1
|
Macesic N, Dennis A, Hawkey J, Vezina B, Wisniewski JA, Cottingham H, Blakeway LV, Harshegyi T, Pragastis K, Badoordeen GZ, Bass P, Stewardson AJ, Dennison A, Spelman DW, Jenney AW, Peleg AY. Genomic investigation of multispecies and multivariant blaNDM outbreak reveals key role of horizontal plasmid transmission. Infect Control Hosp Epidemiol 2024; 45:709-716. [PMID: 38344902 PMCID: PMC11102827 DOI: 10.1017/ice.2024.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 05/18/2024]
Abstract
OBJECTIVES New Delhi metallo-β-lactamases (NDMs) are major contributors to the spread of carbapenem resistance globally. In Australia, NDMs were previously associated with international travel, but from 2019 we noted increasing incidence of NDM-positive clinical isolates. We investigated the clinical and genomic epidemiology of NDM carriage at a tertiary-care Australian hospital from 2016 to 2021. METHODS We identified 49 patients with 84 NDM-carrying isolates in an institutional database, and we collected clinical data from electronic medical record. Short- and long-read whole genome sequencing was performed on all isolates. Completed genome assemblies were used to assess the genetic setting of blaNDM genes and to compare NDM plasmids. RESULTS Of 49 patients, 38 (78%) were identified in 2019-2021 and only 11 (29%) of 38 reported prior travel, compared with 9 (82%) of 11 in 2016-2018 (P = .037). In patients with NDM infection, the crude 7-day mortality rate was 0% and the 30-day mortality rate was 14% (2 of 14 patients). NDMs were noted in 41 bacterial strains (ie, species and sequence type combinations). Across 13 plasmid groups, 4 NDM variants were detected: blaNDM-1, blaNDM-4, blaNDM-5, and blaNDM-7. We noted a change from a diverse NDM plasmid repertoire in 2016-2018 to the emergence of conserved blaNDM-1 IncN and blaNDM-7 IncX3 epidemic plasmids, with interstrain spread in 2019-2021. These plasmids were noted in 19 (50%) of 38 patients and 35 (51%) of 68 genomes in 2019-2021. CONCLUSIONS Increased NDM case numbers were due to local circulation of 2 epidemic plasmids with extensive interstrain transfer. Our findings underscore the challenges of outbreak detection when horizontal transmission of plasmids is the primary mode of spread.
Collapse
Affiliation(s)
- Nenad Macesic
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Adelaide Dennis
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Ben Vezina
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Jessica A. Wisniewski
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Hugh Cottingham
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Luke V. Blakeway
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Taylor Harshegyi
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Katherine Pragastis
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Gnei Zweena Badoordeen
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Pauline Bass
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | - Andrew J. Stewardson
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
| | | | - Denis W. Spelman
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Microbiology Unit, Alfred Hospital, Melbourne, Australia
| | - Adam W.J. Jenney
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Microbiology Unit, Alfred Hospital, Melbourne, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Lu J, Han M, Yu HH, Bergen PJ, Liu Y, Zhao J, Wickremasinghe H, Jiang X, Hu Y, Du H, Zhu Y, Velkov T. Lipid A Modification and Metabolic Adaptation in Polymyxin-Resistant, New Delhi Metallo-β-Lactamase-Producing Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0085223. [PMID: 37432123 PMCID: PMC10433984 DOI: 10.1128/spectrum.00852-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/12/2023] [Indexed: 07/12/2023] Open
Abstract
Polymyxins are last-line antibiotics employed against multidrug-resistant (MDR) Klebsiella pneumoniae. Worryingly, polymyxin resistance is rapidly on the rise globally. Polymyxins initially target lipid A of lipopolysaccharides (LPSs) in the cell outer membrane (OM), causing disorganization and cell lysis. While most studies focus on how genetic variations confer polymyxin resistance, the mechanisms of membrane remodeling and metabolic changes in polymyxin-resistant strains remain unclear, thus hampering the development of effective therapies to treat severe K. pneumoniae infections. In the present study, lipid A profiling, OM lipidomics, genomics, and metabolomics were integrated to elucidate the global mechanisms of polymyxin resistance and metabolic adaptation in a polymyxin-resistant strain (strain S01R; MIC of >128 mg/L) obtained from K. pneumoniae strain S01, a polymyxin-susceptible (MIC of 2 mg/L), New Delhi metallo-β-lactamase (NDM)-producing MDR clinical isolate. Genomic analysis revealed a novel in-frame deletion at position V258 of PhoQ in S01R, potentially leading to lipid A modification with 4-amino-4-deoxy-l-arabinose (L-Ara4N) despite the absence of polymyxin B. Comparative metabolomic analysis revealed slightly elevated levels of energy production and amino acid metabolism in S01R compared to their levels in S01. Exposure to polymyxin B (4 mg/L for S01 and 512 mg/L for S01R) substantially altered energy, nucleotide, and amino acid metabolism and resulted in greater accumulation of lipids in both strains. Furthermore, the change induced by polymyxin B treatment was dramatic at both 1 and 4 h in S01 but only significant at 4 h in S01R. Overall, profound metabolic adaptation was observed in S01R following polymyxin B treatment. These findings contribute to our understanding of polymyxin resistance mechanisms in problematic NDM-producing K. pneumoniae strains and may facilitate the discovery of novel therapeutic targets. IMPORTANCE Antimicrobial resistance (AMR) is a major threat to global health. The emergence of resistance to the polymyxins that are the last line of defense in so-called Gram-negative "superbugs" has further increased the urgency to develop novel therapies. There are frequent outbreaks of K. pneumoniae infections in hospitals being reported, and polymyxin usage is increasing remarkably. Importantly, the polymyxin-resistant K. pneumoniae strains are imposing more severe consequences to health systems. Using metabolomics, lipid A profiling, and outer membrane lipidomics, our findings reveal (i) changes in the pentose phosphate pathway and amino acid and nucleotide metabolism in a susceptible strain following polymyxin treatment and (ii) how cellular metabolism, lipid A modification, and outer membrane remodeling were altered in K. pneumoniae following the acquisition of polymyxin resistance. Our study provides, for the first time, mechanistic insights into metabolic responses to polymyxin treatment in a multidrug-resistant, NDM-producing K. pneumoniae clinical isolate with acquired polymyxin resistance. Overall, these results will assist in identifying new therapeutic targets to combat and prevent polymyxin resistance.
Collapse
Affiliation(s)
- Jing Lu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Meiling Han
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Heidi H. Yu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Phillip J. Bergen
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yiyun Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinxin Zhao
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Hasini Wickremasinghe
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Xukai Jiang
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yang Hu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Haiyan Du
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yan Zhu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology, The Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Takeuchi D, Kerdsin A, Akeda Y, Sugawara Y, Sakamoto N, Matsumoto Y, Motooka D, Ishihara T, Nishi I, Laolerd W, Santanirand P, Yamamoto N, Tomono K, Hamada S. Nationwide surveillance in Thailand revealed genotype-dependent dissemination of carbapenem-resistant Enterobacterales. Microb Genom 2022; 8:000797. [PMID: 35438076 PMCID: PMC9453063 DOI: 10.1099/mgen.0.000797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are a serious public health threat because of their rapid dissemination. To determine the epidemiological and genetic characteristics of CRE infections in Thailand, we performed whole-genome sequencing of 577 carbapenem-resistant Klebsiella pneumoniae isolates and 170 carbapenem-resistant Escherichia coli isolates from hospitals across the nation. The four most prevalent carbapenemase genes harboured by these bacteria were bla NDM-1, bla NDM-5, bla OXA-181 and bla OXA-232. The gene bla NDM-1 was identified in diverse sequence types. The gene bla NDM-5 was identified almost exclusively in E. coli . The genes bla OXA-181, bla OXA-232, and co-carriage of bla NDM-1 and bla OXA-232 were found in specific sequence types from certain provinces. Replicon typing revealed the diverse backbones of bla NDM-1- and bla NDM-5-harbouring plasmids and successful expansion of bla NDM-1-harbouring IncN2-type plasmids. Core-genome single-nucleotide polymorphism analysis suggested that bla OXA-181-, bla OXA-232-, bla NDM-5-, and co-carriage of bla NDM-1 and bla OXA-232-associated sub-clonal lineages have recently predominated in the provinces from where these isolates were isolated. Thus, we demonstrate genotype-dependent dissemination of CRE in Thailand, which is helpful for establishing infection-control strategies in CRE-endemic areas.
