1
|
Watanabe S, Nsofor CA, Thitiananpakorn K, Tan XE, Aiba Y, Takenouchi R, Kiga K, Sasahara T, Miyanaga K, Veeranarayanan S, Shimamori Y, Lian AYS, Nguyen TM, Nguyen HM, Alessa O, Kumwenda GP, Jayathilake S, Revilleza JEC, Baranwal P, Nishikawa Y, Li FY, Kawaguchi T, Sankaranarayanan S, Arbaah M, Zhang Y, Maniruzzaman, Liu Y, Sarah H, Li J, Sugano T, Ho TMD, Batbold A, Nayanjin T, Cui L. Metabolic remodeling by RNA polymerase gene mutations is associated with reduced β-lactam susceptibility in oxacillin-susceptible MRSA. mBio 2024; 15:e0033924. [PMID: 38988221 PMCID: PMC11237739 DOI: 10.1128/mbio.00339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 07/12/2024] Open
Abstract
The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to β-lactam antibiotics, these strains can easily acquire reduced β-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced β-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to β-lactam in OS-MRSA. IMPORTANCE The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to β-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced β-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to β-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.
Collapse
Affiliation(s)
- Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Chijioke A Nsofor
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
- Department of Biotechnology, School of Biological Sciences, Federal University of Technology Owerri Nigeria, Owerri, Nigeria
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Remi Takenouchi
- School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yuzuki Shimamori
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Adeline Yeo Syin Lian
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Thuy Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Ola Alessa
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | | | - Sarangi Jayathilake
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | | | - Priyanka Baranwal
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yutaro Nishikawa
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Feng-Yu Li
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Tomofumi Kawaguchi
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Sowmiya Sankaranarayanan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Mahmoud Arbaah
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yuancheng Zhang
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Maniruzzaman
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Yi Liu
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Hossain Sarah
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Junjie Li
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Takashi Sugano
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Thi My Duyen Ho
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Anujin Batbold
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Tergel Nayanjin
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Birhanu MY, Bekele GM, Jemberie SS. Molecular detection of rifampicin-resistant Mycobacterium tuberculosis by polymerase chain reaction in Ethiopia: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1319845. [PMID: 38912342 PMCID: PMC11190194 DOI: 10.3389/fmed.2024.1319845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/11/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Tuberculosis is a contagious bacterial disease caused by Mycobacterium tuberculosis. The emergence and spread of drug-resistant strains of M. tuberculosis in both developing and developed countries has made diagnosis, treatment, and control of tuberculosis more difficult. The PCR assay, which is a fast and sensitive technique and an alternative method for detecting multidrug-resistant tuberculosis, is used to determine rifampicin (RIF) resistance. There is no single figure in Ethiopia that represents rifampicin-resistant tuberculosis and that is why this study was conducted to overcome the inconsistency of the results of the previous studies. Methods Studies were researched from five major electronic databases. Studies which were cross-sectional in design, published, and written in English were included. The data were extracted using Microsoft Excel, and the data were managed and analyzed using Stata™ Version 17.0 statistical software. The Forest plot was used to check the presence of heterogeneity. The publication bias, meta-regression, and subgroup analysis were used to find out the source of heterogeneity. A random effect analysis model was used to pool the prevalence of RR TB from primary studies, and associated factors of RR among TB patients were identified using Meta regression. The presence of association was reported using OR with 95% CI. Results The overall pooled prevalence of tuberculosis was 14.9% (95% CI: 13.34, 16.46), of these approximately 7.48% (95% CI: 6.30, 8.66) showed rifampicin-resistant tuberculosis in Ethiopia. Among the computed variables, 2.05% living with HIV1.39 (95%CI: 1.13, 1.72) and having a history of TB treatment (95%CI: 1.34, 3.15) were identified as significant factors associated with RR TB in Ethiopia. Conclusion Drug-resistant TB is one of the prevalent emerging infectious diseases among TB patients, which affects approximately one out of every thirteen TB patients. Having TB-HIV coinfection and a history of prior TB treatment were identified as significant factors associated with RR TB. To prevent and control RR TB, patients should complete their follow-up course; the health professionals should educate the actions taken by the patients when they experience drug toxicity and side effects; and the Minister of Health should initiate telemedicine and recruit tracers to overcome TB patients' default and have good drug adherence and retention after initiation of the treatment.
