
- Laura J V Piddock
- Antimicrobials Research Group, School of Immunity and Infection and Institute for Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
49
|
Baucheron S, Nishino K, Monchaux I, Canepa S, Maurel MC, Coste F, Roussel A, Cloeckaert A, Giraud E. Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2014; 69:2400-6. [PMID: 24816212 DOI: 10.1093/jac/dku140] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES In Salmonella Typhimurium, the genes encoding the AcrAB-TolC multidrug efflux system are mainly regulated by the ramRA locus, composed of the divergently transcribed ramA and ramR genes. The acrAB and tolC genes are transcriptionally activated by RamA, the gene for which is itself transcriptionally repressed by RamR. Previous studies have reported that bile induces acrAB in a ramA-dependent manner, but none provided evidence for an induction of ramA expression by bile. Therefore, the objective of this study was to clarify the regulatory mechanism by which bile activates acrAB and tolC. METHODS qRT-PCR was used to address the effects of bile (using choleate, an ox-bile extract) on the expression of ramA, ramR, acrB and tolC. Electrophoretic mobility shift assays and surface plasmon resonance experiments were used to measure the effect of bile on RamR binding to the ramA promoter (PramA) region. RESULTS We show that ramA is transcriptionally activated by bile and is strictly required for the bile-mediated activation of acrB and tolC. Additionally, bile is shown to specifically inhibit the binding of RamR to the PramA region, which overlaps the putative divergent ramR promoter, thereby explaining our observation that bile also activates ramR transcription. CONCLUSIONS We propose a regulation model whereby the bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through the transcriptional derepression of the ramA activator gene.
Collapse
Affiliation(s)
- Sylvie Baucheron
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Kunihiko Nishino
- Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Isabelle Monchaux
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Sylvie Canepa
- INRA, UMR7247, Plateforme d'Analyse Intégrative des Biomolécules et de Phénomique des Animaux d'Intérêt Bio-agronomique, Nouzilly, France
| | - Marie-Christine Maurel
- INRA, UMR7247, Plateforme d'Analyse Intégrative des Biomolécules et de Phénomique des Animaux d'Intérêt Bio-agronomique, Nouzilly, France
| | - Franck Coste
- Centre de Biophysique Moléculaire CNRS, UPR4301, Orléans, France
| | - Alain Roussel
- Centre de Biophysique Moléculaire CNRS, UPR4301, Orléans, France
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Etienne Giraud
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| |
Collapse
|