Collapse
Affiliation(s)
- Dan Takeuchi
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Yukihiro Akeda
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yo Sugawara
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Noriko Sakamoto
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Isao Nishi
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
| | - Warawut Laolerd
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pitak Santanirand
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Norihisa Yamamoto
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
4
|
Kaewnirat K, Chuaychob S, Chukamnerd A, Pomwised R, Surachat K, Phoo MTP, Phaothong C, Sakunrang C, Jeenkeawpiam K, Hortiwakul T, Charernmak B, Chusri S. In vitro Synergistic Activities of Fosfomycin in Combination with Other Antimicrobial Agents Against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 on the IncN2 Plasmid and a Study of the Genomic Characteristics of These Pathogens. Infect Drug Resist 2022; 15:1777-1791. [PMID: 35437346 PMCID: PMC9013254 DOI: 10.2147/idr.s357965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose The spread of New Delhi metallo-β-lactamase (NDM) encoded by the blaNDM gene has been a global health crisis for many years. Most of blaNDM-harboring bacteria commonly carry various antimicrobial resistance (AMR) genes on their chromosomes or plasmids, leading to limited treatment options. Thus, we aimed to evaluate the synergistic effects of fosfomycin in combination with other antimicrobial agents against blaNDM-harboring carbapenem-resistant Escherichia coli (CREC) and to characterize the whole-genome and plasmid sequences of these pathogens. Methods Thirty-eight CREC isolates were collected from patients in the Medicine Ward, Songklanagarind Hospital, Thailand. The activity of fosfomycin in combination with other antimicrobial agents against CREC isolates harboring blaNDM on the plasmid was evaluated using the checkerboard method. In this method, the serial dilutions of two antibiotics were mixed with the cultured CREC, the mixtures were incubated, and FICI was calculated to interpret the synergistic activity of the combination. The whole-genome and particular plasmids of these pathogens were sequenced using next-generation sequencing. Sequence analysis, especially on antimicrobial resistance (AMR) genes, mobile-genetic elements (MGEs), and virulence genes was performed using many bioinformatics tools. Results Of the E. coli 38 isolates, only 3 isolates contained the blaNDM-1 gene, which is located on the IncN2 plasmid. The combinations of fosfomycin with aminoglycosides, colistin, tigecycline, sitafloxacin, and ciprofloxacin were synergies against blaNDM-1-harboring CREC isolates. Genomic analysis revealed that these isolates harbored many β-lactam resistance genes and other AMR genes that may confer resistance to aminoglycoside, fluoroquinolone, rifampicin, trimethoprim, sulfonamide, tetracycline, and macrolide. Also, various MGEs, especially the blaNDM-1-bearing IncN2 plasmid, were present in these isolates. Conclusion Our study demonstrated some synergistic effects of antimicrobial combination against CREC isolates harboring blaNDM-1 on the IncN2 plasmid. Also, our data on the whole-genome and plasmid sequences might be beneficial in the control of the spread of blaNDM-1-harboring CREC isolates. The linkages between blaNDM-1-carrying plasmid, patient information, and time of collection will be elucidated to track the horizontal gene transfer in the future.
Collapse
Affiliation(s)
- Kalyarat Kaewnirat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Surachat Chuaychob
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - May Thet Paing Phoo
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanitnart Phaothong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Boonsri Charernmak
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Correspondence: Sarunyou Chusri, Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand, Tel +66 8 973 40446, Email
| |
Collapse
|
5
|
Plasmid Replicon Diversity of Clinical Uropathogenic Escherichia coli Isolates from Riyadh, Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to identify and compare the plasmid replicons of clinical uropathogenic Escherichia coli (UPEC) isolates, involving extended spectrum β-lactamase (ESBL)-positive and ESBL-negative, E. coli ST131 and non-ST131 and various ST131 subclones. Plasmid replicon typing on 24 clinical UPEC isolates was carried out using polymerase chain reaction-based replicon typing. A statistical analysis was performed to assess the associations between plasmid replicon types and ESBL carriage, and to evaluate the link between ST131 isolates and high replicon carriage. Eight replicons, I1α, N2, Iγ, X1, FIIS, K, FIA, and FII were detected. The FII was the most common replicon identified here. ESBL-positive E. coli isolates were highly associated with I1α, N2, Iγ, X1, and FIIS replicons, while FIA was present only in ESBL-negative group. ST131 isolates were highly associated with I1α and N2 replicons compared to non-ST131. No link was found between replicon carriage and the number or type of ESBLs in E. coli isolates. The diversity observed in replicon patterns of our clinical E. coli isolates indicates that they might be originated from different sources. The presence of replicons reported previously in animal sources suggests a possible transfer of antimicrobial resistance between animal and human bacterial isolates.
Collapse
|
6
|
Ares-Arroyo M, Rocha EPC, Gonzalez-Zorn B. Evolution of ColE1-like plasmids across γ-Proteobacteria: From bacteriocin production to antimicrobial resistance. PLoS Genet 2021; 17:e1009919. [PMID: 34847155 PMCID: PMC8683028 DOI: 10.1371/journal.pgen.1009919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/17/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial resistance is one of the major threats to Public Health worldwide. Understanding the transfer and maintenance of antimicrobial resistance genes mediated by mobile genetic elements is thus urgent. In this work, we focus on the ColE1-like plasmid family, whose distinctive replication and multicopy nature has given rise to key discoveries and tools in molecular biology. Despite being massively used, the hosts, functions, and evolutionary history of these plasmids remain poorly known. Here, we built specific Hidden Markov Model (HMM) profiles to search ColE1 replicons within genomes. We identified 1,035 ColE1 plasmids in five Orders of γ-Proteobacteria, several of which are described here for the first time. The phylogenetic analysis of these replicons and their characteristic MOBP5/HEN relaxases suggest that ColE1 plasmids have diverged apart, with little transfer across orders, but frequent transfer across families. Additionally, ColE1 plasmids show a functional shift over the last decades, losing their characteristic bacteriocin production while gaining several antimicrobial resistance genes, mainly enzymatic determinants and including several extended-spectrum betalactamases and carbapenemases. Furthermore, ColE1 plasmids facilitate the intragenomic mobilization of these determinants, as various replicons were identified co-integrated with large non-ColE1 plasmids, mostly via transposases. These results illustrate how families of plasmids evolve and adapt their gene repertoires to bacterial adaptive requirements. The extraordinary adaptability of bacteria and the massive prevalence of mobile genetic elements within populations has turned antimicrobial resistance into a growing threat to Public Health. Among all the mobile genetic elements, plasmids have been the focus of attention as these extrachromosomal molecules of DNA are able to mobilize several antimicrobial resistance genes at once through conjugation. However, although small mobilizable and non-conjugative replicons have been traditionally overlooked when analyzing plasmid-mediated antimicrobial resistance, they have recently been described as important carriers of AMR genes. In this work, we have analyzed the ColE1-like plasmid family, whose study has been neglected even if they are one of the main groups of small plasmids in natural populations of Proteobacteria. We observed that these plasmids have evolved for a long time within γ-Proteobacteria acquiring different genetic features in specific hosts, being major players in the spread of antimicrobial resistance determinants.
Collapse
Affiliation(s)
- Manuel Ares-Arroyo
- Antimicrobial Resistance Unit (ARU), Faculty of Veterinary Medicine and VISAVET, Complutense University of Madrid, Madrid, Spain
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Faculty of Veterinary Medicine and VISAVET, Complutense University of Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
7
|
Sun M, Xiao W, Xu Q. IncN1 ST7 Epidemic Plasmid Carrying blaIMP-4 in One ST85-Type Klebsiella oxytoca Clinical Isolate with Porin Deficiency. Infect Drug Resist 2021; 14:3827-3835. [PMID: 34566416 PMCID: PMC8458025 DOI: 10.2147/idr.s330362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose Klebsiella oxytoca is an opportunistic pathogen causing nosocomial infections. This study was designed to characterize the genomic features of a carbapenem-resistant K. oxytoca strain and analyze its molecular characteristics. Materials and Methods The strain wzx-IMP was isolated from the blood of a 2-year-old girl diagnosed with acute myeloid leukemia-M7. Species identification was performed, and the minimal inhibitory concentration of the strain was measured. Multilocus sequence typing was performed to identify the subtypes of K. oxytoca. The transfer capacity of the blaIMP-4-harboring plasmid was investigated by conjugation experiments, and the genome characteristics of the strain were examined using whole-genome sequencing. Results wzx-IMP belongs to the ST85 type and is resistant to imipenem and meropenem, which harbored the blaIMP-4 gene. The blaIMP-4 gene was located in an IS26-associated class 1 integron of pwzx_IMP, which contains conserved IncN1-type backbone regions with a replication gene and its accessory structure for plasmid replication. The blaIMP-4-carrying plasmid in wzx-IMP was successfully transferred to Escherichia coli EC600 by conjugation. Whole-genome sequencing showed that the wzx-IMP isolate included the blaOXY-1-1 gene, accompanied by OmpK36 absence. Conclusion We report an ST85-type carbapenem-resistant K. oxytoca strain, which produces blaIMP-4 located in an IncN1-type plasmid and accompanied by OmpK36 porin deficiency.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Weiqiang Xiao
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
8
|
Phan MD, Bottomley AL, Peters KM, Harry EJ, Schembri MA. Uncovering novel susceptibility targets to enhance the efficacy of third-generation cephalosporins against ESBL-producing uropathogenic Escherichia coli. J Antimicrob Chemother 2021; 75:1415-1423. [PMID: 32073605 DOI: 10.1093/jac/dkaa023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) are a major cause of urinary tract infection (UTI), one of the most common infectious diseases in humans. UPEC are increasingly associated with resistance to multiple antibiotics. This includes resistance to third-generation cephalosporins, a common class of antibiotics frequently used to treat UTI. METHODS We employed a high-throughput genome-wide screen using saturated transposon mutagenesis and transposon directed insertion-site sequencing (TraDIS) together with phenotypic resistance assessment to identify key genes required for survival of the MDR UPEC ST131 strain EC958 in the presence of the third-generation cephalosporin cefotaxime. RESULTS We showed that blaCMY-23 is the major ESBL gene in EC958 responsible for mediating resistance to cefotaxime. Our screen also revealed that mutation of genes involved in cell division and the twin-arginine translocation pathway sensitized EC958 to cefotaxime. The role of these cell-division and protein-secretion genes in cefotaxime resistance was confirmed through the construction of mutants and phenotypic testing. Mutation of these genes also sensitized EC958 to other cephalosporins. CONCLUSIONS This work provides an exemplar for the application of TraDIS to define molecular mechanisms of resistance to antibiotics. The identification of mutants that sensitize UPEC to cefotaxime, despite the presence of a cephalosporinase, provides a framework for the development of new approaches to treat infections caused by MDR pathogens.