Collapse
Affiliation(s)
- Molla Yigzaw Birhanu
- Department of Public Health, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getamesay Molla Bekele
- Department of Gynecology and Obstetrics, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Selamawit Shita Jemberie
- Department of Midwifery, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Yu Y, Jiang XX, Li JC. Biomarker discovery for tuberculosis using metabolomics. Front Mol Biosci 2023; 10:1099654. [PMID: 36891238 PMCID: PMC9986447 DOI: 10.3389/fmolb.2023.1099654] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tuberculosis (TB) is the leading cause of death among infectious diseases, and the ratio of cases in which its pathogen Mycobacterium tuberculosis (Mtb) is drug resistant has been increasing worldwide, whereas latent tuberculosis infection (LTBI) may develop into active TB. Thus it is important to understand the mechanism of drug resistance, find new drugs, and find biomarkers for TB diagnosis. The rapid progress of metabolomics has enabled quantitative metabolite profiling of both the host and the pathogen. In this context, we provide recent progress in the application of metabolomics toward biomarker discovery for tuberculosis. In particular, we first focus on biomarkers based on blood or other body fluids for diagnosing active TB, identifying LTBI and predicting the risk of developing active TB, as well as monitoring the effectiveness of anti-TB drugs. Then we discuss the pathogen-based biomarker research for identifying drug resistant TB. While there have been many reports of potential candidate biomarkers, validations and clinical testing as well as improved bioinformatics analysis are needed to further substantiate and select key biomarkers before they can be made clinically applicable.
Collapse
Affiliation(s)
- Yi Yu
- Center for Analyses and Measurements, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xin-Xin Jiang
- Clinical Research Laboratory, Shaoxing Seventh People's Hospital, Shaoxing, China
| | - Ji-Cheng Li
- Clinical Research Laboratory, Shaoxing Seventh People's Hospital, Shaoxing, China.,Institute of Cell Biology, Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
4
|
Hameed HMA, Fang C, Liu Z, Ju Y, Han X, Gao Y, Wang S, Chiwala G, Tan Y, Guan P, Hu J, Xiong X, Peng J, Lin Y, Hussain M, Zhong N, Maslov DA, Cook GM, Liu J, Zhang T. Characterization of Genetic Variants Associated with Rifampicin Resistance Level in Mycobacterium tuberculosis Clinical Isolates Collected in Guangzhou Chest Hospital, China. Infect Drug Resist 2022; 15:5655-5666. [PMID: 36193294 PMCID: PMC9526423 DOI: 10.2147/idr.s375869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Rifampicin (RIF)-resistance, a surrogate marker for multidrug-resistant tuberculosis (TB), is mediated by mutations in the rpoB gene. We aimed to investigate the prevalence of mutations pattern in the entire rpoB gene of Mycobacterium tuberculosis clinical isolates and their association with resistance level to RIF. Methods Among 465 clinical isolates collected from the Guangzhou Chest Hospital, drug-susceptibility of 175 confirmed Mtb strains was performed via the proportion method and Bactec MGIT 960 system. GeneXpert MTB/RIF and sanger sequencing facilitated in genetic characterization, whereas the MICs of RIF were determined by Alamar blue assay. Results We found 150/175 (85.71%) RIF-resistant strains (MIC: 4 to >64 µg/mL) of which 57 were MDR and 81 pre-XDR TB. Genetic analysis identified 17 types of mutations 146/150 (97.33%) within RRDR (codons 426–452) of rpoB, mainly at L430 (P), D435 (V, E, G, N), H445 (N, D, Y, R, L), S450 (L, F) and L452 (P). D435V 12/146 (8.2%), H445N 16/146 (10.9%), and S450L 70/146 (47.94%) were the most frequently encountered mutations. Mutations Q432K, M434V, and N437D are rarely identified in RRDR. Deletions at (1284–1289 CCAGCT), (1295–1303 AATTCATGG), and insertion at (1300–1302 TTC) were detected within RRDR of three RIFR strains for the first time. We detected 47 types of mutations and insertions/deletions (indels) outside the RRDR. Four RIFR strains were detected with only novel mutations/indels outside the RRDR. Two of the four had (K274Q + C897 del + I491M) and (A286V + L494P), respectively. The other two had (G1687del + P454L) and (TT1835-6 ins + I491L) individually. Compared with phenotypic characterization, diagnostic sensitivities of GeneXpert MTB/RIF and sequencing analysis were 95.33% (143/150), and 100% (150/150) respectively. Conclusion Our findings underscore the key role of RRDR mutations and the contribution of non-RRDR mutations in rapid molecular diagnosis of RIFR clinical isolates. Such insights will support early detection of disease and recommend the appropriate anti-TB regimens in high-burden settings.