Collapse
Affiliation(s)
- Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy L Bottomley
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Harry
- The ithree institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Abdul Rahim N, Zhu Y, Cheah SE, Johnson MD, Yu HH, Sidjabat HE, Butler MS, Cooper MA, Fu J, Paterson DL, Nation RL, Boyce JD, Creek DJ, Bergen PJ, Velkov T, Li J. Synergy of the Polymyxin-Chloramphenicol Combination against New Delhi Metallo-β-Lactamase-Producing Klebsiella pneumoniae Is Predominately Driven by Chloramphenicol. ACS Infect Dis 2021; 7:1584-1595. [PMID: 33834753 DOI: 10.1021/acsinfecdis.0c00661] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbapenem-resistant Klebsiella pneumoniae has been classified as an Urgent Threat by the Centers for Disease Control and Prevention (CDC). The combination of two "old" antibiotics, polymyxin and chloramphenicol, displays synergistic killing against New Delhi metallo-β-lactamase (NDM)-producing K. pneumoniae. However, the mechanism(s) underpinning their synergistic killing are not well studied. We employed an in vitro pharmacokinetic/pharmacodynamic model to mimic the pharmacokinetics of the antibiotics in patients and examined bacterial killing against NDM-producing K. pneumoniae using a metabolomic approach. Metabolomic analysis was integrated with an isolate-specific genome-scale metabolic network (GSMN). Our results show that metabolic responses to polymyxin B and/or chloramphenicol against NDM-producing K. pneumoniae involved the inhibition of cell envelope biogenesis, metabolism of arginine and nucleotides, glycolysis, and pentose phosphate pathways. Our metabolomic and GSMN modeling results highlight the novel mechanisms of a synergistic antibiotic combination at the network level and may have a significant potential in developing precision antimicrobial chemotherapy in patients.
Collapse
Affiliation(s)
- Nusaibah Abdul Rahim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Soon-Ee Cheah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew D. Johnson
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heidi H. Yu
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Hanna E. Sidjabat
- University of Queensland Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - Mark S. Butler
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - David L. Paterson
- University of Queensland Centre for Clinical Research, Herston, Queensland 4029, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Queensland 4029, Australia
| | - Roger L. Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John D. Boyce
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Phillip J. Bergen
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre for Medicine Use and Safety, Monash University, Parkville, Victoria 3052, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Baraniak A, Machulska M, Żabicka D, Literacka E, Izdebski R, Urbanowicz P, Bojarska K, Herda M, Kozińska A, Hryniewicz W, Gniadkowski M. Towards endemicity: large-scale expansion of the NDM-1-producing Klebsiella pneumoniae ST11 lineage in Poland, 2015-16. J Antimicrob Chemother 2020; 74:3199-3204. [PMID: 31406993 DOI: 10.1093/jac/dkz315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/12/2019] [Accepted: 06/22/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES In 2015 and 2016 Poland recorded rapid proliferation of New Delhi MBL (NDM)-producing Enterobacterales, with at least 470 and 1780 cases, respectively. We addressed the roles of the Klebsiella pneumoniae ST11 NDM-1 outbreak genotype, already spreading in 2012-14, and of newly imported organisms in this increase. METHODS The study included 2136 NDM-positive isolates identified between April 2015 and December 2016, following transfer of patients with K. pneumoniae ST147 NDM-1 from Tunisia to Warsaw in March 2015. The isolates were screened by PCR mapping for variants of blaNDM-carrying Tn125-like elements. Selected isolates were typed by PFGE and MLST. NDM-encoding plasmids were analysed by nuclease S1/hybridization, transfer assays, PCR-based replicon typing and PCR mapping. RESULTS The organisms were mainly K. pneumoniae containing the Tn125A variant of the ST11 epidemic lineage (n = 2094; ∼98%). Their representatives were of the outbreak pulsotype and ST11, and produced NDM-1, encoded by specific IncFII (pKPX-1/pB-3002cz)-like plasmids. The isolates were recovered in 145 healthcare centres in 13/16 administrative regions, predominantly the Warsaw area. The 'Tunisian' genotype K. pneumoniae ST147 NDM-1 Tn125F comprised 18 isolates (0.8%) from eight institutions. The remaining 24 isolates, mostly K. pneumoniae and Escherichia coli of diverse STs, produced NDM-1 or NDM-5 specified by various Tn125 derivatives and plasmids. CONCLUSIONS The K. pneumoniae ST11 NDM-1 outbreak has dramatically expanded in Poland since 2012, which may bring about a countrywide endemic situation in the near future. In addition, the so-far limited K. pneumoniae ST147 NDM-1 outbreak plus multiple NDM imports from different countries were observed in 2015-16.
Collapse
Affiliation(s)
- A Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - M Machulska
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - D Żabicka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - E Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - R Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - P Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - K Bojarska
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - M Herda
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - A Kozińska
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - W Hryniewicz
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - M Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | | |
Collapse
|
11
|
Politi L, Gartzonika K, Spanakis N, Zarkotou O, Poulou A, Skoura L, Vrioni G, Tsakris A. Emergence of NDM-1-producing Klebsiella pneumoniae in Greece: evidence of a widespread clonal outbreak. J Antimicrob Chemother 2020; 74:2197-2202. [PMID: 31065697 DOI: 10.1093/jac/dkz176] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES NDM-producing Enterobacteriaceae clinical isolates remain uncommon in the European region. We describe the emergence and broad dissemination of one successful NDM-1-producing Klebsiella pneumoniae clone in Greek hospitals. METHODS During a 4 year survey (January 2013-December 2016), 480 single-patient carbapenem non-susceptible K. pneumoniae isolates, phenotypically MBL positive, were consecutively recovered in eight Greek hospitals from different locations and subjected to further investigation. Antimicrobial susceptibility testing, combined-disc test, identification of resistance genes by PCR and sequencing, molecular fingerprinting by PFGE, plasmid profiling, replicon typing, conjugation experiments and MLST were performed. RESULTS Molecular analysis confirmed the presence of the blaNDM-1 gene in 341 (71%) K. pneumoniae isolates. A substantially increasing trend of NDM-1-producing K. pneumoniae was noticed during the survey (R2 = 0.9724). Most blaNDM-1-carrying isolates contained blaCTX-M-15, blaOXA-1, blaOXA-2 and blaTEM-1 genes. PFGE analysis clustered NDM-1 producers into five distinct clonal types, with five distinct STs related to each PFGE clone. The predominant ST11 PFGE clonal type was detected in all eight participating hospitals, despite adherence to the national infection control programme; it was identical to that observed in the original NDM-1 outbreak in Greece in 2011, as well as in a less-extensive NDM-1 outbreak in Bulgaria in 2015. The remaining four ST clonal types (ST15, ST70, ST258 and ST1883) were sporadically detected. blaNDM-1 was located in IncFII-type plasmids in all five clonal types. CONCLUSIONS This study gives evidence of possibly the largest NDM-1-producing K. pneumoniae outbreak in Europe; it may also reinforce the hypothesis of an NDM-1 clone circulating in the Balkans.
Collapse
Affiliation(s)
- Lida Politi
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | | | - Nicholas Spanakis
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - Olympia Zarkotou
- Department of Microbiology, Tzaneio General Hospital, Piraeus, Greece
| | - Aggeliki Poulou
- Department of Microbiology, Serres General Hospital, Serres, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgia Vrioni
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
12
|
Transcriptomic responses of a New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae isolate to the combination of polymyxin B and chloramphenicol. Int J Antimicrob Agents 2020; 56:106061. [PMID: 32574791 DOI: 10.1016/j.ijantimicag.2020.106061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/08/2020] [Indexed: 11/23/2022]
Abstract
The combination of polymyxins and chloramphenicol possesses synergistic killing activity against New Delhi metallo-β-lactamase (NDM)-producing Klebsiella pneumoniae. This systems study examined the transcriptomic responses to the polymyxin/chloramphenicol combination in clinical NDM-producing K. pneumoniae isolate S01. Klebsiella pneumoniae S01 (initial inoculum ~108 CFU/mL) was treated with polymyxin B (1 mg/L, continuous infusion) or chloramphenicol [maximum concentration (Cmax) = 8 mg/L, half-life (t1/2) = 4 h], alone or in combination, using an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model to mimic their pharmacokinetics in patients. Transcriptomic profiles of bacterial samples collected at 0, 0.25, 1, 4 and 24 h were examined using RNA sequencing (RNA-Seq). Chloramphenicol monotherapy significantly increased the expression of genes involved in ribosomal synthesis across the entire 24-h treatment, reflective of chloramphenicol-mediated inhibition of protein synthesis. The effect of polymyxin B was rapid and no major pathways were perturbed at later time points (4 h and 24 h). Combination treatment yielded the highest number of differentially expressed genes, including a large number observed following chloramphenicol monotherapy, in particular carbohydrate, nucleotide, amino acid and cell wall metabolism. Notably, chloramphenicol alone and in combination with polymyxin B significantly inhibited the expression of the arn operon that is responsible for lipid A modification and polymyxin resistance. These results indicate that the polymyxin/chloramphenicol combination displayed persistent transcriptomic responses over 24 h mainly on cell envelope synthesis and metabolism of carbohydrates, nucleotides and amino acids.
Collapse
|
13
|
Genetic Features of blandm-1 and Characterization of the Corresponding Knockout Mutant of Enterobacter cloacae Produced by Red Homologous Recombination. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Malchione MD, Torres LM, Hartley DM, Koch M, Goodman JL. Carbapenem and colistin resistance in Enterobacteriaceae in Southeast Asia: Review and mapping of emerging and overlapping challenges. Int J Antimicrob Agents 2019; 54:381-399. [DOI: 10.1016/j.ijantimicag.2019.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 01/21/2023]
|
15
|
Yang F, Deng B, Liao W, Wang P, Chen P, Wei J. High rate of multiresistant Klebsiella pneumoniae from human and animal origin. Infect Drug Resist 2019; 12:2729-2737. [PMID: 31564923 PMCID: PMC6731983 DOI: 10.2147/idr.s219155] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/16/2019] [Indexed: 01/02/2023] Open
Abstract
Purpose The main objectives of the present study were to detect the antimicrobial susceptibility and molecular characteristics of Klebsiella pneumoniae isolated from different hosts and to investigate the possibility of K. pneumoniae transmission between animals and humans. Materials and methods A total of 189 nonduplicate K. pneumoniae isolates were collected from hospitals and four species of animals in Henan Province, China. The disk diffusion method was used for antimicrobial susceptibility testing, and resistance and virulence genes were screened by polymerase chain reaction (PCR). The molecular types were identified through multilocus sequence typing (MLST), and the hypermucoviscous (HMV) phenotype was identified using the “string-forming test”. Pearson’s parameters were used to determine the potential link among the molecular types and resistance and virulence genes of all K. pneumoniae strains. Results The resistance rates of the 189 K. pneumoniae isolates against 15 antibiotics ranged from 11.6% to 77.8%. The highest multidrug resistance rate was detected in the pig strains (93.6%), followed by the human strains (90.4%), chicken strains (88.9%), cow strains (52.0%) and sheep strains (50.0%). Forty-eight (25.4%) K. pneumoniae strains presented the HMV phenotype. entB, fimH-1 and mrkD were the most prevalent of the detected virulence genes, and magA and rmpA were the least prevalent genes in all the isolates. The MLST analysis revealed 24 unique sequence types (STs) among from the 189 isolates. ST11, ST235 and ST258 were common STs among the five isolates of host origin. ST258 exhibited significantly positive correlations with blaNDM, magA and the HMV phenotype and a negative correlation with qnrB. Conclusion K. pneumoniae strains from different hosts, including humans and animals, have common molecular types and similar phenotypes, and these strains can potentially be transmitted between humans and animals.
Collapse
Affiliation(s)
- Fan Yang
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People's Republic of China.,Xinxiang Key Laboratory of Pathogenic Biology, Xinxiang, People's Republic of China
| | - Baoguo Deng
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Wei Liao
- Department of Clinical Laboratory, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Peizhen Wang
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Ping Chen
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Jidong Wei
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
16
|
Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front Microbiol 2019; 10:1941. [PMID: 31507558 PMCID: PMC6716069 DOI: 10.3389/fmicb.2019.01941] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the last decade, extended-spectrum cephalosporin and carbapenem resistant Gram-negative bacilli (GNB) have been extensively reported in the literature as being disseminated in humans but also in animals and the environment. These resistant organisms often cause treatment challenges due to their wide spectrum of antibiotic resistance. With the emergence of colistin resistance in animals and its subsequent detection in humans, the situation has worsened. Several studies reported the transmission of resistant organisms from animals to humans. Studies from the middle east highlight the spread of resistant organisms in hospitals and to a lesser extent in livestock and the environment. In view of the recent socio-economical conflicts that these countries are facing in addition to the constant population mobilization; we attempt in this review to highlight the gaps of the prevalence of resistance, antibiotic consumption reports, infection control measures and other risk factors contributing in particular to the spread of resistance in these countries. In hospitals, carbapenemases producers appear to be dominant. In contrast, extended spectrum beta lactamases (ESBL) and colistin resistance are becoming a serious problem in animals. This is mainly due to the continuous use of colistin in veterinary medicine even though it is now abandoned in the human sphere. In the environment, despite the small number of reports, ESBL and carbapenemases producers were both detected. This highlights the importance of the latter as a bridge between humans and animals in the transmission chain. In this review, we note that in the majority of the Middle Eastern area, little is known about the level of antibiotic consumption especially in the community and animal farms. Furthermore, some countries are currently facing issues with immigrants, poverty and poor living conditions which has been imposed by the civil war crisis. This all greatly facilitates the dissemination of resistance in all environments. In the one health concept, this work re-emphasizes the need to have global intervention measures to avoid dissemination of antibiotic resistance in humans, animals and the environment in Middle Eastern countries.
Collapse
Affiliation(s)
- Iman Dandachi
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Amer Chaddad
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jason Hanna
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jessika Matta
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Ziad Daoud
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
- Division of Clinical Microbiology, Saint George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
17
|
Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2019; 73:1121-1137. [PMID: 29370371 DOI: 10.1093/jac/dkx488] [Citation(s) in RCA: 578] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial antimicrobial resistance (AMR) is constantly evolving and horizontal gene transfer through plasmids plays a major role. The identification of plasmid characteristics and their association with different bacterial hosts provides crucial knowledge that is essential to understand the contribution of plasmids to the transmission of AMR determinants. Molecular identification of plasmid and strain genotypes elicits a distinction between spread of AMR genes by plasmids and dissemination of these genes by spread of bacterial clones. For this reason several methods are used to type the plasmids, e.g. PCR-based replicon typing (PBRT) or relaxase typing. Currently, there are 28 known plasmid types in Enterobacteriaceae distinguished by PBRT. Frequently reported plasmids [IncF, IncI, IncA/C, IncL (previously designated IncL/M), IncN and IncH] are the ones that bear the greatest variety of resistance genes. The purpose of this review is to provide an overview of all known AMR-related plasmid families in Enterobacteriaceae, the resistance genes they carry and their geographical distribution.
Collapse
Affiliation(s)
- M Rozwandowicz
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M S M Brouwer
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - J Fischer
- Department of Biological Safety, Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - J A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - B Gonzalez-Zorn
- Department of Animal Health and VISAVET, Complutense University of Madrid, Madrid, Spain
| | - B Guerra
- Department of Biological Safety, Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - D J Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - J Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Tansawai U, Walsh TR, Niumsup PR. Extended spectrum ß-lactamase-producing Escherichia coli among backyard poultry farms, farmers, and environments in Thailand. Poult Sci 2019; 98:2622-2631. [DOI: 10.3382/ps/pez009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/04/2019] [Indexed: 12/23/2022] Open
|
19
|
Hao Y, Shao C, Geng X, Bai Y, Jin Y, Lu Z. Genotypic and Phenotypic Characterization of Clinical Escherichia coli Sequence Type 405 Carrying IncN2 Plasmid Harboring bla NDM-1. Front Microbiol 2019; 10:788. [PMID: 31105653 PMCID: PMC6499153 DOI: 10.3389/fmicb.2019.00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023] Open
Abstract
We report a bla NDM-carrying ST405 Escherichia coli recovered from the abdominal fluid of a patient in Shandong, China. This strain belonged to the high-risk phylogenetic group D and carried the virulence genes, papG II, papG III, papC, and iroN. In addition to bla NDM-1, this isolate carried the quinolone resistance gene acc(6')-Ib and extended-spectrum β-lactamase (ESBL) genes bla CTX-M-15 and bla CTX-M-14. bla NDM-1 was located on a 41 Kb IncN2 self-transmissible plasmid. The IncN2 plasmid named as pJN24NDM1 was fully sequenced and analyzed. Genome comparative analysis showed that IncN2 plasmids harboring carbapenem-resistance genes possessed conserved backbones and variable accessory regions. Phylogenetic analysis of 87 IncN plasmids based on orthologous genes indicated that 9 IncN2 plasmids fell into one phylogenetic clade, while 4 IncN3 plasmids were in two phylogenetic clades of the 74 IncN1 plasmids. The presence of IncN2 plasmids harboring bla NDM in the high-risk clone ST405 E. coli raises serious concerns for its potential of dissemination.
Collapse
Affiliation(s)
| | | | | | | | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
20
|
NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev 2019; 32:32/2/e00115-18. [PMID: 30700432 DOI: 10.1128/cmr.00115-18] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
New Delhi metallo-β-lactamase (NDM) is a metallo-β-lactamase able to hydrolyze almost all β-lactams. Twenty-four NDM variants have been identified in >60 species of 11 bacterial families, and several variants have enhanced carbapenemase activity. Klebsiella pneumoniae and Escherichia coli are the predominant carriers of bla NDM, with certain sequence types (STs) (for K. pneumoniae, ST11, ST14, ST15, or ST147; for E. coli, ST167, ST410, or ST617) being the most prevalent. NDM-positive strains have been identified worldwide, with the highest prevalence in the Indian subcontinent, the Middle East, and the Balkans. Most bla NDM-carrying plasmids belong to limited replicon types (IncX3, IncFII, or IncC). Commonly used phenotypic tests cannot specifically identify NDM. Lateral flow immunoassays specifically detect NDM, and molecular approaches remain the reference methods for detecting bla NDM Polymyxins combined with other agents remain the mainstream options of antimicrobial treatment. Compounds able to inhibit NDM have been found, but none have been approved for clinical use. Outbreaks caused by NDM-positive strains have been reported worldwide, attributable to sources such as contaminated devices. Evidence-based guidelines on prevention and control of carbapenem-resistant Gram-negative bacteria are available, although none are specific for NDM-positive strains. NDM will remain a severe challenge in health care settings, and more studies on appropriate countermeasures are required.
Collapse
|
21
|
Lai CC, Chen CC, Lu YC, Chen HJ, Su BA, Weng TC, Chiu YH, Toh HS, Zhang CC, Chiang SR, Chuang YC, Tang HJ. Simultaneous three Enterobacteriaceae with different bla NDM-1-encoding plasmids in a patient transferred from mainland China to Taiwan. Infect Drug Resist 2018; 11:2555-2560. [PMID: 30573984 PMCID: PMC6290869 DOI: 10.2147/idr.s179024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
New-Delhi metallo-β-lactamase1 (NDM-1) Enterobacteriaceae are increasing worldwide. Herein, we describe a single patient who carried three unusual NDM-1 carbapenem-resistant Enterobacteriaceae – Enterobacter cloacae (E. cloacae) yielded from a urine specimen and Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) from stool specimens. For E. cloacae, its bla NDM-1-encoding plasmid was pKP04NDM with a size of ~54 kb replicons with an IncN backbone. For K. pneumoniae, its blaNDM-1-encoding plasmid was pNDM-BTR with a size of ~59.6 kb and belonged to IncN. For E. coli, its main blaNDM-1-encoding plasmid was pIMP-HK1500, and the NDM-1 gene was obtained from a part of pNDM-BTR (8439 bp). These three clinical strains are reported for the first time and are assumed to be imported from mainland China to Taiwan. The three different plasmids were never reported in K. pneumoniae, E. coli, and Citrobacter spp before. Owing to their associated multidrug resistance, appropriate measures of periodic, targeted surveillance, and development of new antimicrobial agents are urgently needed.