Collapse
Affiliation(s)
- H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
| | - Yanan Ju
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Gift Chiwala
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People’s Republic of China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People’s Republic of China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People’s Republic of China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
| | - Jiacong Peng
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yongping Lin
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Muzammal Hussain
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Dmitry A Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People’s Republic of China
- Jianxiong Liu, Guangzhou Chest Hospital, 62 Hengzhigang Road, Yuexiu District, Guangzhou, People’s Republic of China, Tel +86-2083595977, Email
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
- Correspondence: Tianyu Zhang, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Room A207, 190 Kaiyuan Ave, Science Park, Huangpu District, Guangzhou, 510530, People’s Republic of China, Tel +86-2032015270, Email
| |
Collapse
|
5
|
Rifampicin-Mediated Metabolic Changes in Mycobacterium tuberculosis. Metabolites 2022; 12:metabo12060493. [PMID: 35736426 PMCID: PMC9228056 DOI: 10.3390/metabo12060493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is considered to be a devastating pathogen worldwide, affecting millions of people globally. Several drugs targeting distinct pathways are utilized for the treatment of tuberculosis. Despite the monumental efforts being directed at the discovery of drugs for Mtb, the pathogen has also developed mechanisms to evade the drug action and host processes. Rifampicin was an early anti-tuberculosis drug, and is still being used as the first line of treatment. This study was carried out in order to characterize the in-depth rifampicin-mediated metabolic changes in Mtb, facilitating a better understanding of the physiological processes based on the metabolic pathways and predicted protein interactors associated with the dysregulated metabolome. Although there are various metabolomic studies that have been carried out on rifampicin mutants, this is the first study that reports a large number of significantly altered metabolites in wild type Mtb upon rifampicin treatment. In this study, a total of 173 metabolites, associated with pyrimidine, purine, arginine, phenylalanine, tyrosine, and tryptophan metabolic pathways, were significantly altered by rifampicin. The predicted host protein interactors of the rifampicin-dysregulated Mtb metabolome were implicated in transcription, inflammation, apoptosis, proteolysis, and DNA replication. Further, tricarboxylic acidcycle metabolites, arginine, and phosphoenolpyruvate were validated by multiple-reaction monitoring. This study provides a comprehensive list of altered metabolites that serves as a basis for understanding the rifampicin-mediated metabolic changes, and associated functional processes, in Mtb, which holds therapeutic potential for the treatment of Mtb.
Collapse
|
6
|
Ye D, Li X, Shen J, Xia X. Microbial metabolomics: From novel technologies to diversified applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Kim T, Hanh BTB, Heo B, Quang N, Park Y, Shin J, Jeon S, Park JW, Samby K, Jang J. A Screening of the MMV Pandemic Response Box Reveals Epetraborole as a New Potent Inhibitor against Mycobacterium abscessus. Int J Mol Sci 2021; 22:ijms22115936. [PMID: 34073006 PMCID: PMC8199016 DOI: 10.3390/ijms22115936] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium abscessus is the one of the most feared bacterial respiratory pathogens in the world. Unfortunately, there are many problems with the current M. abscessus therapies available. These problems include misdiagnoses, high drug resistance, poor long-term treatment outcomes, and high costs. Until now, there have only been a few new compounds or drug formulations which are active against M. abscessus, and these are present in preclinical and clinical development only. With that in mind, new and more powerful anti-M. abscessus medicines need to be discovered and developed. In this study, we conducted an in vitro-dual screen against M. abscessus rough (R) and smooth (S) variants using a Pandemic Response Box and identified epetraborole as a new effective candidate for M. abscessus therapy. For further validation, epetraborole showed significant activity against the growth of the M. abscessus wild-type strain, three subspecies, drug-resistant strains and clinical isolates in vitro, while also inhibiting the growth of M. abscessus that reside in macrophages without cytotoxicity. Furthermore, the in vivo efficacy of epetraborole in the zebrafish infection model was greater than that of tigecycline. Thus, we concluded that epetraborole is a potential anti-M. abscessus candidate in the M. abscessus drug search.
Collapse
Affiliation(s)
- Taeho Kim
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (T.K.); (B.-T.-B.H.)
| | - Bui-Thi-Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (T.K.); (B.-T.-B.H.)
| | - Boeun Heo
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Nguyenthanh Quang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Yujin Park
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Jihyeon Shin
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Seunghyeon Jeon
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52843, Korea;
- Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Kirandeep Samby
- Medicines for Malaria Venture (MMV), 20, Route de Pré-Bois, 1215 Geneva, Switzerland;
| | - Jichan Jang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
- Correspondence: ; Tel.: +82-055-772-1368
| |
Collapse
|
8
|
Rêgo AM, Alves da Silva D, Ferreira NV, de Pina LC, Evaristo JAM, Caprini Evaristo GP, Nogueira FCS, Ochs SM, Amaral JJ, Ferreira RBR, Antunes LCM. Metabolic profiles of multidrug resistant and extensively drug resistant Mycobacterium tuberculosis unveiled by metabolomics. Tuberculosis (Edinb) 2020; 126:102043. [PMID: 33370646 DOI: 10.1016/j.tube.2020.102043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/23/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022]
Abstract
Although treatable with antibiotics, tuberculosis is a leading cause of death. Mycobacterium tuberculosis antibiotic resistance is becoming increasingly common and disease control is challenging. Conventional drug susceptibility testing takes weeks to produce results, and treatment is often initiated empirically. Therefore, new methods to determine drug susceptibility profiles are urgent. Here, we used mass-spectrometry-based metabolomics to characterize the metabolic landscape of drug-susceptible (DS), multidrug-resistant (MDR) and extensively drug-resistant (XDR) M. tuberculosis. Direct infusion mass spectrometry data showed that DS, MDR, and XDR strains have distinct metabolic profiles, which can be used to predict drug susceptibility and resistance. This was later confirmed by Ultra-High-Performance Liquid Chromatography and High-Resolution Mass Spectrometry, where we found that levels of ions presumptively identified as isoleucine, proline, hercynine, betaine, and pantothenic acid varied significantly between strains with different drug susceptibility profiles. We then confirmed the identification of proline and isoleucine and determined their absolute concentrations in bacterial extracts, and found significantly higher levels of these amino acids in DS strains, as compared to drug-resistant strains (combined MDR and XDR strains). Our results advance the current understanding of the effect of drug resistance on bacterial metabolism and open avenues for the detection of drug resistance biomarkers.