Collapse
Affiliation(s)
- Chih-Cheng Lai
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Chi-Chung Chen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan, .,Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Ying-Chen Lu
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Hung-Jui Chen
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan,
| | - Bo-An Su
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan,
| | - Tzu-Chieh Weng
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan,
| | - Yu-Hsin Chiu
- Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Han-Siong Toh
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan,
| | | | - Shyh-Ren Chiang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan,
| | - Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan, .,Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Hung-Jen Tang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan, .,Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan, .,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan,
| |
Collapse
|
22
|
Jean SS, Lee WS, Hsueh PR. Ertapenem non-susceptibility and independent predictors of the carbapenemase production among the Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Infect Drug Resist 2018; 11:1881-1891. [PMID: 30425537 PMCID: PMC6203167 DOI: 10.2147/idr.s181085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objectives This study investigated the prevalence rates of carbapenemase positivity, antibiotic susceptibility, and independent predictors of carbapenemase producers among the Enterobacteriaceae isolates recovered from patients with intra-abdominal infections (IAI) in the Asia-Pacific region between 2008 and 2014. Materials and methods Multiplex PCR was used for the detection of specific β-lactamases, while the broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of antibiotics among the IAI-related Enterobacteriaceae isolates. We studied the abovementioned parameters in 484 ertapenem-non-susceptible (Erta-NS) isolates and explored the independent predictors of carbapenemase-producing Enterobacteriaceae (CPE) isolates. Results Eighty (16.5%) Erta-NS-IAI Enterobacteriaceae isolates were found to be CPE. Vietnam and the Philippines had the highest CPE prevalence rates. The IAI isolates of Enterobacter species and Klebsiella pneumoniae followed by Escherichia coli were the three major pathogens with 77.4%, 40.9%, and 11.7% Erta-NS prevalence rates, respectively. Furthermore, the highest CPE prevalence (35%) was noted among the Erta-NS-K. pneumoniae isolates. The CPE isolates harboring the blaNDM, blaKPC, or blaOXA-48-like alleles had higher imipenem MIC levels than those harboring the blaIMP alleles. Using multivariate logistic regression analysis, we concluded that Erta-NS-IAI isolates with an imipenem non-susceptible phenotype (OR, 56.4), with cefepime MIC >8 µg/mL (OR, 4.4), cultured from the peritoneal space samples (tissue or abscess; OR, 3.3), and harboring the extended-spectrum β-lactamase encoding allele (OR, 11.5) are independent predictors of CPE. Conclusion Imipenem non-susceptibility, cefepime MIC >8 µg/mL, and the peritoneal space as a culture site are independent clinical predictors of CPE among the Erta-NS-IAI Enterobacteriaceae isolates in the Asia-Pacific region.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Sen Lee
- Division of Infectious Diseases, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan, .,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan,
| | | |
Collapse
|
23
|
Ko KS. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J Microbiol 2018; 57:195-202. [PMID: 30552629 DOI: 10.1007/s12275-019-8491-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Antibiotic resistance is a global concern in public health. Antibiotic-resistant clones can spread nationally, internationally, and globally. This review considers representative antibiotic-resistant Gram-negative bacterial clones-CTX-M- 15-producing ST131 in Escherichia coli, extended-spectrum ß-lactamase-producing ST11 and KPC-producing ST258 in Klebsiella pneumoniae, IMP-6-producing, carbapenem-resistant ST235 in Pseudomonas aeruginosa, and OXA-23-producing global clone 2 in Acinetobacter baumannii-that have disseminated worldwide, including in Korea. The findings highlight the urgency for systematic monitoring and international cooperation to suppress the emergence and propagation of antibiotic resistance.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
24
|
The use of SWATH to analyse the dynamic changes of bacterial proteome of carbapanemase-producing Escherichia coli under antibiotic pressure. Sci Rep 2018; 8:3871. [PMID: 29497067 PMCID: PMC5832786 DOI: 10.1038/s41598-018-21984-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 02/06/2018] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance associated with the clinically significant carbapenemases KPC, NDM and OXA-48 in Enterobacteriaceae is emerging as worldwide. In Australia, IMP-producing Enterobacteriaceae are the most prevalent carbapenemase-producing Enterobacteriaceae (CPE). Genomic characteristics of such CPE are well described, but the corresponding proteome is poorly characterised. We have thus developed a method to analyse dynamic changes in the proteome of CPE under antibiotic pressure. Specifically, we have investigated the effect of meropenem at sub-lethal concentrations to develop a better understanding of how antibiotic pressure leads to resistance. Escherichia coli strains producing either NDM-, IMP- or KPC-type carbapenemases were included in this study, and their proteomes were analysed in growth conditions with or without meropenem. The most significant difference in the bacterial proteomes upon the addition of meropenem was triggered amongst NDM-producers and to a lower extent amongst KPC-producers. In particular, HU DNA-binding proteins, the GroEL/GroES chaperonin complex and GrpE proteins were overexpressed. These proteins may thus contribute to the better adaptability of NDM- and KPC-producers to meropenem. A significant meropenem-induced increase in the expression of the outer membrane protein A was only observed in IMP-producers, thus demonstrating that carbapenemase-mediated resistance relies on far more complex mechanisms than simple inactivation of the antibiotic.
Collapse
|
25
|
Occurrence of extended spectrum β-lactamase and AmpC genes among multidrug-resistant Escherichia coli and emergence of ST131 from poultry meat in Thailand. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.07.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Zhao Y, Wang L, Zhang Z, Feng J, Kang H, Fang L, Jiang X, Zhang D, Zhan Z, Zhou D, Tong Y. Structural genomics of pNDM-BTR harboring In191 and Tn6360, and other bla NDM-carrying IncN1 plasmids. Future Microbiol 2017; 12:1271-1281. [DOI: 10.2217/fmb-2017-0067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To characterize a conjugative bla NDM-1-carrying plasmid pNDM-BTR from a clinical Escherichia coli isolate. Materials & methods: The complete nucleotide sequence of pNDM-BTR was determined using next-generation sequencing technology. Comparative genomic analysis of bla NDM-carrying IncN1 plasmids, including pNDM-BTR, was performed, and the antimicrobial resistance phenotypes were determined. Results: pNDM-BTR contained three accessory modules, namely IS26, a novel Tn3-family transposon Tn6360 and the dfrA14 region composed of In191, ecoRII–ecoRIImet and ΔIS1X2. The relatively small IncN1 backbones could integrate massive accessory modules, most of which were integrated at two ‘hotspots’. These IncN1 plasmids contained distinct profiles of accessory modules, which included those carrying various resistance genes. Conclusion: This study provides a deeper insight into horizontal transfer of resistance genes among IncN1 plasmids.
Collapse
Affiliation(s)
- Yachao Zhao
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Lijun Wang
- Department of Laboratory Medicine, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing 102218, China
| | - Zhiyi Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Jiao Feng
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Huaixing Kang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, China
| | - Liqun Fang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Defu Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
- College of Food Science & Project Engineering, Bohai University, Jinzhou 121013, China
| | - Zhe Zhan
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | - Yigang Tong
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| |
Collapse
|
27
|
Botts RT, Apffel BA, Walters CJ, Davidson KE, Echols RS, Geiger MR, Guzman VL, Haase VS, Montana MA, La Chat CA, Mielke JA, Mullen KL, Virtue CC, Brown CJ, Top EM, Cummings DE. Characterization of Four Multidrug Resistance Plasmids Captured from the Sediments of an Urban Coastal Wetland. Front Microbiol 2017; 8:1922. [PMID: 29067005 PMCID: PMC5641379 DOI: 10.3389/fmicb.2017.01922] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Self-transmissible and mobilizable plasmids contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance. The objective of this study was to capture and characterize self-transmissible and mobilizable resistance plasmids from a coastal wetland impacted by urban stormwater runoff and human wastewater during the rainy season. Four plasmids were captured, two self-transmissible and two mobilizable, using both mating and enrichment approaches. Plasmid genomes, sequenced with either Illumina or PacBio platforms, revealed representatives of incompatibility groups IncP-6, IncR, IncN3, and IncF. The plasmids ranged in size from 36 to 144 kb and encoded known resistance genes for most of the major classes of antibiotics used to treat Gram-negative infections (tetracyclines, sulfonamides, β-lactams, fluoroquinolones, aminoglycosides, and amphenicols). The mobilizable IncP-6 plasmid pLNU-11 was discovered in a strain of Citrobacter freundii enriched from the wetland sediments with tetracycline and nalidixic acid, and encodes a novel AmpC-like β-lactamase (blaWDC-1), which shares less than 62% amino acid sequence identity with the PDC class of β-lactamases found in Pseudomonas aeruginosa. Although the IncR plasmid pTRE-1611 was captured by mating wetland bacteria with P. putida KT2440 as recipient, it was found to be mobilizable rather than self-transmissible. Two self-transmissible multidrug-resistance plasmids were also captured: the small (48 kb) IncN3 plasmid pTRE-131 was captured by mating wetland bacteria with Escherichia coli HY842 where it is seemed to be maintained at nearly 240 copies per cell, while the large (144 kb) IncF plasmid pTRE-2011, which was isolated from a cefotaxime-resistant environmental strain of E. coli ST744, exists at just a single copy per cell. Furthermore, pTRE-2011 bears the globally epidemic blaCTX-M-55 extended-spectrum β-lactamase downstream of ISEcp1. Our results indicate that urban coastal wetlands are reservoirs of diverse self-transmissible and mobilizable plasmids of relevance to human health.
Collapse
Affiliation(s)
- Ryan T Botts
- Department of Mathematical, Information and Computer Sciences, Point Loma Nazarene University, San Diego, CA, United States
| | - Brooke A Apffel
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - C J Walters
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Kelly E Davidson
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Ryan S Echols
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Michael R Geiger
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Victoria L Guzman
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Victoria S Haase
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Michal A Montana
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Chip A La Chat
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Jenna A Mielke
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Kelly L Mullen
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Cierra C Virtue
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Celeste J Brown
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Eva M Top
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - David E Cummings
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| |
Collapse
|
28
|
Prevalence and risk factors for intestinal carriage of CTX-M-type ESBLs in Enterobacteriaceae from a Thai community. Eur J Clin Microbiol Infect Dis 2017; 37:69-75. [DOI: 10.1007/s10096-017-3102-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022]
|
29
|
Runcharoen C, Raven KE, Reuter S, Kallonen T, Paksanont S, Thammachote J, Anun S, Blane B, Parkhill J, Peacock SJ, Chantratita N. Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand. Genome Med 2017; 9:81. [PMID: 28877757 PMCID: PMC5588602 DOI: 10.1186/s13073-017-0471-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tackling multidrug-resistant Escherichia coli requires evidence from One Health studies that capture numerous potential reservoirs in circumscribed geographic areas. METHODS We conducted a survey of extended β-lactamase (ESBL)-producing E. coli isolated from patients, canals and livestock wastewater in eastern Thailand between 2014 and 2015, and analyzed isolates using whole genome sequencing. RESULTS The bacterial collection of 149 isolates consisted of 84 isolates from a single hospital and 65 from the hospital sewer, canals and farm wastewater within a 20 km radius. E. coli ST131 predominated the clinical collection (28.6%), but was uncommon in the environment. Genome-based comparison of E. coli from infected patients and their immediate environment indicated low genetic similarity overall between the two, although three clinical-environmental isolate pairs differed by ≤ 5 single nucleotide polymorphisms. Thai E. coli isolates were dispersed throughout a phylogenetic tree containing a global E. coli collection. All Thai ESBL-positive E. coli isolates were multidrug resistant, including high rates of resistance to tobramycin (77.2%), gentamicin (77.2%), ciprofloxacin (67.8%) and trimethoprim (68.5%). ESBL was encoded by six different CTX-M elements and SHV-12. Three isolates from clinical samples (n = 2) or a hospital sewer (n = 1) were resistant to the carbapenem drugs (encoded by NDM-1, NDM-5 or GES-5), and three isolates (clinical (n = 1) and canal water (n = 2)) were resistant to colistin (encoded by mcr-1); no isolates were resistant to both carbapenems and colistin. CONCLUSIONS Tackling ESBL-producing E. coli in this setting will be challenging based on widespread distribution, but the low prevalence of resistance to carbapenems and colistin suggests that efforts are now required to prevent these from becoming ubiquitous.
Collapse
Affiliation(s)
- Chakkaphan Runcharoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Kathy E Raven
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Sandra Reuter
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Teemu Kallonen
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Suporn Paksanont
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Jeeranan Thammachote
- Division of Clinical Microbiology, Medical Technology Department, Bhuddhasothon Hospital, Chachoengsao, 24000, Thailand
| | - Suthatip Anun
- Division of Clinical Microbiology, Medical Technology Department, Bhuddhasothon Hospital, Chachoengsao, 24000, Thailand
| | - Beth Blane
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sharon J Peacock
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.,Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.,The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
| |
Collapse
|
30
|
Savov E, Politi L, Spanakis N, Trifonova A, Kioseva E, Tsakris A. NDM-1 Hazard in the Balkan States: Evidence of the First Outbreak of NDM-1-Producing Klebsiella pneumoniae in Bulgaria. Microb Drug Resist 2017; 24:253-259. [PMID: 28876169 DOI: 10.1089/mdr.2017.0230] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
New Delhi MBL (NDM) carbapenemase-producing Klebsiella pneumoniae has become one of the most concerning multidrug-resistant pathogens. The Balkan counties are considered a reservoir for the spread of such strains based on several reports documenting NDM infections after hospitalization in this region. Nevertheless, NDM-producing K. pneumoniae have been only occasionally documented from Balkans. The current study documents the first polyclonal outbreak caused by NDM-1-producing K. pneumoniae in Bulgaria. From July 2015 to April 2016, all 25 single-patient carbapenem-nonsusceptible K. pneumoniae isolates were collected. Phenotypic and molecular screening revealed that 17 produced NDM-1 carbapenemase. All NDM-1 producers harbored blaCTX-M-15, blaCMY-4, blaTEM-1, and blaOXA-2; five also harbored blaOXA-1. In all cases, blaNDM-1 was flanked upstream by ISAba125 element and downstream by bleMBL. Pulsed-field gel electrophoresis (PFGE) clustered NDM-1-positive isolates into four distinct clonal types, A to D. MLST assigned isolates of the dominant clonal type A (n = 14) to sequence type (ST) 11, while isolates of clonal types B, C, and D to ST16, ST15, and ST391, respectively. Of interest, ST11 isolates belonged to the same PFGE type as those of the recently described NDM-1 ST11 clonal outbreak in Greece. Traveling abroad or overseas hospitalization was not reported in any case, suggesting most likely intra- and interhospital dissemination. The study presents the first polyclonal outbreak of NDM-producing K. pneumoniae in the Balkans and underlines the need for larger epidemiological studies in the region to illustrate commonalities in the transmission of NDM clones and possible sources in the community.
Collapse
Affiliation(s)
- Encho Savov
- 1 Laboratory of Microbiology , Military Medical Academy, Sofia, Bulgaria
| | - Lida Politi
- 2 Department of Microbiology, Medical School, University of Athens , Athens, Greece
| | - Nicholas Spanakis
- 2 Department of Microbiology, Medical School, University of Athens , Athens, Greece
| | - Angelina Trifonova
- 1 Laboratory of Microbiology , Military Medical Academy, Sofia, Bulgaria
| | - Elena Kioseva
- 1 Laboratory of Microbiology , Military Medical Academy, Sofia, Bulgaria
| | - Athanasios Tsakris
- 2 Department of Microbiology, Medical School, University of Athens , Athens, Greece
| |
Collapse
|
31
|
New Delhi metallo-β-lactamase-1 (NDM-1) Escherichia coli isolated from household vacuum cleaner-Oregon, 2013. IDCases 2017; 9:56-58. [PMID: 28660132 PMCID: PMC5484987 DOI: 10.1016/j.idcr.2017.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/11/2017] [Indexed: 11/29/2022] Open
Abstract
The first Oregon case of New Delhi metallo-β-lactamase-1 (NDM-1)-producing Escherichia coli was reported during November 2013. Epidemiologic investigation revealed only local outpatient medical care and no travel outside Oregon for both the patient and his household contact. Environmental sampling discovered a matching isolate from the patient’s household vacuum cleaner, suggesting environmental persistence.
Collapse
|
32
|
Jiang X, Yin Z, Yin X, Fang H, Sun Q, Tong Y, Xu Y, Zhang D, Feng J, Chen W, Song Y, Wang J, Chen S, Zhou D. Sequencing of blaIMP-Carrying IncN2 Plasmids, and Comparative Genomics of IncN2 Plasmids Harboring Class 1 Integrons. Front Cell Infect Microbiol 2017; 7:102. [PMID: 28424761 PMCID: PMC5371602 DOI: 10.3389/fcimb.2017.00102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
This work presents the complete nucleotide sequences of p0801-IMP from Klebsiella pneumoniae, p7121-IMP from K. oxytoca, and p17285-IMP from Citrobacter freundii, which are recovered from three different cases of nosocomial infection. These three plasmids represent the first fully sequenced blaIMP-carrying IncN2 plasmids. Further comparative genomics analysis of all the five integron-carrying IncN2 plasmids p0801-IMP, p7121-IMP, p17285-IMP, pJIE137, and p34983-59.134kb indicates that they possess conserved IncN2 backbones with limited genetic variations with respect to gene content and organization. Four class 1 integrons (blaIMP-1-carrying In1223 in p0801-IMP/p7121-IMP, blaIMP-8-carrying In655 in p17285-IMP, In27 in pJIE137, and In1130 in p34983-59.134kb), two insertion sequence-based transposition units (ISEcp1-orfRA1-14 in p17285-IMP, and ISEcp1-blaCTX-M-62-Δorf477-orfRA1-14 in pJIE137), and a novel Tn1696-related transposon Tn6325 carrying In1130 in p34983-59.134kb are indentified in the plasmid accessory regions. In1223 and In655 represent ancestral Tn402-associated integrons, while In27 and In1130 belong to complex class 1 integrons. The relatively small IncN2 backbones are able to integrate different mobile elements which carry various resistance markers, promoting the accumulation and spread of antimicrobial resistance genes among enterobacterial species.