Collapse
Affiliation(s)
- Amanda Mendes Rêgo
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil
| | | | | | | | - Joseph A M Evaristo
- Instituto de Química - LADETEC, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | - Soraya M Ochs
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Brazil
| | - Julio J Amaral
- Instituto Nacional de Metrologia, Qualidade e Tecnologia, Brazil
| | - Rosana B R Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Brazil.
| |
Collapse
|
9
|
Sieniawska E, Sawicki R, Golus J, Georgiev MI. Untargetted Metabolomic Exploration of the Mycobacterium tuberculosis Stress Response to Cinnamon Essential Oil. Biomolecules 2020; 10:biom10030357. [PMID: 32111061 PMCID: PMC7175327 DOI: 10.3390/biom10030357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022] Open
Abstract
The antimycobacterial activity of cinnamaldehyde has already been proven for laboratory strains and for clinical isolates. What is more, cinnamaldehyde was shown to threaten the mycobacterial plasma membrane integrity and to activate the stress response system. Following promising applications of metabolomics in drug discovery and development we aimed to explore the mycobacteria response to cinnamaldehyde within cinnamon essential oil treatment by untargeted liquid chromatography–mass spectrometry. The use of predictive metabolite pathway analysis and description of produced lipids enabled the evaluation of the stress symptoms shown by bacteria. This study suggests that bacteria exposed to cinnamaldehyde could reorganize their outer membrane as a physical barrier against stress factors. They probably lowered cell wall permeability and inner membrane fluidity, and possibly redirected carbon flow to store energy in triacylglycerols. Being a reactive compound, cinnamaldehyde may also contribute to disturbances in bacteria redox homeostasis and detoxification mechanisms.
Collapse
Affiliation(s)
- Elwira Sieniawska
- Chair and Department of Pharmacognosy, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
- Correspondence:
| | - Rafał Sawicki
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (R.S.); (J.G.)
| | - Joanna Golus
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (R.S.); (J.G.)
| | - Milen I. Georgiev
- Group of Plant Cell Biotechnology and Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria;
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
10
|
林 东, 王 威, 邱 峰, 李 玉, 余 晓, 林 炳, 陈 胤, 雷 春, 马 燕, 曾 今, 周 杰. [Mass spectrometry-based identification of new serum biomarkers in patients with multidrug resistant pulmonary tuberculosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1409-1420. [PMID: 31907157 PMCID: PMC6942979 DOI: 10.12122/j.issn.1673-4254.2019.12.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To screen new serum metabolic biomarkers for different drug resistance profiles of pulmonary tuberculosis (TB) and explore their mechanisms and functions. METHODS We collected serum samples from TB patients with drug sensitivity (DS), monoresistance to isoniazid (MR-INH), monoresistance to rifampin (MR-RFP), multidrug resistance (MDR), and polyresistance (PR). The metabolites in the serum samples were extracted by oscillatory and deproteinization for LC-MS/MS analysis, and the results were normalized by Pareto-scaling method and analyzed using Metaboanalyst 4.0 software to identify the differential metabolites. The differential metabolites were characterized by function enrichment and co-expression analysis to explore their function and possible pathological mechanisms. RESULTS Compared with the DS group, 286 abnormally expressed metabolites were identified in MR-INH group, 362 in MR-RPF group, 277 in MDR group and 1208 in PR group by LC-MS/MS analysis. Acetylagmatine (P < 0.05), aminopentol (P < 0.05), and tetracosanyl oleate (P < 0.05) in MR-INH group; Ala His Pro Thr (P < 0.001) and glycinoprenol-9 (P < 0.05) in MR-RFP group; trimethylamine (P < 0.05), penaresidin A (P < 0.05), and verazine (P < 0.05) in MDR group; and PIP (18:1(11Z)/ 18:3(6Z, 9Z, 12Z)) (P < 0.001), Pro Arg Trp Tyr (P < 0.001), N-methyldioctylamine (P < 0.001), and phytolaccoside E (P < 0.05) in PR group all showed significant differential expressions. Significant differential expressions of phthalic acid mono-2-ethylhexyl ester (P < 0.05) and eicosanoyl-EA (P < 0.05) were found in all the drug resistant groups as compared with DS group. CONCLUSIONS Acetylagmatine, aminopentol, tetracosanyl oleate, Ala His Pro Thr, glycinoprenol-9, trimethylamine, penaresidin A, verazine, PIP(18:1(11Z)/18:3(6Z, 9Z, 12Z)), Pro Arg Trp Tyr, N-methyldioctylamine, phytolaccoside E, phthalic acid mono-2-ethylhexyl ester, and eicosanoyl-EA are potentially new biomarkers that indicate monoresistance, multi-drug resistance and polyresistance of Mycobacterium tuberculosis. The combined use of these biomarkers potentially allows for assessment of drug resistance in TB and enhances the diagnostic sensitivity and specificity.
Collapse
Affiliation(s)
- 东子 林
- 佛山市第四人民医院检验科,广东 佛山 528041Department of Laboratory Medicine, Foshan Forth People's Hospital, Foshan 528041, China
| | - 威 王
- 佛山市第四人民医院检验科,广东 佛山 528041Department of Laboratory Medicine, Foshan Forth People's Hospital, Foshan 528041, China
| | - 峰 邱
- 南方医科大学南海医院医学检验科,广东 佛山 528244Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 528244, China
| | - 玉美 李
- 东 莞市第六人民医院医学检验科,广东 东莞 523008Department of Laboratory Medicine, Dongguan Sixth People's Hospital, Dongguan 523008, China
| | - 晓琳 余
- 东 莞市第六人民医院医学检验科,广东 东莞 523008Department of Laboratory Medicine, Dongguan Sixth People's Hospital, Dongguan 523008, China
| | - 炳耀 林
- 佛山市第四人民医院检验科,广东 佛山 528041Department of Laboratory Medicine, Foshan Forth People's Hospital, Foshan 528041, China
| | - 胤文 陈
- 东 莞市第六人民医院医学检验科,广东 东莞 523008Department of Laboratory Medicine, Dongguan Sixth People's Hospital, Dongguan 523008, China
| | - 春燕 雷
- 佛山市第四人民医院检验科,广东 佛山 528041Department of Laboratory Medicine, Foshan Forth People's Hospital, Foshan 528041, China
| | - 燕 马
- 佛山市第四人民医院检验科,广东 佛山 528041Department of Laboratory Medicine, Foshan Forth People's Hospital, Foshan 528041, China
| | - 今诚 曾
- 广东医科大学东莞市医学活性分子开发与转化重点实验 室,广东 东莞 523808Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - 杰 周
- 佛山市第四人民医院检验科,广东 佛山 528041Department of Laboratory Medicine, Foshan Forth People's Hospital, Foshan 528041, China
| |
Collapse
|
11
|
Pietersen RD, du Preez I, Loots DT, van Reenen M, Beukes D, Leisching G, Baker B. Tween 80 induces a carbon flux rerouting in Mycobacterium tuberculosis. J Microbiol Methods 2019; 170:105795. [PMID: 31785333 DOI: 10.1016/j.mimet.2019.105795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
As a means to increase the growth rate and reduce aggregation, Tween 80 is routinely added to growth media during mycobacterial culturing. This detergent has, however, been associated with causing alterations to the morphology, pathogenicity and virulence of these bacteria. In an attempt to better understand the underlying mechanism of these alterations, we investigated the effect of Tween 80 on the metabolomes of a M. tuberculosis lab strain (H37Rv) and multidrug-resistant clinical strain (R179), using GC-GCxTOF-MS metabolomics. The metabolite markers identified indicated Tween 80-induced disparities in the central carbon metabolism of both strains, with an upregulation in the glyoxylate cycle, glucogenogenesis and the pentose phosphate pathway. The results also signified an increased production of mycobacterial biosynthetic precursors such as triacylglycerols, proteinogenic amino acids and nucleotide precursors, in the presence of the detergent. Collectively, these metabolome variations mimic the phenotypic changes observed when M. tuberculosis is grown in vivo, in a lipid rich environment. However, in addition to the increased availability of oleic acid as a carbon source from Tween 80, the observed variations, and the morphological changes associated with the detergent, could also be a result of an overall stress response in these bacteria. This study is the first to identify specific metabolome variations related to the addition of Tween 80 to the growth media during M. tuberculosis culturing. The consideration of these results during the method development and data interpretation phases of future metabolomics investigations will improve the quality of the analyses as well as the credibility of potential research outcomes. These results will also assist in the interpretation of research questions specifically aimed at aspects of mycobacterial metabolism, even when using other methodologies such as transcriptomics or fluxomics.