Collapse
Affiliation(s)
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Xiuyun Yin
- Department of Clinical Laboratory, The 307th Hospital of the People's Liberation ArmyBeijing, China
| | - Haihong Fang
- Anhui Medical UniversityHefei, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Qiang Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical UniversityHefei, China
| | - Defu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China.,College of Food Science and Project Engineering, Bohai UniversityJinzhou, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Yajun Song
- Anhui Medical UniversityHefei, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Shuiping Chen
- Department of Clinical Laboratory, The 307th Hospital of the People's Liberation ArmyBeijing, China
| | - Dongsheng Zhou
- Anhui Medical UniversityHefei, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| |
Collapse
|
33
|
Xiao SZ, Wang S, Wu WM, Zhao SY, Gu FF, Ni YX, Guo XK, Qu JM, Han LZ. The Resistance Phenotype and Molecular Epidemiology of Klebsiella pneumoniae in Bloodstream Infections in Shanghai, China, 2012-2015. Front Microbiol 2017; 8:250. [PMID: 28280486 PMCID: PMC5322179 DOI: 10.3389/fmicb.2017.00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/06/2017] [Indexed: 12/19/2022] Open
Abstract
Klebsiella pneumoniae (K.pneumoniae) is a common nosocomial pathogen causing bloodstream infections. Antibiotic susceptibility surveillance and molecular characterization will facilitate prevention and management of K. pneumoniae bloodstream infections. K. pneumoniae isolates causing bloodstream infections were consecutively collected between January 2012 and December 2015 in Shanghai. Eighty isolates (20 per year) were randomly selected and enrolled in this study. Drug susceptibility were determined by the disk diffusion method. Polymerase chain reaction (PCR) was employed to detect extended-spectrum β-lactamases (ESBLs), carbapenemases, and seven housekeeping genes of K. pneumoniae. eBURST was used for multi-locus sequence typing (MLST). More than 50% isolates were resistant to cefuroxime, ampicillin-sulbactam, and piperacillin, while carbapenems had lower resistant rates than other antibiotics. Of the 80 isolates, 22 produced ESBLs, and 14 were carbapenemase producers. In the ESBL-producing K. pneumoniae isolates, the most common ESBL genes were blaSHV and blaCTX-M. Thirteen carbapenemase producers harbored blaKPC-2 and one other carried blaNDM-5. ST11 (14/80) was the most frequent sequence type (ST), followed by ST15 (7/80) and ST29 (4/80). Our data revealed high prevalence of antibiotic resistant K. pneumoniae isolates from bloodstream infections but their genetic diversity suggested no clonal dissemination in the region. Also, one K. pneumoniae isolate harbored blaNDM-5 in this study, which was firstly reported in Shanghai.
Collapse
Affiliation(s)
- Shu-Zhen Xiao
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Su Wang
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Wen-Man Wu
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Sheng-Yuan Zhao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University Changsha, China
| | - Fei-Fei Gu
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yu-Xing Ni
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Xiao-Kui Guo
- Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Jie-Ming Qu
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Li-Zhong Han
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai, China
| |
Collapse
|
34
|
Khong WX, Marimuthu K, Teo J, Ding Y, Xia E, Lee JJ, Ong RTH, Venkatachalam I, Cherng B, Pada SK, Choong WL, Smitasin N, Ooi ST, Deepak RN, Kurup A, Fong R, Van La M, Tan TY, Koh TH, Lin RTP, Tan EL, Krishnan PU, Singh S, Pitout JD, Teo YY, Yang L, Ng OT. Tracking inter-institutional spread of NDM and identification of a novel NDM-positive plasmid, pSg1-NDM, using next-generation sequencing approaches. J Antimicrob Chemother 2016; 71:3081-3089. [PMID: 27494913 DOI: 10.1093/jac/dkw277] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/23/2016] [Accepted: 06/09/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Owing to gene transposition and plasmid conjugation, New Delhi metallo-β-lactamase (NDM) is typically identified among varied Enterobacteriaceae species and STs. We used WGS to characterize the chromosomal and plasmid molecular epidemiology of NDM transmission involving four institutions in Singapore. METHODS Thirty-three Enterobacteriaceae isolates (collection years 2010-14) were sequenced using short-read sequencing-by-synthesis and analysed. Long-read single molecule, real-time sequencing (SMRTS) was used to characterize genetically a novel plasmid pSg1-NDM carried on Klebsiella pneumoniae ST147. RESULTS In 20 (61%) isolates, blaNDM was located on the pNDM-ECS01 plasmid in the background of multiple bacterial STs, including eight K. pneumoniae STs and five Escherichia coli STs. In six (18%) isolates, a novel blaNDM-positive plasmid, pSg1-NDM, was found only in K. pneumoniae ST147. The pSg1-NDM-K. pneumoniae ST147 clone (Sg1-NDM) was fully sequenced using SMRTS. pSg1-NDM, a 90 103 bp IncR plasmid, carried genes responsible for resistance to six classes of antimicrobials. A large portion of pSg1-NDM had no significant homology to any known plasmids in GenBank. pSg1-NDM had no conjugative transfer region. Combined chromosomal-plasmid phylogenetic analysis revealed five clusters of clonal bacterial NDM-positive plasmid transmission, of which two were inter-institution clusters. The largest inter-institution cluster involved six K. pneumoniae ST147-pSg1-NDM isolates. Fifteen patients were involved in transmission clusters, of which four had ward contact, six had hospital contact and five had an unknown transmission link. CONCLUSIONS A combined sequencing-by-synthesis and SMRTS approach can determine effectively the transmission clusters of blaNDM and genetically characterize novel plasmids. Plasmid molecular epidemiology is important to understanding NDM spread as blaNDM-positive plasmids can conjugate extensively across species and STs.
Collapse
Affiliation(s)
- Wei Xin Khong
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Kalisvar Marimuthu
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, 11 Jalan Tan Tock Seng, 308433, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Rd 119228, NUHS Tower Block, Level 11, 117597, Singapore
| | - Jeanette Teo
- National University Hospital, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Yichen Ding
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Eryu Xia
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), #05-01Medical Drive, 117456, Singapore
| | - Jia Jun Lee
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Rick Twee-Hee Ong
- Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #10-01, 117549, Singapore
| | | | | | - Surinder Kaur Pada
- Ng Teng Fong General Hospital, 1 Jurong East Street 21, 609606, Singapore
| | - Weng Lam Choong
- Ng Teng Fong General Hospital, 1 Jurong East Street 21, 609606, Singapore
| | - Nares Smitasin
- National University Hospital, 5 Lower Kent Ridge Rd, 119074, Singapore
| | - Say Tat Ooi
- Khoo Teck Puat Hospital, 90 Yishun Central, 768828, Singapore
| | | | - Asok Kurup
- Mount Elizabeth Hospital, 3 Mount Elizabeth, 228510, Singapore
| | - Raymond Fong
- Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - My Van La
- National Public Health Laboratory, College of Medicine Building, 16 College Road, 169854, Singapore
| | - Thean Yen Tan
- Changi General Hospital, 2 Simei Street 3, 529889, Singapore
| | - Tse Hsien Koh
- Singapore General Hospital, Outram Road, 169608, Singapore
| | - Raymond Tzer Pin Lin
- National University Hospital, 5 Lower Kent Ridge Rd, 119074, Singapore.,National Public Health Laboratory, College of Medicine Building, 16 College Road, 169854, Singapore
| | - Eng Lee Tan
- Singapore Polytechnic, 500 Dover Road, 139651, Singapore
| | | | | | - Johann D Pitout
- Division of Microbiology, 1829 Ranchlands Blvd NW, Calgary, AB T3G 2A7, Canada.,Departments of Pathology and Laboratory Medicine, Microbiology Immunology and Infectious Diseases, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.,Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Yik-Ying Teo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences (CeLS), #05-01Medical Drive, 117456, Singapore.,Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, #10-01, 117549, Singapore.,Department of Statistics & Applied Probability, Block S16, Level 7, 6 Science Drive 2, Faculty of Science, National University of Singapore, 117546, Singapore.,Life Sciences Institute, National University of Singapore, Centre for Life 42 Sciences, #05-02, 28 Medical Drive, 117456, Singapore.,Genome Institute of Singapore, 60 Biopolis St, #02-01, 138672, Singapore
| | - Liang Yang
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Oon Tek Ng
- Institute of Infectious Disease and Epidemiology, Communicable Disease Centre, 11 Jalan Tan Tock Seng, 308433, Singapore
| | | |
Collapse
|
35
|
Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol 2016; 7:895. [PMID: 27379038 PMCID: PMC4904035 DOI: 10.3389/fmicb.2016.00895] [Citation(s) in RCA: 474] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Young Bae Kim
- Division of STEM, North Shore Community College, Danvers MA, USA
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
36
|
High-level carbapenem-resistant OXA-48-producing Klebsiella pneumoniae with a novel OmpK36 variant and low-level, carbapenem-resistant, non-porin-deficient, OXA-181-producing Escherichia coli from Thailand. Diagn Microbiol Infect Dis 2016; 85:221-6. [PMID: 27041106 DOI: 10.1016/j.diagmicrobio.2016.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 11/21/2022]
Abstract
Five blaOXA-48-like-carrying Enterobacteriaceae isolates collected from two Thai patients in December 2012 were characterized. Three Klebsiella pneumoniae isolates giving two different pulsed-field gel electrophoresis patterns and sequence types (ST11 and ST37) from patient 1 harbored blaOXA-48 locating on Tn1999.2, whereas two Escherichia coli isolates with the same pulsotype and ST5 from Patient 2 carried ISEcp1-associated blaOXA-181. One K. pneumoniae strain had blaSHV-12, blaDHA-1, qnrB, and qnrS, while another strain harbored blaCTX-M-15, qnrS and aac(6')-Ib-cr. The E. coli strain contained blaCTX-M-15, blaCMY-2, qnrS, and aac(6')-Ib-cr. Interestingly, the OXA-48 producers with a novel OmpK36 variant by a substitution of Gly to Asp in the L3 loop-borne PEFXG motif exhibited high-level resistance to ertapenem, imipenem, and meropenem. In contrast, the OXA-181 producer with non-porin-deficient background showed low-level resistance to ertapenem only. Both patients died because of either septic shock or pneumonia. This study showed the impact of OXA-48-like carbapenemases in porin-defective clinical isolate background, which may lead to serious therapeutic problems in the near future.