Collapse
Affiliation(s)
- Ray-Dean Pietersen
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| | - Ilse du Preez
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Mari van Reenen
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Derylize Beukes
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | - Gina Leisching
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| | - Bienyameen Baker
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SA MRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
12
|
Zhao J, Wei W, Yan H, Zhou Y, Li Z, Chen Y, Zhang C, Zeng J, Chen T, Zhou L. Assessing capreomycin resistance on tlyA deficient and point mutation (G695A) Mycobacterium tuberculosis strains using multi-omics analysis. Int J Med Microbiol 2019; 309:151323. [PMID: 31279617 DOI: 10.1016/j.ijmm.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/26/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022] Open
Abstract
Capreomycin (CAP), a cyclic peptide antibiotic, is considered to be an ideal second-line drug for tuberculosis (TB). However, in the past few years, the emergence of more CAP-resistant (CAPr) TB patients has limited its use. Although it has been reported that CAP resistance to Mycobacterium tuberculosis (Mtb) is associated with rrs or tlyA mutation, the exact mechanism of CAPr Mtb strains, especially the mechanism associated with tlyA deficient or mutation, is not fully understood. Herein, we utilized a multi-omics (genome, proteome, and metabolome) approach to assess CAP resistance on tlyA deficient CAPr Mtb strains (CAPr1) and tlyA point mutation CAPr Mtb strains (CAPr2) that we established for the first time in vitro to investigate the CAP-resistant mechanism. Our results showed that the CAPr1 strains (> 40 μg/ml) was more resistant to CAP than the CAPr2 strains (G695A, 10 μg/ml). Furthermore, multi-omics analysis indicated that the CAPr1 strains exhibited greater drug tolerance than the CAPr2 strains may be associated with the weakening of S-adenosyl-L-methionine-dependent methyltransferase (AdoMet-MT) activity and abnormal membrane lipid metabolism such as suppression of fatty acid metabolism, promotion of glycolipid phospholipid and glycerolipid metabolism. As a result, these studies reveal a new mechanism for CAP resistance to tlyA deficient or mutation Mtb strains, and may be helpful in developing new therapeutic approaches to prevent Mtb resistance to CAP.
Collapse
Affiliation(s)
- Jiao Zhao
- Jinan University, Guangzhou 510632, China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Huimin Yan
- Dongguang Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Ying Zhou
- School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Zhenyan Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yanmei Chen
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Jincheng Zeng
- Dongguang Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Tao Chen
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China; South China Institute of Biomedicine, Guangzhou 510530, China.
| | - Lin Zhou
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China; Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Wei W, Yan H, Zhao J, Li H, Li Z, Guo H, Wang X, Zhou Y, Zhang X, Zeng J, Chen T, Zhou L. Multi-omics comparisons of p-aminosalicylic acid (PAS) resistance in folC mutated and un-mutated Mycobacterium tuberculosis strains. Emerg Microbes Infect 2019; 8:248-261. [PMID: 30866779 PMCID: PMC6455211 DOI: 10.1080/22221751.2019.1568179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
p-Aminosalicylic acid (PAS) is an important second-line antibiotic for treating multidrug-resistant tuberculosis (MDR-TB). Due to gastrointestinal disturbance and intolerance, its potent and efficacy in the treatment of extensively drug-resistant (XDR)-TB commonly are poor. Thus, it is important to reveal the mechanism of susceptibility and resistance of Mycobacterium tuberculosis (Mtb) to this drug. Herein, we screened and established PAS-resistant (PASr) folC mutated and un-mutated Mtb strains, then utilized a multi-omics (genome, proteome, and metabolome) analysis to better characterize the mechanisms of PAS resistance in Mtb. Interestingly, we found that promotion of SAM-dependent methyltransferases and suppression of PAS uptake via inhibiting some drug transport associated membrane proteins were two key pathways for the folC mutated strain evolving into the PASr Mtb strain. However, the folC un-mutated strain was resistant to PAS via uptake of exogenous methionine, mitigating the role of inhibitors, and promoting DfrA, ThyA and FolC expression. Beyond these findings, we also found PAS resistance in Mtb might be associated with the increasing phenylalanine metabolism pathway. Collectively, our findings uncovered the differences of resistant mechanism between folC mutated and un-mutated Mtb strains resistant to PAS using multi-omics analysis and targeting modulators to these pathways may be effective for treatment of PASr Mtb strains.
Collapse
Affiliation(s)
- Wenjing Wei
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| | - Huimin Yan
- c Dongguan Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Guangdong Medical University , Dongguan , People's Republic of China
| | - Jiao Zhao
- d Jinan University , Guangzhou , People's Republic of China
| | - Haicheng Li
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| | - Zhenyan Li
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| | - Huixin Guo
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| | - Xuezhi Wang
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| | - Ying Zhou
- e School of Stomatology and Medicine , Foshan University , Foshan , People's Republic of China
| | - Xiaoli Zhang
- e School of Stomatology and Medicine , Foshan University , Foshan , People's Republic of China
| | - Jincheng Zeng
- c Dongguan Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Guangdong Medical University , Dongguan , People's Republic of China
| | - Tao Chen
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China.,f South China Institute of Biomedicine , Guangzhou , People's Republic of China
| | - Lin Zhou
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| |
Collapse
|
14
|
du Preez I, Luies L, Loots DT. The application of metabolomics toward pulmonary tuberculosis research. Tuberculosis (Edinb) 2019; 115:126-139. [PMID: 30948167 DOI: 10.1016/j.tube.2019.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
In the quest to identify novel biomarkers for pulmonary tuberculosis (TB), high-throughput systems biology approaches such as metabolomics has become increasingly widespread. Such biomarkers have not only successfully been used for better disease characterization, but have also provided new insights toward the future development of improved diagnostic and therapeutic approaches. In this review, we give a summary of the metabolomics studies done to date, with a specific focus on those investigating various aspects of pulmonary TB, and the infectious agent responsible, Mycobacterium tuberculosis. These studies, done on a variety of sample matrices, including bacteriological culture, sputum, blood, urine, tissue, and breath, are discussed in terms of their intended research outcomes or future clinical applications. Additionally, a summary of the research model, sample cohort, analytical apparatus and statistical methods used for biomarker identification in each of these studies, is provided.
Collapse
Affiliation(s)
- Ilse du Preez
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| | - Laneke Luies
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| | - Du Toit Loots
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| |
Collapse
|
15
|
Du Preez I, Loots DT. Novel insights into the pharmacometabonomics of first-line tuberculosis drugs relating to metabolism, mechanism of action and drug-resistance. Drug Metab Rev 2019; 50:466-481. [PMID: 30558443 DOI: 10.1080/03602532.2018.1559184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ilse Du Preez
- Human Metabolomics, North-West University , Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University , Potchefstroom, South Africa
| |
Collapse
|
16
|
Abstract
Over the past 10 years, the number of metabolomics based publications in the available scientific literature has exponentially grown, a large portion of which describing new biomarkers better elucidating microbial disease mechanisms and improved diagnostics and treatment thereof. Here, we describe a metabolomics method for extracting the total metabolome (all compounds present in the microbial cell irrespective of the compound class), for analysis in a single analytical run using only one analytical instrument. This method includes disruption of robust microbial cell walls, and the precipitation of proteins and cell debris using a combination of mechanical methods and solvents. These extracts are subsequently derivatized, in order to improve the volatility of polar compounds for efficient gas chromatography-mass spectrometry (GC-MS) analysis. This methodology can be applied to all microbes, including those with robust cell walls, such as M. tuberculosis. To date, the biomarkers identified using this approach have led to improved tuberculosis (TB) diagnostics, improved TB treatment approaches, and better understanding of host-microbe interactions and associated mycobacterial genomics.
Collapse
|
17
|
Zhang P, Zhang W, Lang Y, Qu Y, Chu F, Chen J, Cui L. Mass spectrometry-based metabolomics for tuberculosis meningitis. Clin Chim Acta 2018; 483:57-63. [PMID: 29678632 DOI: 10.1016/j.cca.2018.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
Tuberculosis meningitis (TBM) is a prevalent form of extra-pulmonary tuberculosis that causes substantial morbidity and mortality. Diagnosis of TBM is difficult because of the limited sensitivity of existing laboratory techniques. A metabolomics approach can be used to investigate the sets of metabolites of both bacteria and host, and has been used to clarify the mechanisms underlying disease development, and identify metabolic changes, leadings to improved methods for diagnosis, treatment, and prognostication. Mass spectrometry (MS) is a major analysis platform used in metabolomics, and MS-based metabolomics provides wide metabolite coverage, because of its high sensitivity, and is useful for the investigation of Mycobacterium tuberculosis (Mtb) and related diseases. It has been used to investigate TBM diagnosis; however, the processes involved in the MS-based metabolomics approach are complex and flexible, and often consist of several steps, and small changes in the methods used can have a huge impact on the final results. Here, the process of MS-based metabolomics is summarized and its applications in Mtb and Mtb-related diseases discussed. Moreover, the current status of TBM metabolomics is described.
Collapse
Affiliation(s)
- Peixu Zhang
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Weiguanliu Zhang
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Yue Lang
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Yan Qu
- Blood Bank, Jilin Women and Children Health Hospital, Changchun 130021, PR China
| | - Fengna Chu
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Jiafeng Chen
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China
| | - Li Cui
- Department of Neurology, First Hospital, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
18
|
Luies L, du Preez I, Loots DT. The role of metabolomics in tuberculosis treatment research. Biomark Med 2017; 11:1017-1029. [PMID: 29039217 DOI: 10.2217/bmm-2017-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite the fact that tuberculosis (TB) is a curable disease, it still results in approximately 1.8 million deaths annually. Various inadequacies in the current TB treatment strategies are major contributors to this high disease prevalence, including the long duration of therapy, the severe side effects associated with TB drugs, treatment failure due to drug resistance, post-treatment disease relapse, and HIV co-infection. In this review, we describe how metabolomics has contributed toward better explaining/elucidating the mechanisms of drug action/metabolism, drug toxicity and microbial drug resistance, and how metabolite biomarkers may serve as prognostic indicators for predicting treatment outcome as well as for the development of new TB drugs. We also discuss possible future contributions that metabolomics can make toward more efficient, less toxic TB treatment strategies.