Collapse
|
37
|
Molecular Characterization by Using Next-Generation Sequencing of Plasmids Containing blaNDM-7 in Enterobacteriaceae from Calgary, Canada. Antimicrob Agents Chemother 2015; 60:1258-63. [PMID: 26643346 DOI: 10.1128/aac.02661-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/02/2015] [Indexed: 12/24/2022] Open
Abstract
Enterobacteriaceae with blaNDM-7 are relatively uncommon and had previously been described in Europe, India, the United States, and Japan. This study describes the characteristics of Enterobacteriaceae (Klebsiella pneumoniae [n = 2], Escherichia coli [n = 2], Serratia marcescens [n = 1], and Enterobacter hormaechei [n = 1] isolates) with blaNDM-7 obtained from 4 patients from Calgary, Canada, from 2013 to 2014. The 46,161-bp IncX3 plasmids with blaNDM-7 are highly similar to other blaNDM-harboring IncX3 plasmids and, interestingly, showed identical structures within the different isolates. This finding may indicate horizontal transmission within our health region, or it may indicate contact with individuals from areas of endemicity within the hospital setting. Patients infected or colonized with bacteria containing blaNDM-7 IncX3 plasmids generate infection control challenges. Epidemiological and molecular studies are required to better understand the dynamics of transmission, the risk factors, and the reservoirs for bacteria harboring blaNDM-7. To the best of our knowledge, this is the first report of S. marcescens and E. hormaechei with blaNDM-7.
Collapse
|
38
|
Genomic Characteristics of NDM-Producing Enterobacteriaceae Isolates in Australia and Their blaNDM Genetic Contexts. Antimicrob Agents Chemother 2015; 60:136-41. [PMID: 26482302 DOI: 10.1128/aac.01243-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022] Open
Abstract
blaNDM has been reported in different Enterobacteriaceae species and on numerous plasmid replicon types (Inc). Plasmid replicon typing, in combination with genomic characteristics of the bacterial host (e.g., sequence typing), is used to infer the spread of antimicrobial resistance determinants between genetically unrelated bacterial hosts. The genetic context of blaNDM is heterogeneous. In this study, we genomically characterized 12 NDM-producing Enterobacteriaceae isolated in Australia between 2012 and 2014: Escherichia coli (n = 6), Klebsiella pneumoniae (n = 3), Enterobacter cloacae (n = 2) and Providencia rettgeri (n = 1). We describe their blaNDM genetic contexts within Tn125, providing insights into the acquisition of blaNDM into Enterobacteriaceae. IncFII-type (n = 7) and IncX3 (n = 4) plasmids were the most common plasmid types found. The IncHI1B (n = 1) plasmid was also identified. Five different blaNDM genetic contexts were identified, indicating four particular plasmids with specific blaNDM genetic contexts (NGCs), three of which were IncFII plasmids (FII-A to -C). Of note, the blaNDM genetic context of P. rettgeri was not conjugative. Epidemiological links between our NDM-producing Enterobacteriaceae were established by their acquisition of these five particular plasmid types. The combination of different molecular and genetic characterization methods allowed us to provide insight into the spread of plasmids transmitting blaNDM.
Collapse
|
39
|
Dissemination of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa in Romania. Antimicrob Agents Chemother 2015; 59:7100-3. [PMID: 26303798 DOI: 10.1128/aac.01512-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
Fifteen carbapenemase-producing Enterobacteriaceae isolates and 12 carbapenemase-producing Pseudomonas aeruginosa isolates were recovered from patients hospitalized between August 2011 and March 2013 at the Hospital of Infectious Disease, Cluj-Napoca, Romania. One KPC-, nine NDM-1-, four OXA-48-, and one VIM-4-producing Enterobacteriaceae isolates along with 11 VIM-2-producing and one IMP-13-producing P. aeruginosa isolates were recovered from clinical samples. All carbapenemase genes were located on self-conjugative plasmids and were associated with other resistance determinants, including extended-spectrum β-lactamases and RmtC methylases.
Collapse
|
40
|
Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrob Agents Chemother 2015; 59:5873-84. [PMID: 26169401 DOI: 10.1128/aac.01019-15] [Citation(s) in RCA: 580] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The management of infections due to Klebsiella pneumoniae has been complicated by the emergence of antimicrobial resistance, especially to carbapenems. Resistance to carbapenems in K. pneumoniae involves multiple mechanisms, including the production of carbapenemases (e.g., KPC, NDM, VIM, OXA-48-like), as well as alterations in outer membrane permeability mediated by the loss of porins and the upregulation of efflux systems. The latter two mechanisms are often combined with high levels of other types of β-lactamases (e.g., AmpC). K. pneumoniae sequence type 258 (ST258) emerged during the early to mid-2000s as an important human pathogen and has spread extensively throughout the world. ST258 comprises two distinct lineages, namely, clades I and II, and it seems that ST258 is a hybrid clone that was created by a large recombination event between ST11 and ST442. Incompatibility group F plasmids with blaKPC have contributed significantly to the success of ST258. The optimal treatment of infections due to carbapenemase-producing K. pneumoniae remains unknown. Some newer agents show promise for treating infections due to KPC producers; however, effective options for the treatment of NDM producers remain elusive.
Collapse
|
41
|
Abdul Rahim N, Cheah SE, Johnson MD, Yu H, Sidjabat HE, Boyce J, Butler MS, Cooper MA, Fu J, Paterson DL, Nation RL, Bergen PJ, Velkov T, Li J. Synergistic killing of NDM-producing MDR Klebsiella pneumoniae by two 'old' antibiotics-polymyxin B and chloramphenicol. J Antimicrob Chemother 2015; 70:2589-97. [PMID: 26023209 DOI: 10.1093/jac/dkv135] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/23/2015] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Combination therapy is an important option in the fight against Gram-negative 'superbugs'. This study systematically investigated bacterial killing and the emergence of polymyxin resistance with polymyxin B and chloramphenicol combinations used against New Delhi metallo-β-lactamase (NDM)-producing MDR Klebsiella pneumoniae. METHODS Four NDM-producing K. pneumoniae strains were employed. The presence of genes conferring resistance to chloramphenicol was examined by PCR. Time-kill studies (inocula ∼10(6) cfu/mL) were conducted using various clinically achievable concentrations of each antibiotic (range: polymyxin B, 0.5-2 mg/L; chloramphenicol, 4-32 mg/L), with real-time population analysis profiles documented at baseline and 24 h. The microbiological response was examined using the log change method and pharmacodynamic modelling in conjunction with scanning electron microscopy (SEM). RESULTS Multiple genes coding for efflux pumps involved in chloramphenicol resistance were present in all strains. Polymyxin B monotherapy at all concentrations produced rapid bacterial killing followed by rapid regrowth with the emergence of polymyxin resistance; chloramphenicol monotherapy was largely ineffective. Combination therapy significantly delayed regrowth, with synergy observed in 25 out of 28 cases at both 6 and 24 h; at 24 h, no viable bacterial cells were detected in 15 out of 28 cases with various combinations across all strains. No polymyxin-resistant bacteria were detected with combination therapy. These results were supported by pharmacodynamic modelling. SEM revealed significant morphological changes following treatment with polymyxin B both alone and in combination. CONCLUSIONS The combination of polymyxin B and chloramphenicol used against NDM-producing MDR K. pneumoniae substantially enhanced bacterial killing and suppressed the emergence of polymyxin resistance.
Collapse
Affiliation(s)
- Nusaibah Abdul Rahim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Soon-Ee Cheah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matthew D Johnson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Heidi Yu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hanna E Sidjabat
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - John Boyce
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, Australia
| | - David L Paterson
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia Pathology Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Queensland, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Melbourne, Victoria, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Sun F, Yin Z, Feng J, Qiu Y, Zhang D, Luo W, Yang H, Yang W, Wang J, Chen W, Xia P, Zhou D. Production of plasmid-encoding NDM-1 in clinical Raoultella ornithinolytica and Leclercia adecarboxylata from China. Front Microbiol 2015; 6:458. [PMID: 26052314 PMCID: PMC4439573 DOI: 10.3389/fmicb.2015.00458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
Raoultella ornithinolytica YNKP001 and Leclercia adecarboxylata P10164, which harbor conjugative plasmids pYNKP001-NDM and pP10164-NDM, respectively, were isolated from two different Chinese patients, and their complete nucleotide sequences were determined. Production of NDM-1 enzyme by these plasmids accounts for the carbapenem resistance of these two strains. This is the first report of bla NDM in L. adecarboxylata and third report of this gene in R. ornithinolytica. pYNKP001-NDM is very similar to the IncN2 NDM-1-encoding plasmids pTR3, pNDM-ECS01, and p271A, whereas pP10164-NDM is similar to the IncFIIY bla NDM-1-carrying plasmid pKOX_NDM1. The bla NDM-1 genes of pYNKP001-NDM and pP10164-NDM are embedded in Tn125-like elements, which represent two distinct truncated versions of the NDM-1-encoding Tn125 prototype observed in pNDM-BJ01. Flanking of these two Tn125-like elements by miniature inverted repeat element (MITE) or its remnant indicates that MITE facilitates transposition and mobilization of bla NDM-1 gene contexts.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University Chongqing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China ; Laboratory Animal Center, Academy of Military Medical Sciences Beijing, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical Sciences Beijing, China
| | - Defu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University Chongqing, China ; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Jie Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, The Third Military Medical University Chongqing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing, China
| |
Collapse
|
43
|
Complete Genome Sequence of a Carbapenem-Resistant Extraintestinal Pathogenic Escherichia coli Strain Belonging to the Sequence Type 131 H30R Subclade. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00272-15. [PMID: 25858844 PMCID: PMC4392156 DOI: 10.1128/genomea.00272-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the completed genome sequence of a carbapenem-resistant extraintestinal pathogenic Escherichia coli sequence type 131 (ST131) isolate, MNCRE44. The isolate was obtained in 2012 in Minnesota, USA, from a sputum sample from a hospitalized patient with multiple comorbidities, and it belongs to the H30R sublineage.
Collapse
|
44
|
Sidjabat HE, Paterson DL. Multidrug-resistantEscherichia coliin Asia: epidemiology and management. Expert Rev Anti Infect Ther 2015; 13:575-91. [DOI: 10.1586/14787210.2015.1028365] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|