Collapse
Affiliation(s)
- Laneke Luies
- Human Metabolomics, School for Physical & Chemical Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Box 269, Potchefstroom 2531, South Africa
| | - Ilse du Preez
- Human Metabolomics, School for Physical & Chemical Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Box 269, Potchefstroom 2531, South Africa
| | - Du Toit Loots
- Human Metabolomics, School for Physical & Chemical Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Box 269, Potchefstroom 2531, South Africa
| |
Collapse
|
19
|
Emerging Approaches to Tuberculosis Drug Development: At Home in the Metabolome. Trends Pharmacol Sci 2017; 38:393-405. [PMID: 28169001 DOI: 10.1016/j.tips.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/24/2023]
Abstract
Once considered a crowning achievement of modern drug development, tuberculosis (TB) chemotherapy has proven increasingly unable to keep pace with the spread of the pandemic and rise of drug resistance. Efforts to revive the TB drug development pipeline have, in the meantime, faltered. Closer analysis reveals key experimental deficiencies that have hindered our ability to 'reverse engineer' knowledge of antibiotic mechanisms into rational drug development. Here, we discuss the emerging potential of metabolomics; the systems level study of small molecule metabolites, to help overcome these gaps and serve as a unique biochemical bridge between the phenotypic properties of chemical compounds and biological targets.
Collapse
|
20
|
Preez ID, Luies L, Loots DT. Metabolomics biomarkers for tuberculosis diagnostics: current status and future objectives. Biomark Med 2017; 11:179-194. [PMID: 28097879 DOI: 10.2217/bmm-2016-0287] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous studies have contributed to our current understanding of the complex biology of pulmonary tuberculosis and subsequently provided solutions to its control or eradication. Metabolomics, a newcomer to the Omics research domain, has significantly contributed to this understanding by identifying biomarkers originating from the disease-associated metabolome adaptations of both the microbe and host. These biomarkers have shed light on previously unknown disease mechanisms, many of which have been implemented toward the development of improved diagnostic strategies. In this review, we will discuss the role that metabolomics has played in tuberculosis research to date, with a specific focus on new biomarker identification, and how these have contributed to improved disease characterization and diagnostics, and their potential clinical applications.
Collapse
Affiliation(s)
- Ilse du Preez
- School for Physical & Chemical Sciences, Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom, South Africa, 2531
| | - Laneke Luies
- School for Physical & Chemical Sciences, Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom, South Africa, 2531
| | - Du Toit Loots
- School for Physical & Chemical Sciences, Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag x6001, Box 269, Potchefstroom, South Africa, 2531
| |
Collapse
|
21
|
Ramón-García S, González Del Río R, Villarejo AS, Sweet GD, Cunningham F, Barros D, Ballell L, Mendoza-Losana A, Ferrer-Bazaga S, Thompson CJ. Repurposing clinically approved cephalosporins for tuberculosis therapy. Sci Rep 2016; 6:34293. [PMID: 27678056 PMCID: PMC5039641 DOI: 10.1038/srep34293] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
While modern cephalosporins developed for broad spectrum antibacterial activities have never been pursued for tuberculosis (TB) therapy, we identified first generation cephalosporins having clinically relevant inhibitory concentrations, both alone and in synergistic drug combinations. Common chemical patterns required for activity against Mycobacterium tuberculosis were identified using structure-activity relationships (SAR) studies. Numerous cephalosporins were synergistic with rifampicin, the cornerstone drug for TB therapy, and ethambutol, a first-line anti-TB drug. Synergy was observed even under intracellular growth conditions where beta-lactams typically have limited activities. Cephalosporins and rifampicin were 4- to 64-fold more active in combination than either drug alone; however, limited synergy was observed with rifapentine or rifabutin. Clavulanate was a key synergistic partner in triple combinations. Cephalosporins (and other beta-lactams) together with clavulanate rescued the activity of rifampicin against a rifampicin resistant strain. Synergy was not due exclusively to increased rifampicin accumulation within the mycobacterial cells. Cephalosporins were also synergistic with new anti-TB drugs such as bedaquiline and delamanid. Studies will be needed to validate their in vivo activities. However, the fact that cephalosporins are orally bioavailable with good safety profiles, together with their anti-mycobacterial activities reported here, suggest that they could be repurposed within new combinatorial TB therapies.
Collapse
Affiliation(s)
- Santiago Ramón-García
- Department of Microbiology and Immunology, Centre for Tuberculosis Research, Life Sciences Centre, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada.,GlaxoSmithKline-Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | | | | | - Gaye D Sweet
- Department of Microbiology and Immunology, Centre for Tuberculosis Research, Life Sciences Centre, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Fraser Cunningham
- GlaxoSmithKline-Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | - David Barros
- GlaxoSmithKline-Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | - Lluís Ballell
- GlaxoSmithKline-Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | | | | | - Charles J Thompson
- Department of Microbiology and Immunology, Centre for Tuberculosis Research, Life Sciences Centre, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| |
Collapse
|
22
|
Loots DT. TB or not TB? Improving the understanding and diagnosis of tuberculosis through metabolomics. Biomark Med 2016; 10:1025-1028. [PMID: 27643758 DOI: 10.2217/bmm-2016-0206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Du Toit Loots
- Human Metabolomics, North-West University, Hoffman Street, Private Bag X6001, Box 269, Potchefstroom 2531, South Africa
| |
Collapse
|